MULTIOXIDE GAS-ANALYTIC CHIP AND METHOD FOR PRODUCTION THEREOF BY ELECTROCHEMICAL METHOD Russian patent published in 2019 - IPC G01N27/12 B82B1/00 B82B3/00 

Abstract RU 2684426 C1

FIELD: measuring equipment.

SUBSTANCE: group of inventions relates to gas analysis, specifically to devices for recognizing composition of multicomponent gas mixtures and methods for their production. Multi-oxide gas analytical chip consists of a dielectric substrate on the front side of which there is a set of coplanar strip electrode made from noble metal and thin-film thermistors, and on the reverse side is a system of thin-film meander-type heaters, wherein as gas-sensitive materials between strip electrodes used are nanostructures of oxides of zinc, manganese, cobalt and nickel, successively deposited electrochemically on different strip electrodes of multi-electrode chip, which collectively form a line of chemoresistive elements operating in the temperature range from 200 °C to 250 °C, in which resistance is changed under effect of impurities of organic vapors in ambient air. Process of electrochemical synthesis of oxides of zinc, manganese, cobalt and nickel is carried out in a vessel filled with an aqueous electrolyte and containing a counter electrode and a comparison electrode.

EFFECT: technical result of the claimed group of inventions consists in creation of a highly selective multi-oxide gas analytical chip with low prime cost.

7 cl, 7 dwg

Similar patents RU2684426C1

Title Year Author Number
METHOD OF PRODUCING GAS-ANALYTICAL MULTI-SENSOR CHIP BASED ON ZINC OXIDE NANORODS 2019
  • Bobkov Anton Alekseevich
  • Varezhnikov Aleksej Sergeevich
  • Moshchnikov Vyacheslav Alekseevich
  • Sysoev Viktor Vladimirovich
  • Plugin Ilya Anatolevich
RU2732800C1
METHOD OF MANUFACTURING A CHEMORESISTOR BASED ON COBALT OXIDE NANOSTRUCTURES BY ELECTROCHEMICAL METHOD 2018
  • Solomatin Maksim Andreevich
  • Sysoev Viktor Vladimirovich
  • Fedorov Fedor Sergeevich
  • Ushakov Nikolaj Mikhajlovich
RU2677093C1
METHOD OF MANUFACTURING A CHEMORESISTOR BASED ON NANOSTRUCTURES OF MANGANESE OXIDE BY ELECTROCHEMICAL METHOD 2018
  • Solomatin Maksim Andreevich
  • Sysoev Viktor Vladimirovich
  • Fedorov Fedor Sergeevich
RU2677095C1
METHOD OF MANUFACTURING A CHEMORESISTOR BASED ON THE NANOSTRUCTURES OF NICKEL OXIDE BY ELECTROCHEMICAL METHOD 2018
  • Solomatin Maksim Andreevich
  • Sysoev Viktor Vladimirovich
  • Fedorov Fedor Sergeevich
RU2682575C1
METHOD OF MANUFACTURING CHEMORESISTOR BASED ON NANOSTRUCTURES OF ZINC OXIDE BY ELECTROCHEMICAL METHOD 2018
  • Solomatin Maksim Andreevich
  • Sysoev Viktor Vladimirovich
  • Fedorov Fedor Sergeevich
RU2684423C1
Gas sensor and gas analysis multisensor chip based on graphene functionalized with carbonyl groups 2020
  • Rabchinskij Maksim Konstantinovich
  • Varezhnikov Aleksej Sergeevich
  • Ryzhkov Sergej Aleksandrovich
  • Bajdakova Marina Vladimirovna
  • Shnitov Vladimir Viktorovich
  • Brunkov Pavel Nikolaevich
  • Solomatin Maksim Andreevich
  • Emelyanov Aleksej Vladimirovich
  • Sysoev Viktor Vladimirovich
RU2745636C1
GAS ANALYTICAL CHIP BASED ON LASER-MODIFIED TIN OXIDE 2023
  • Solomatin Maksim Andreevich
  • Radovich Marko
  • Sysoev Viktor Vladimirovich
  • Dyubur Zhorzh
  • Vasilkov Mikhail Yurevich
  • Varezhnikov Aleksej Sergeevich
  • Bajnyashev Aleksej Mikhajlovich
  • Kostin Konstantin Bronislavovich
  • Gorokhovskij Aleksandr Vladilenovich
RU2818679C1
CHEMORESISTIVE GAS SENSOR AND METHOD FOR ITS MANUFACTURE 2023
  • Nalimova Svetlana Sergeevna
  • Gagarina Alena Iurevna
  • Spivak Iuliia Mikhailovna
  • Bobkov Anton Alekseevich
  • Kondratev Valerii Mikhailovich
  • Bolshakov Aleksei Dmitrievich
  • Moshnikov Viacheslav Alekseevich
RU2806670C1
METHOD OF PRODUCING GAS MULTISENSOR OF CONDUCTOMETRIC TYPE BASED ON TIN OXIDE 2016
  • Fedorov Fedor Sergeevich
  • Sysoev Viktor Vladimirovich
  • Podgajnov Dmitrij Vitalevich
  • Varezhnikov Aleksej Sergeevich
  • Vasilkov Mikhail Yurevich
  • Gorokhovskij Aleksandr Vladilenovich
RU2626741C1
ANALYTICAL GAS MULTISENSOR CHIP BASED ON ZnO AND METHOD FOR ITS MANUFACTURING BASED ON SOL-GEL TECHNOLOGY 2022
  • Varezhnikov Aleksei Sergeevich
  • Karmanov Andrei Andreevich
  • Plugin Ilia Anatolevich
  • Pronin Igor Aleksandrovich
  • Sysoev Viktor Vladimirovich
  • Iakushova Nadezhda Dmitrievna
RU2795666C1

RU 2 684 426 C1

Authors

Fedorov Fedor Sergeevich

Solomatin Maksim Andreevich

Sysoev Viktor Vladimirovich

Ushakov Nikolaj Mikhajlovich

Vasilkov Mikhail Yurevich

Dates

2019-04-09Published

2018-06-25Filed