Фазовый пеленгатор Российский патент 2019 года по МПК G01S3/46 

Описание патента на изобретение RU2684321C1

Область техники

Изобретение относится к фазовым пеленгаторам и предназначено для использования в авиационных системах радиомониторинга для пеленгации источников радиоизлучений. Уровень техники

Известны устройства для пеленгации источников излучения сигналов (патенты РФ: №2288480 от 17.05.2005, №2474835 от 26.09.2011 - МПК G01S 3/46; №2364882 от 10.05.2007 - МПК G01S 3/14 и др.).

Фазовый пеленгатор по патенту №2288480 может быть использован для определения угловых координат источника излучения фазоманипулированного сигнала.

В фазовом пеленгаторе по патенту №2364882 антенная система выполнена из трех областей антенных элементов, фазовые центры располагаются в вершинах равностороннего треугольника, а выходы первого и второго блоков преобразования координат являются соответствующими выходами пеленгатора. Данный пеленгатор может быть использован для повышения точности оценки углового отклонения источника радиоизлучения по азимуту и углу места относительно равносигнального направления.

В корреляционно-фазовом пеленгаторе по патенту №2474835 содержатся две антенны, два высокочастотных блока, два демодулятора, два спектроанализатора, блок сравнения спектров, два запоминающих устройства и коррелятор, определенным образом соединенные между собой. Данный пеленгатор может быть использован при построении систем определения угловых координат, принцип действия которых основан на определении временного сдвига между радиосигналами.

Наиболее близким к предлагаемому изобретению является фазовый пеленгатор по патенту №2330304, который и выбран в качестве прототипа.

Прототип содержит первый, второй и третий приемники с приемными антеннами, при этом выходы второго и третьего приемников соединены с первой и второй n-отводными линиями задержки соответственно, к каждому отводу которых последовательно подключены: перемножитель, второй вход которого соединен с выходом первого приемника, фильтр нижних частот, пороговый блок и блок регистрации. Принцип работы прототипа основан на измерении разности фаз Δφ1 и Δφ2 сигналов, принимаемых антеннами А и В, А и С, разность времен поступления которых компенсируется за счет введения соответствующих временных задержек.

Недостатком указанного в качестве прототипа фазового пеленгатора является обеспечение разностно-фазовой пеленгации только в метровом диапазоне длин волн, что не позволяет использовать его для пеленгации источников радиоизлучений в дециметровом диапазоне длин волн. Также, входящие в его состав П-отводные линии задержки, перемножители, фильтры нижних частот и пороговые блоки выполнены как отдельные аналоговые устройства, что увеличивает массу, габариты, время настройки устройства и не позволяют реализовать эффективные цифровые алгоритмы сигнальной обработки. Сущность изобретения

Технический результат изобретения заключается в существенном расширении диапазона длин волн пеленгуемых источников излучений, охватывающем метровый и дециметровый диапазоны, с одновременным снижением фазовых ошибок, характерных для аналоговых устройств сигнальной обработки, за счет использования цифровой сигнальной обработки.

Сущность изобретения заключается в том, что фазовый пеленгатор содержит пять разнесенных друг от друга приемников с приемными антеннами, пять подключенных к выходам приемников модулей аналого-цифрового преобразования, цифровые выходы которых подключены к сигнальному процессору. При этом, между сигналами, принятыми центральной и наиболее удаленными антеннами, осуществляется корреляционная время-фазовая разностная обработка, а между сигналами, принятыми центральной и расположенными вблизи ее антеннами - разностно-фазовая, на основе которых в сигнальном процессоре однозначно определяются пеленги источников излучения в азимутальной и угломестной плоскостях.

Предлагаемый фазовый пеленгатор относится к области радиоэлектроники и может быть использован в авиационных системах радиомониторинга для пеленгации источников радиоизлучений в метровом и дециметровом диапазонах длин волн.

Технической задачей изобретения является расширение диапазона рабочих частот пеленгатора с одновременным упрощением его структуры и повышением точности пеленгации за счет использования цифровой сигнальной обработки. Возможность реализации изобретения

Поставленная техническая задача решается следующим образом. Фазовый пеленгатор содержит в соответствии с прототипом три основных приемника с антеннами, разнесенными друг от друга и расположенными в виде геометрического прямого угла, в вершине которого расположена центральная приемная антенна. В отличие от прототипа, он снабжен дополнительно четвертым и пятым приемниками с антеннами, размещенными между центральной и крайними двумя антеннами, пятью подключенными к выходам приемников модулями аналого-цифрового преобразования (АЦП), цифровые выходы которых подключены к сигнальному процессору, выполненному, например, с использованием программируемых логических интегральных схем (ПЛИС). При этом, между сигналами, принятыми центральной и наиболее удаленными антеннами, осуществляется корреляционная время-фазовая разностная обработка, а между сигналами, принятыми центральной и расположенными вблизи нее дополнительными четвертой и пятой антеннами - разностно-фазовая, на основе которых в сигнальном процессоре однозначно определяются пеленги источников излучения в азимутальной и угломестной плоскостях.

Сущность изобретения поясняется описанием и чертежами:

Фиг. 1 - структурная схема фазового пеленгатора.

Фиг. 2 - взаимное расположение приемных антенн.

Структурная схема фазового пеленгатора (фиг.1) содержит первый 1, второй 2, третий 3, четвертый 4 и пятый 5 приемники с приемными антеннами А, В, С, D и Е соответственно. Выходы приемников соединены со входами АЦП 6-10, цифровые выходы которых подключены к сигнальному процессору 11.

Следует отметить, что фазовый пеленгатор является наиболее точным пеленгатором, определяющим пеленг источника излучения по наклону принимаемого волнового фронта излучения, определяемого путем измерения разности фаз сигнала, одновременно принимаемого разнесенными антеннами.

Основным проблемным фактором при реализации фазовых пеленгаторов является обеспечение однозначности полученных измерений. Классический метод обеспечения однозначности заключается в использовании результатов многоканальных разностно-фазовых измерений радиосигнала, принятого набором антенн, размещенных на различных расстояниях между собой так, чтобы измерения разности фаз между близко расположенными антеннами в совокупности обеспечивали однозначность измерений между антеннами с большей базой. Однако этот метод не позволяет реализовывать сверхширокополосные пеленгаторы (как правило, перекрытие по частоте фазовых пеленгаторов не превышает октаву) и требует размещения большого количества антенн (около 5 по одной оси в каждой литере), что вызывает большие конструктивные сложности применительно к размещению антенн на авиационных платформах.

В фазовом пеленгаторе-прототипе противоречие между требованиями к точности измерений и однозначностью отсчета углов разрешается за счет дополнительной разностно-временной обработки принимаемых сигналов. Рассмотрим предельные возможности устранения неоднозначности таким методом.

В соответствии с границей Рао-Крамера при заданном соотношении «сигнал/шум» минимальная среднеквадратическая ошибка (СКО) измерения временного запаздывания импульсного радиосигнала с трапецеидальными огибающими может быть приближенно представлена как где τф - длительность переднего фронта, Δƒ - полоса обрабатываемых частот, qp - отношение мощности сигнала к мощности шума на входе обрабатывающего устройства. В этом случае СКО разностно-временного измерения пеленга можно определить как:

где с - скорость света, L - расстояние между фазовыми центрами приемных антенн разностно-временного пеленгатора, а α - угловое положение источника излучения. Условие однозначности оценки пеленга фазовым пеленгатором с вероятностью 0,95 может быть сформулировано как где λ - длина волны пеленгуемого источника излучения, Lϕ - расстояние между фазовыми центрами приемных антенн фазового пеленгатора. С учетом выражения (1) для можно записать указанное условие для частоты пеленгуемого сигнала ƒs как:

Если принять в указанном неравенстве Lϕ=L, то получим условие, когда высокоточная пеленгация может осуществляться с использованием пары приемных антенн, как реализовано в прототипе, из которого можно определить предельную частоту однозначной пеленгации двухэлементным фазо-временным пеленгатором. Например, если ориентировочно определить полосу предварительной фильтрации, равной 64 МГц, а длительность крутого участка фронта принимаемых импульсных сигналов 40 нс, то при отношении «сигнал/шум» по мощности (qp) более 25 дБ, получим значение максимальной несущей частоты сигналов, однозначно пеленгуемых двухэлементным время-фазовым пеленгатором, 251 МГц, что ниже верхней границы метрового диапазона частот (300 МГц).

Для однозначной пеленгации в области более высоких частот предлагается использовать третью антенну, обеспечивающую однозначность разностно-фазовых измерений на большой базе за счет малобазовой разностно-фазовой пеленгации, для которой отношение в (2) может быть выбрано существенно большим единицы, что соответственно увеличит диапазон частот однозначной пеленгации на малой базе.

Необходимое для обеспечения однозначности разностно-фазовых измерений на большой базе отношение L/Lϕ получим из аналогичного (2) условия которое, с учетом того, что где σΔϕ - СКО измерения разности фаз, может быть записано как

В соответствии с теорией статистической радиотехники, дисперсия измерения разности фаз уменьшается с увеличением отношения «сигнал/шум» по закону 2/qp, однако в реальной аппаратуре оно определяется совокупностью пространственных (характерных для антенн любых типов), частотных и температурных зависимостей, неопределенность которых в ближайшее время не предполагается снизить до уровня менее 5 фазовых градусов (в зависимости от диапазона частот) даже для двумерных пеленгаторов. Соответственно, предельную величину допустимого отношения баз предлагаемого пеленгатора можно оценить как 18. Для указанного отношения баз величина верхней рабочей частоты предлагаемого пеленгатора в соответствии с (2) при ранее использованных значениях параметров составит 3,2 ГГц, что превышает верхнюю границу дециметрового диапазона (3 ГГц).

Таким образом, предлагаемый фазовый пеленгатор по сравнению с прототипом и другими техническими решениями аналогичного назначения, обеспечивает сверхширокополосную пеленгацию с перекрытием, кроме метрового, еще и дециметрового диапазонов с одновременным упрощением конструкции и повышением точности пеленгации путем реализации алгоритмов корреляционной разностно-временной и разностно-фазовой обработки в цифровом виде в сигнальном процессоре за счет преобразования принятых сигналов в цифровую форму в модулях АЦП, установленных на выходах приемников.

Кроме того, предлагаемый фазовый пеленгатор за счет варьирования цифровых методов обработки позволяет использовать разные максимальные значения азимутальной и угломестной антенных баз, что упрощает их размещение на авиационных платформах.

Предлагаемое построение существенно расширяет функциональные возможности фазового пеленгатора.

Похожие патенты RU2684321C1

название год авторы номер документа
Способ амплитудно-фазовой пеленгации системой с вращающимися антаннами 2020
  • Голод Олег Саулович
  • Борисов Евгений Геннадьевич
RU2750335C1
СПОСОБ ПЕЛЕНГАЦИИ РАДИОСИГНАЛОВ И ПЕЛЕНГАТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2008
  • Андрианов Владимир Игоревич
  • Викторов Владимир Александрович
  • Гудков Леонид Алексеевич
  • Киселев Сергей Петрович
  • Липатников Валерий Алексеевич
  • Царик Олег Владимирович
RU2383897C1
СПОСОБ ПЕЛЕНГАЦИИ РАДИОСИГНАЛОВ И ПЕЛЕНГАТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2007
  • Гудков Леонид Алексеевич
  • Киселев Сергей Петрович
  • Липатников Валерий Алексеевич
  • Митянин Александр Генадьевич
  • Смирнов Павел Леонидович
  • Соломатин Александр Иванович
  • Терентьев Алексей Васильевич
  • Царик Олег Владимирович
RU2341811C1
ФАЗОВЫЙ СПОСОБ ПЕЛЕНГАЦИИ И ФАЗОВЫЙ ПЕЛЕНГАТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2010
  • Заренков Вячеслав Адамович
  • Заренков Дмитрий Вячеславович
  • Дикарев Виктор Иванович
RU2427853C1
СПОСОБ ПЕЛЕНГАЦИИ РАДИОСИГНАЛОВ И ПЕЛЕНГАТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2009
  • Аль Хамед Низар
  • Балясов Александр Евгеньевич
  • Белов Александр Владимирович
  • Липатников Валерий Алексеевич
  • Царик Олег Владимирович
  • Старчиков Алексей Дмитриевич
RU2419805C1
СПОСОБ ПЕЛЕНГАЦИИ РАДИОСИГНАЛОВ И ПЕЛЕНГАТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2004
  • Терентьев А.В.
  • Соломатин А.И.
  • Смирнов П.Л.
  • Царик И.В.
  • Царик О.В.
RU2263327C1
ФАЗОВЫЙ СПОСОБ ПЕЛЕНГАЦИИ И ФАЗОВЫЙ ПЕЛЕНГАТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2011
  • Дикарев Виктор Иванович
  • Шубарев Валерий Антонович
  • Петрушин Владимир Николаевич
RU2450283C1
Способ повышения точности пеленгования источников радиоизлучения обнаружителем-пеленгатором с многошкальной антенной системой 2019
  • Артемов Михаил Леонидович
  • Афанасьев Олег Владимирович
  • Воропаев Дмитрий Иванович
  • Сличенко Михаил Павлович
  • Абрамова Евгения Леонидовна
RU2713235C1
ФАЗОВЫЙ СПОСОБ ПЕЛЕНГАЦИИ И ФАЗОВЫЙ ПЕЛЕНГАТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2007
  • Ипатов Александр Васильевич
  • Дикарев Виктор Иванович
  • Койнаш Борис Васильевич
  • Финкельштейн Андрей Михайлович
RU2365931C2
СПОСОБ ПЕЛЕНГАЦИИ РАДИОСИГНАЛОВ И МНОГОКАНАЛЬНЫЙ ПЕЛЕНГАТОР 2003
  • Артемов М.Л.
  • Дмитриев И.С.
  • Москалева Е.А.
  • Афанасьев О.В.
RU2253877C2

Иллюстрации к изобретению RU 2 684 321 C1

Реферат патента 2019 года Фазовый пеленгатор

Изобретение относится к фазовым пеленгаторам и предназначено для использования в авиационных системах радиомониторинга для пеленгации источников радиоизлучений. Технический результат - расширение диапазона длин волн пеленгуемых источников излучений более чем на порядок, включая метровый и дециметровый диапазоны, с одновременным исключением фазовых ошибок аналоговых устройств сигнальной обработки за счет использования цифровой сигнальной обработки. Сущность изобретения заключается в том, что фазовый пеленгатор содержит пять разнесенных друг от друга приемников с приемными антеннами, пять подключенных к выходам приемников модулей аналого-цифрового преобразования, цифровые выходы которых подключены к сигнальному процессору, при этом между сигналами, принятыми центральной и наиболее удаленными антеннами, осуществляется корреляционная время-фазовая разностная обработка, а между сигналами, принятыми центральной и расположенными вблизи нее антеннами, - разностно-фазовая, на основе которых в сигнальном процессоре однозначно определяются пеленги источников излучения в азимутальной и угломестной плоскостях. 1 з.п. ф-лы, 2 ил.

Формула изобретения RU 2 684 321 C1

1.Фазовый пеленгатор, содержащий три основных приемника с антеннами, разнесенными друг от друга на расстояния d1 и d2 и расположенными в виде геометрического прямого угла, в вершине которого расположена центральная приемная антенна, отличающийся тем, что он снабжен дополнительно четвертым и пятым приемниками с антеннами, размещенными между центральной и крайними двумя антеннами, пятью подключенными к выходам приемников модулями аналого-цифрового преобразования, цифровые выходы которых подключены к сигнальному процессору, при этом между сигналами, принятыми центральной и наиболее удаленными антеннами, осуществляется корреляционная время-фазовая разностная обработка, а между сигналами, принятыми центральной и расположенными вблизи нее дополнительными четвертой и пятой антеннами, - разностно-фазовая, на основе которых в сигнальном процессоре однозначно определяются пеленги источников излучения в азимутальной и угломестной плоскостях.

2. Фазовый пеленгатор по п. 1, отличающийся тем, что сигнальный процессор выполнен с использованием программируемой логической интегральной схемы.

Документы, цитированные в отчете о поиске Патент 2019 года RU2684321C1

ФАЗОВЫЙ ПЕЛЕНГАТОР 2007
  • Дикарев Виктор Иванович
  • Альжанов Артур Булатович
  • Коровин Евгений Александрович
RU2330304C1
ФАЗОВЫЙ СПОСОБ ПЕЛЕНГАЦИИ И ФАЗОВЫЙ ПЕЛЕНГАТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2012
  • Жуков Анатолий Валерьевич
  • Гогин Валерий Леонидович
  • Зайцев Олег Викторович
  • Дикарев Виктор Иванович
RU2518428C2
СПОСОБ ОБРАБОТКИ СИГНАЛОВ ПРИ МНОГОКАНАЛЬНОЙ ФАЗОВОЙ ПЕЛЕНГАЦИИ ИСТОЧНИКОВ РАДИОИЗЛУЧЕНИЙ КОРОТКОВОЛНОВОГО ДИАПАЗОНА 2012
  • Скобёлкин Владимир Николаевич
  • Дикарев Анатолий Семёнович
RU2527943C1
RU 2013135514 A, 10.02.2015
US 6184830 B1, 06.02.2001
JP 2004271189 A, 30.09.2004
US 9057776 B1,16.05.2015.

RU 2 684 321 C1

Авторы

Топорков Никита Валентинович

Потапова Татьяна Петровна

Даты

2019-04-08Публикация

2018-01-10Подача