Изобретение относится к экспериментальной медицине, а именно к оперативной травматологии и имплантологии, и может быть использовано для изучения интеграции остеотропных материалов, их участия в репаративных процессах костной ткани.
Известен способ формирования модели костного дефекта (RU 2621947, публ. 08.06.2017) [1]. Согласно этому способу, модель костного дефекта формируют следующим образом. На предплечье мелкого лабораторного животного выполняют поперечную остеотомию на двух уровнях до кортикальной пластинки, граничащей с межкостной мембраной, затем линии остеотомии соединяют в продольном направлении и удаляют костный фрагмент, после чего выкусывают костное вещество до кортикальной пластинки.
Способ является травматичным, поскольку на одном сегменте наносится костная продольная операционная рана, что может нарушать процессы регенерации тканей. Полученная этим способом модель костного дефекта крайне травматична сама по себе, т.к. при ее формировании нарушается васкуляризация и нейротрофические процессы на двукостном сегменте предплечья, что значительно ухудшает регенерацию тканей, костной, в том числе. Кроме того, сформированная таким образом модель костного дефекта не может рассматриваться, как физиологическая или приближенная к реальной, так как не совпадает с морфологией перелома диафиза трубчатой кости, а потому не позволяет изучать остеорегенерационные процессы при создании перелома.
Известен способ моделирования переломо-дефекта длинной трубчатой кости (RU 2531441, публ. 20.10.2014 [2]. Согласно данному способу для создания перелома вдоль оси кости наносят Z-образный распил длиной 2 мм., формируют два дефекта, выполняя остеотомию проксимального и дистального отломков и отсекают диафизарную костную ткань. Переломо-дефект фиксируют билатеральным аппаратом внешней фиксации.
Данный способ представляется достаточно травматичным. На одной кости моделируется сегментарный перелом диафиза, что значительно нарушает репаративную регенерацию за счет дисфункции периостального костеобразования. Представляется достаточно сложным выполнение чрескостного остеосинтеза перелома билатеральным аппаратом внешней фиксации, что может затруднить процесс ухода за животным в послеоперационном периоде, обездвижить его и привести к общему нарушению трофических процессов. Полученный переломо-дефект, как костная модель, также не позволяет в достаточной мере изучать остеорегенерационные процессы при производстве перелома, поскольку, как и в вышеописанном способе [1], эта модель крайне травматична; при создании сегментарного перелома трубчатой кости перелома нарушаются процессы периостального костеобразования и кровоснабжения. Данная модель также не может рассматриваться, как физиологическая или приближенная к реальной, так как не совпадает с морфологией перелома диафиза трубчатой кости.
Известен способ исследования кальций фосфатных биокерамических покрытий титановых имплантатов на границе раздела с костной тканью (Маланин Д.А. и др. Взаимодействие кальциофосфатных биокерамических покрытий титановых имплантатов на границе раздела с костной тканью// Бюллетень Волгоградского научного центра РАМН, 2004, №3, с.20-24) [3]. Согласно этому способу исследования в дистальных эпифизах бедренных костей животных помещался имплантат длиной 7 мм. Данный способ не позволяет оценить всю картину остеорегенерационных процессов, так как задействует только область эпиметафиза трубчатой кости без стратификации интрамедуллярного канала. Создания модели перелома кости, данный способ не включает, поэтому не дает полной картины репаративного остеогистогенеза.
Известен способ оценки остеоинтеграции пористых проволочных материалов в эксперименте (RU 2550974, публ. 20.05.2015 [4]. Способ включает забор костных блоков с изучаемым пористым проволочным материалом, фиксацию костной ткани с пористым проволочным материалом, декальцинирование, обезжиривание, обезвоживание, заливку ткани, изготовление срезов, окрашивание и гистоморфометрию.
Поскольку данный способ также не включает создание экспериментальной модели перелома, а потому не позволяет воспроизвести картину остеорегенерационных процессов, так как задействует только области трабекулярной кости, без стратификации трубчатых костей.
Задача настоящего изобретения заключается в создании комплексной модели для изучения регенеративных и остеинтеграционных процессов при имплантации остеотропных материалов, как при репаративном остеогистогенезе, так и при имплантации остеотропного материала в интактную кость.
Для этого предложен способ создания костной модели для исследования интеграции остеотропных материалов в эксперименте, согласно которому производят разрез в области коленного сустава, транслигаментарно формируют интрамедуллярный канал бедренной и большеберцовой кости ипсилатеральной задней конечности животного, в канал имплантируют исследуемый остеотропный материал в виде штифтов, усилием зажима Кохера создают ипсилатеральный перелом бедренной и контрлатеральный перелом большеберцовой кости.
Сущность заявленного способа заключается в том, что на одной конечности животного, к примеру, правой, оценивают регенерацию перелома крупной кости – бедренной, а на другой конечности, в этом случае левой – регенерацию большеберцовой кости. Таким образом, малоинвазивно, через небольшие доступы, не нанося вреда реабилитации животного, на одном животном оценивают сразу два места регенерации. Для установления репаративных процессов кости производят перелом кости зажимом Кохера. При этом способ не требует фиксации перелома; эту функцию выполняет интрамедуллярный штифт исследуемого остеотропного материала.
Новый технический результат, достигаемый заявленным способом, заключается в возможности воссоздания физиологической репарации костной ткани с последующей оценкой интеграции остеотропных материалов при уменьшении травматичности оперативного вмешательства за счет использования техники интрамедуллярного анте- и ретроградного введения остеотропных материалов.
Изобретение иллюстрируется следующими рисунками, где на фиг. 1 изображено просверливание костного канала; на фиг. 2 – образец, имплантируемый в кость и процесс имплантации штифта в интрамедуллярный канал; на фиг. 3 – модель перелома диафиза бедренной кости.
Под комбинированной общей анестезией выполняют билатеральное оперативное вмешательство на бедренной и большеберцовой костях животного. Для доступа к обеим костям используют малоинвазивную технику срединного доступа в области коленного сустава. Сверлом 2,0 мм в диаметре при помощи бор-машинки формируют интрамедуллярный канал в ретроградном направлении через надколенниковую поверхность мыщелков бедренной кости. В интрамедуллярный канал имплантируют исследуемый материал в виде штифтов диаметром 1,8 мм и длиной 25 мм. Для моделирования перелома используют зажим Кохера, который малоинвазивно подводят к кости в области ее диафиза. Из этого же доступа сверлом 2,0 мм в диаметре вскрывают интрамедуллярный канал большеберцовой кости в области переднего межмыщелкового поля в антеградном направлении, в который имплантируют образец материала в виде штифта диаметром 1,5 мм и длиной 15 мм. Рана ушивается послойно. На контрлатеральной задней конечности производят аналогичные действия, с той лишь разницей, что перелом моделируют на большеберцовой кости, а бедренную кость оставляют интактной.
Создание экспериментальной костной модели проводилось на морских свинка породы «Американская» при соблюдении «Международных рекомендаций (этический кодекс) по проведению медико-биологических исследований с использованием животных» (1985). Операционное поле выбрито, кожа обработана 70% этиловым спиртом. Оперативное вмешательство было выполнено с премедикацией – внутримышечно ксилазин (0,2 мг/кг), под общей анестезией – внутримышечно золетил (0,1 мг/кг). Для потенцирования обезболивания использовались инъекции 0,25% раствора новокаина в виде футлярных блокад проксимальнее места предполагаемого оперативного вмешательства.
Первый этап операции проведен на правой задней конечности животного. Для доступа к бедренной и большеберцовой кости произведен срединный разрез в области коленного сустава по передней его поверхности в проекции связки надколенника до 1,0 см. Связка надколенника не резецируется, а доступ к суставу осуществляется транслигаментарно с медиальной стороны. Сверлом 2,0 мм в диаметре при помощи бор-машинки формируют интрамедуллярный канал в ретроградном направлении через надколенниковую поверхность мыщелков бедренной кости (фиг.1). В интрамедуллярный канал имплантируют исследуемый материал в виде штифтов диаметром 1,8 мм и длиной 25 мм (фиг.2). Для моделирования перелома диафиза бедренной кости тупым способом отодвигают латеральную широкую мышцу бедра в проксимальном направлении до обнажения диафиза бедренной кости в нижней его трети, к которому подводят зажим Кохера и производят излом кости (фиг.3). Из этого же доступа сверлом 2,0 мм в диаметре вскрывают интрамедуллярный канал большеберцовой кости в области переднего межмыщелкового поля в антеградном направлении, в который имплантируют образец материала в виде штифта диаметром 1,5 мм и длиной 15 мм. Рана ушивается послойно.
Второй этап оперативного вмешательства выполняют на левой задней конечности животного. Для доступа к бедренной и большеберцовой кости производят срединный разрез в области коленного сустава по передней его поверхности в проекции связки надколенника, при этом связка надколенника не резецируется, а доступ к суставу осуществляется транслигаментарно с медиальной стороны. Сверлом 2,0 мм в диаметре при помощи бор-машинки формируют интрамедуллярный канал в ретроградном направлении через надколенниковую поверхность мыщелков бедренной кости. В интрамедуллярный канал имплантируют исследуемый материал в виде штифтов диаметром 1,8 мм и длиной 20 мм. Из этого же доступа сверлом 2,0 мм в диаметре вскрывают интрамедуллярный канал большеберцовой кости в области переднего межмыщелкового поля в антеградном направлении, в который так же имплантируют образец материала в виде штифтов диаметром 1,5 мм и длиной 15 мм. Для моделирования перелома диафиза большеберцовой кости тупым способом раздвигают мышцы передней поверхности голени до обнажения диафиза большеберцовой кости в верхней ее трети, к диафизу подводят зажим Кохера, с помощью которого моделируют перелом. Рану ушивают послойно. На контрлатеральной задней конечности производят аналогичные действия, с той лишь разницей, что перелом моделируют на большеберцовой кости, а бедренную кость оставляют интактной.
Таким образом, заявленный способ дает возможность воссоздания физиологической репарации костной ткани с последующей оценкой интеграции остеотропных материалов при уменьшении травматичности оперативного вмешательства.
название | год | авторы | номер документа |
---|---|---|---|
Способ создания модели для комплексного исследования интеграции остеотропных материалов в эксперименте | 2020 |
|
RU2754630C1 |
СПОСОБ ЛЕЧЕНИЯ МНОГООСКОЛЬЧАТЫХ И МНОЖЕСТВЕННЫХ ПЕРЕЛОМОВ ДЛИННЫХ ТРУБЧАТЫХ КОСТЕЙ | 2008 |
|
RU2370227C1 |
Способ замещения обширных диафизарных дефектов длинных трубчатых костей | 2020 |
|
RU2746832C1 |
СПОСОБ ОПТИМИЗАЦИИ РЕПАРАТИВНОГО ОСТЕОГЕНЕЗА | 2006 |
|
RU2315580C2 |
СПОСОБ МОДЕЛИРОВАНИЯ ОСТЕОРЕЗОРБЦИИ В УСЛОВИЯХ РЕПАРАТИВНОГО ОСТЕОГЕНЕЗА | 2013 |
|
RU2524128C1 |
СПОСОБ УДАЛЕНИЯ СЛОМАННОГО ИНТРАМЕДУЛЛЯРНОГО МЕТАЛЛИЧЕСКОГО СТЕРЖНЯ ИЗ ТРУБЧАТОЙ КОСТИ | 2007 |
|
RU2349278C1 |
СПОСОБ МОДЕЛИРОВАНИЯ ПОСТТРАВМАТИЧЕСКОГО КОМПРЕССИОННОГО КОСТНОГО ДЕФЕКТА | 2022 |
|
RU2802431C1 |
Способ удаления сломанного дистального конца бедренного блокируемого интрамедуллярного штифта с одномоментным ретроградным интрамедуллярным реостеосинтезом | 2017 |
|
RU2653268C1 |
Способ интрамедуллярного артродезирования коленного сустава при помощи удлиняющего штифта | 2016 |
|
RU2624674C1 |
СПОСОБ ЛЕЧЕНИЯ ЗАМЕДЛЕННОЙ КОНСОЛИДАЦИИ, НЕСРАСТАЮЩИХСЯ ПЕРЕЛОМОВ ТРУБЧАТЫХ КОСТЕЙ | 2014 |
|
RU2572004C1 |
Изобретение относится к экспериментальной медицине, а именно к оперативной травматологии и имплантологии, и может быть использовано для изучения интеграции остеотропных материалов, их участия в репаративных процессах костной ткани. Производят разрез в области коленного сустава. Транслигаментарно формируют интрамедуллярный канал бедренной и большеберцовой кости ипсилатеральной задней конечности животного. В канал имплантируют исследуемый остеотропный материал в виде штифтов. Усилием зажима Кохера создают ипсилатеральный перелом бедренной и контрлатеральный перелом большеберцовой кости. Способ обеспечивает возможность воссоздания физиологической репарации костной ткани с последующей оценкой интеграции остеотропных материалов при уменьшении травматичности оперативного вмешательства за счет использования техники интрамедуллярного анте- и ретроградного введения остеотропных материалов. 3 ил.
Способ создания билатеральной костной модели для исследования интеграции остеотропных материалов в эксперименте, отличающийся тем, что производят разрез в области коленного сустава, транслигаментарно формируют интрамедуллярный канал бедренной и большеберцовой кости ипсилатеральной задней конечности животного, в канал имплантируют исследуемый остеотропный материал в виде штифтов, усилием зажима Кохера создают ипсилатеральный перелом бедренной и контрлатеральный перелом большеберцовой кости.
СПОСОБ МОДЕЛИРОВАНИЯ ПЕРЕЛОМО-ДЕФЕКТА ДЛИННОЙ ТРУБЧАТОЙ КОСТИ | 2013 |
|
RU2531441C1 |
Способ формирования модели костного дефекта | 2016 |
|
RU2621947C1 |
СПОСОБ МОДЕЛИРОВАНИЯ ТРАНСПЕДИКУЛЯРНОЙ ФИКСАЦИИ ПОЗВОНОЧНИКА В РАСТУЩЕМ ОРГАНИЗМЕ | 2007 |
|
RU2359339C1 |
Способ моделирования продольных переломов длинных трубчатых костей конечностей | 1987 |
|
SU1506468A1 |
CN 102522039 A, 27.06.2012 | |||
Маланин Д.А | |||
и др | |||
Взаимодействие кальциофосфатных биокерамических покрытий титановых имплантатов на границе раздела с костной тканью// Бюллетень Волгоградского научного центра РАМН, 2004, N 3, с.20-24. |
Авторы
Даты
2019-04-08—Публикация
2018-10-04—Подача