СПОСОБ ПРЕОБРАЗОВАНИЯ И ВЫДЕЛЕНИЯ ВАНАДИЯ, ТИТАНА И ЖЕЛЕЗА ИЗ КОНЦЕНТРАТА НА ОСНОВЕ ВАНАДИЯ-ТИТАНА-ЖЕЛЕЗА В ОДНУ СТАДИЮ Российский патент 2019 года по МПК C22B34/12 C22B34/22 C21B11/00 C22B3/04 

Описание патента на изобретение RU2684462C1

Область техники

Настоящее изобретение относится к области комплексного использования металлургической технологии и минеральных ресурсов, в частности, к способу преобразования и выделения ванадия, титана и железа из концентрата на основе ванадия-титана-железа в одну стадию.

Предшествующий уровень техники

В наши дни в мире существуют следующие способы утилизации концентрата на основе ванадия-титана-железа. (1) В способе с доменной печью-конвертером можно только извлекать железо и часть ванадия, тогда как титан входит в доменный шлак, и его нельзя эффективно и экономично извлекать и использовать. Большое количество доменного титанового шлака, который образуется дополнительно, вызывает огромные потери источников титана и серьезное загрязнение окружающей среды. (2) В способе с печью с вращающимся подом-электрической печью, ванадийсодержащий титаномагнетит сперва предварительно восстанавливают в печи с вращающимся подом, а затем плавят и отделяют в электрической печи, так что получают горячий металл и обогащенный титаном шлак. Однако расположение ванадия тяжело регулировать, и коэффициент использования ванадия невысокий. Кроме того, минеральная фаза разделяемого плавлением титанового шлака стабильна и характеризуется плотной структурой. В настоящее время нет готового способа для решения вопросов, связанных с разделяемым плавлением титановым шлаком. Только небольшое количество разделяемого плавлением титанового шлака используют в качестве сырьевого материала для получения пигмента на основе диоксида титана в сульфатном способе. (3) В способе обогащения прямым восстановлением и измельчением достигают разделения железа и ванадия-титана и получают порошкообразное железо и обогащенный ванадием-титаном шлак. Обогащенный ванадием-титаном шлак затем подвергают способу солевого обжига. Ванадий экстрагируют выщелачиванием водой. Получают раствор ванадия и обогащенный титаном шлак. (4) В способе, в котором сначала экстрагируют ванадий, концентрат на основе ванадия-титана-железа сначала подвергают процессу солевого обжига и экстракции путем выщелачивания ванадия водой. Затем проводят процесс получения чугуна при помощи доменной печи или печи, не являющейся доменной. После экстракции ванадия, поскольку содержание остаточного натрия является высоким, это негативно сказывается на ровном течении процесса производства чугуна. Кроме того, полученный титановый шлак все еще нельзя использовать так же, как и в вышеуказанных способах. Более того, эти способы требуют проведения двух или трех высокотемпературных стадий для достижения эффективного разделения железа, ванадия и титана. Недостатки состоят в длительном процессе, больших капиталовложениях, высокой стоимости, серьезном загрязнении и низкой степени использования. В связи с вышеизложенным, независимо от того, какой вид использования проводят, извлечение и использование железа, ванадия и титана из ванадийсодержащего титаномагнетита нельзя достичь одновременно, что вызывает непроизводительное расходование ресурсов. В настоящем изобретении представлен новый способ преобразования и извлечения ванадия, титана и железа из концентрата на основе ванадия-титана-железа в одну стадию. Достигается эффективное и чистое извлечение ванадия, титана и железа. Способ имеет значительные преимущества, состоящие в коротком процессе, низких капиталовложениях, низкой стоимости производства, уменьшенном загрязнении окружающей среды, эффективном общем извлечении и имеет перспективы для широкого применения.

Краткое описание

В отношении недостатков существующих способов, которые включают две или три стадии для осуществления полного использования концентрата на основе ванадия-титана-железа, в настоящем изобретении разработали способ преобразования и извлечения ванадия, титана и железа из концентрата на основе ванадия-титана-железа в одну стадию. При этом способ имеет значительные преимущества, состоящие в уменьшенном загрязнении окружающей среды, высоком полном коэффициенте использования и имеет перспективы для широкого применения.

Способ преобразования и выделения ванадия, титана и железа из концентрата на основе ванадия-титана-железа в одну стадию, обеспечиваемый в настоящем изобретении, включает следующие стадии.

(1) Концентрат на основе ванадия-титана-железа смешивают с добавкой и восстанавливающим средством. Обжиг проводят в течение 0,5-4 часов при температуре 1100-1400oC, так что получают ванадийсодержащий чугун и обогащенный ванадием-титаном шлак, причем массовое отношение концентрат на основе ванадия-титана-железа:добавка:восстанавливающее средство = 100: (40-80): (20-50).

(2) Обогащенный ванадием-титаном шлак, полученный на стадии (1), выщелачивают в воде и отфильтровывают, и при этом получают ванадийсодержащий раствор и титановый шлак.

Способ по п. 1 отличается тем, что концентрат на основе ванадия-титана-железа на стадии (1) может представлять собой любой тип концентрата на основе ванадия-титана-железа, известный в данной области. Основные композиции включают железо с общей массовой долей 30%-60%, V2O5 с массовой долей 0,15%-2,0% и TiO2 с массовой долей 5%-35%.

В способе согласно настоящему изобретению добавка стадии (1) представляет собой один элемент или смесь более чем одного элемента, выбранных из группы, состоящей из карбоната натрия, гидроксида натрия, сульфата натрия, хлорида натрия, бората натрия и бикарбоната натрия.

В способе согласно настоящему изобретению восстанавливающее средство стадии (1) представляет собой один элемент или смесь более чем одного элемента, выбранных из группы, состоящей из антрацита, битуминозного угля, бурого угля и кокса.

В способе согласно настоящему изобретению ванадийсодержащий чугун на стадии (1) имеет массовую долю железа 90%-98% и массовую долю ванадия 0,05%-1%.

В способе согласно настоящему изобретению предпочтительно отношение выщелачивающей жидкости к твердому веществу на стадии (2) составляет 1:1-5:1, а температура выщелачивания составляет 30-100°C, а время выщелачивания составляет 0,5-4 часа.

Технические способы в уровне техники следует проводить в две или даже три высокотемпературные стадии для достижения разделения ванадия, титана и железа. В частности, способ с доменной печью-конвертером можно только экстрагировать железо и часть ванадия, тогда как титан входит в доменный шлак, и его нельзя извлечь эффективно и экономично. В способе с прямым восстановлением-электрической печью местонахождение ванадия тяжело регулировать, и титановый шлак трудно использовать. Существуют проблемы, заключающиеся в длительном процессе и низком коэффициенте использования ценных компонентов.

Технические признаки настоящего изобретения являются следующими. Посредством нового способа с солевым обжигом и восстановительным связыванием разработана новая система разделения путем многофазной реакции и при низкотемпературном плавлении. Восстановление железа, солевой обжиг ванадия и способ разделения плавлением обогащенного ванадием-титаном шлака и железа осуществляют на одной стадии. Получают три продукта, т.е. ванадийсодержащий чугун, ванадийсодержащий раствор и титановый шлак. Разработан новый, эффективный и экономичный способ комплексного использования концентрата на основе ванадия-титана-железа. По сравнению с обычными способами с “доменной печью-конвертером” или “прямым восстановлением-разделением плавлением/обогащением измельчением” настоящее изобретение имеет значительные преимущества, состоящие в коротком процессе, низких капиталовложениях, низкой стоимости производства, незначительном загрязнении окружающей среды и высоком общем коэффициенте использования. Представлена новая технология эффективного и комплексного использования ванадий-титан-железных минеральных источников, которая имеет перспективы для широкого применения.

Конкретные преимущества настоящего изобретения являются следующими.

(1) В настоящем изобретении представлен новый способ преобразования и извлечения ванадия, титана и железа из концентрата на основе ванадия-титана-железа в одну стадию, избегая проблем с повторяющимся высокотемпературным обжигом, высокой стоимостью и серьезным загрязнением в обычном способе плавления ванадийсодержащего титаномагнетита.

(2) В настоящем изобретении представлен новый способ преобразования и извлечения ванадия, титана и железа из концентрата на основе ванадия-титана-железа в одну стадию. Коэффициенты извлечения железа, ванадия и титана являются высокими. Железо получают в виде ванадийсодержащего чугуна, который имеет высокую  дополнительную стоимость, и полученный титановый шлак имеет хорошую растворимость в кислотах.

Краткое описание чертежей

Фиг. 1 представляет собой блок-схему способа преобразования и выделения ванадия, титана и железа из концентрата на основе ванадия-титана-железа в одну стадию по настоящему изобретению.

Подробное описание

Подробное описание настоящего изобретения совместно с конкретными вариантами осуществления будет описано ниже.

Вариант осуществления 1

Тщательно смешивали 100 частей концентрата на основе ванадия-титана-железа №1, 40 частей карбоната натрия и 20 частей антрацита. Затем смесь выдерживали в течение 3 часов в муфельной печи при температуре 1200°C. Получали ванадийсодержащий чугун и обогащенный ванадием-титаном шлак. Обогащенный ванадием-титаном шлак измельчали и тонко размалывали, и выщелачивали в течение 2 часов при условии 30oC и отношения жидкость-твердое вещество 2:1. Проводили фильтрование, после чего получали ванадийсодержащий раствор и обогащенный титаном шлак. Химические композиции концентрата на основе ванадия-титана-железа показаны в таблице 1. Результаты разделения ванадийсодержащего чугуна, ванадийсодержащего раствора и обогащенного титаном шлака показаны в таблице 2. Степень содержания железа в полученном ванадийсодержащем чугуне составляла 97,62%, а коэффициент извлечения составлял до 99,40%. Концентрация ванадийсодержащего раствора V2O5 составляла 3,2 г/л, а коэффициент извлечения ванадия составлял 70,46%. Содержание TiO2 в обогащенном титаном шлаке составляло 35,67%, а коэффициент извлечения титана составлял 99,77%. Достигали хорошего преобразования и выделения железа, ванадия и титана из концентрата на основе ванадия-титана-железа.

Вариант осуществления 2

Тщательно смешивали 100 частей концентрата на основе ванадия-титана-железа №2, 60 частей бикарбоната натрия и 30 частей кокса. Затем смесь выдерживали в течение 4 часов в муфельной печи при температуре 1100°С. Получали ванадийсодержащий чугун и обогащенный ванадием-титаном шлак. Обогащенный ванадием-титаном шлак измельчали и тонко размалывали, и выщелачивали в течение 2 часов при условии 30oC и отношения жидкость-твердое вещество 1:1. Проводили фильтрование, после чего получали ванадийсодержащий раствор и обогащенный титаном шлак. Химические композиции концентрата на основе ванадия-титана-железа показаны в таблице 1. Результаты разделения ванадийсодержащего чугуна, ванадийсодержащего раствора и обогащенного титаном шлака показаны в таблице 2. Степень содержания железа в полученном ванадийсодержащем чугуне составляла 95,38%, а коэффициент извлечения составлял до 98,71%. Концентрация ванадийсодержащего раствора V2O5 составляла 5,2 г/л, а коэффициент извлечения ванадия составлял 90,50%. Содержание TiO2 в обогащенном титаном шлаке составляло 42,67%, а коэффициент извлечения титана составлял 99,54%. Достигали хорошего преобразования и выделения железа, ванадия и титана из концентрата на основе ванадия-титана-железа.

Вариант осуществления 3

Тщательно смешивали 100 частей концентрата на основе ванадия-титана-железа №3, 70 частей сульфата натрия и 40 частей битуминозного угля. Затем смесь выдерживали в течение получаса в муфельной печи при температуре 1300oC. Получали ванадийсодержащий чугун и обогащенный ванадием-титаном шлак. Обогащенный ванадием-титаном шлак измельчали и тонко размалывали и выщелачивали в течение получаса при условии 100oC и отношения жидкость-твердое вещество 4:1. Проводили фильтрование, после чего получали ванадийсодержащий раствор и обогащенный титаном шлак. Химические композиции концентрата на основе ванадия-титана-железа показаны в таблице 1. Результаты разделения ванадийсодержащего чугуна, ванадийсодержащего раствора и обогащенного титаном шлака показаны в таблице 2. Степень содержания железа в полученном ванадийсодержащем чугуне составляла 96,54%, а коэффициент извлечения составлял до 99,10%. Концентрация ванадийсодержащего раствора V2O5 составляла 4,5 г/л, а коэффициент извлечения ванадия составлял 88,56%. Содержание TiO2 в обогащенном титаном материале составляло 39,52%, а коэффициент извлечения титана составлял 99,61%. Достигали хорошего преобразования и выделения железа, ванадия и титана из концентрата на основе ванадия-титана-железа.

Вариант осуществления 4

Тщательно смешивали 100 частей концентрата на основе ванадия-титана-железа №4, 80 частей смеси карбоната натрия и сульфата натрия (моль(Na2CO3/NaCl)=1:1) и 40 частей бурого угля. Затем смесь выдерживали в течение 2 часов в муфельной печи при температуре 1400°С. Получали ванадийсодержащий чугун и обогащенный ванадием-титаном шлак. Обогащенный ванадием-титаном шлак измельчали и тонко размалывали и выщелачивали в течение 1 часа при условии 90°C и отношения жидкость-твердое вещество 3:1. Проводили фильтрование, после чего получали ванадийсодержащий раствор и обогащенный титаном шлак. Химические композиции концентрата на основе ванадия-титана-железа показаны в таблице 1. Результаты разделения ванадийсодержащего чугуна, ванадийсодержащего раствора и обогащенного титаном шлака показаны в таблице 2. Степень содержания железа в полученном ванадийсодержащем чугуне составляла 97,38%, а коэффициент извлечения составлял до 99,85%. Концентрация ванадийсодержащего раствора V2O5 составляла 2,8 г/л, а коэффициент извлечения ванадия составлял 80,30%. Содержание TiO2 в обогащенном титаном шлаке составляло 46,69%, а коэффициент извлечения титана составлял 99,74%. Достигали хорошего преобразования и выделения железа, ванадия и титана из концентрата на основе ванадия-титана-железа.

Вариант осуществления 5

Тщательно перемешивали 100 частей концентрата на основе ванадия-титана-железа №5, 50 частей гидроксида натрия и 30 частей антрацита. Затем смесь выдерживали в течение 1 часа в муфельной печи при температуре 1250oC. Получали ванадийсодержащий чугун и обогащенный ванадием-титаном шлак. Обогащенный ванадием-титаном шлак измельчали и тонко размалывали, и выщелачивали в течение 3 часов при условии 70oC и отношения жидкость-твердое вещество 5:1. Проводили фильтрование, после чего получали ванадийсодержащий раствор и обогащенный титаном шлак. Химические композиции концентрата на основе ванадия-титана-железа показаны в таблице 1. Результат разделения ванадийсодержащего чугуна, ванадийсодержащего раствора и обогащенного титаном шлака показан в таблице 2. Степень содержания железа в полученном ванадийсодержащем чугуне составляла 97,02%, а коэффициент извлечения составлял до 98,60%. Концентрация ванадийсодержащего раствора V2O5 составляла 4,1 г/л, а коэффициент извлечения ванадия составлял 86,22%. Содержание TiO2 в обогащенном титаном материале составляло 48,12%, а коэффициент извлечения титана составлял 99,73%. Достигали хорошего преобразования и выделения железа, ванадия и титана из концентрата на основе ванадия-титана-железа.

Вариант осуществления 6

Тщательно смешивали 100 частей концентрата на основе ванадия-титана-железа №6, 70 частей смеси карбоната натрия и хлорида натрия (моль(Na2CO3/NaCl)=1:1) и 30 частей кокса. Затем смесь выдерживали в течение 2 часов в муфельной печи при температуре 1300oC. Получали ванадийсодержащий чугун и обогащенный ванадием-титаном шлак. Обогащенный ванадием-титаном шлак измельчали и тонко размалывали, и выщелачивали в течение 1 часа при условии 90oC и отношения жидкость-твердое вещество 4:1. Проводили фильтрование, после чего получали ванадийсодержащий раствор и обогащенный титаном шлак. Химические композиции концентрата на основе ванадия-титана-железа показаны в таблице 1. Результаты разделения ванадийсодержащего чугуна, ванадийсодержащего раствора и обогащенного титаном шлака показаны в таблице 2. Степень содержания железа полученного ванадийсодержащего чугуна составляла 98,12%, а коэффициент извлечения составлял до 99,85%. Концентрация ванадийсодержащего раствора V2O5 составляла 4,7 г/л, а коэффициент извлечения ванадия составлял 83,40%. Содержание TiO2 в обогащенном титаном шлаке составляло 40,67%, а коэффициент извлечения титана составлял 99,01%. Достигали хорошего преобразования и выделения железа, ванадия и титана из концентрата на основе ванадия-титана-железа.

Таблица 1. Анализ шести ванадий-титан-железных концентратов в вариантах осуществления /%

Таблица 2. Результаты реакций и разделения “одностадийного способа” шести ванадий-титан-железных концентратов в вариантах осуществления

Более того, настоящее изобретение может также иметь множество вариантов осуществления. Специалисты в данной области могут осуществить различные соответствующие модификации и изменения на основании раскрытия настоящего изобретения без отклонения от идей и сущности настоящего изобретения. Однако соответствующие модификации и изменения должны относиться к объему защиты формулы настоящего изобретения.

Похожие патенты RU2684462C1

название год авторы номер документа
СПОСОБ ПЕРЕРАБОТКИ ВАНАДИЕВО-ТИТАНО-МАГНЕТИТОВОГО КОНЦЕНТРАТА С ПРИМЕНЕНИЕМ МОКРОГО ПРОЦЕССА 2014
  • Ци, Тао
  • Ван, Лина
  • Чэнь, Дэшэн
  • Чжао, Хунсинь
  • Лю, Яхуэй
  • Сюэ, Тяньянь
  • Цюй, Цзинкуй
RU2628586C2
СПОСОБ ИЗВЛЕЧЕНИЯ ВАНАДИЯ ИЗ ТИТАНОВАНАДИЕВЫХ ШЛАКОВ 2008
  • Макаров Юрий Витальевич
  • Садыхов Гусейнгулу Бахлул Оглы
  • Самойлова Галина Григорьевна
  • Мизин Владимир Григорьевич
RU2365649C1
СПОСОБ ПРОИЗВОДСТВА СПЛАВА ТИТАН-АЛЮМИНИЙ-ВАНАДИЙ 2017
  • Кокс, Джеймс Р.
  • Де Алвис, Чанака Л.
  • Колер, Бенджамин А.
  • Льюис, Майкл Г.
RU2750608C2
СПОСОБ МЕТАЛЛИЗАЦИИ ТИТАНОМАГНЕТИТОВЫХ КОНЦЕНТРАТОВ С ПОЛУЧЕНИЕМ ЖЕЛЕЗНЫХ ГРАНУЛ И ТИТАНОВАНАДИЕВОГО ШЛАКА 2008
  • Макаров Юрий Витальевич
  • Садыхов Гусейнгулу Бахлул Оглы
  • Самойлова Галина Григорьевна
  • Мизин Владимир Григорьевич
RU2399680C2
СПОСОБ ПЕРЕРАБОТКИ ВАНАДИЙСОДЕРЖАЩЕГО ТИТАНОМАГНЕТИТОВОГО КОНЦЕНТРАТА 2012
  • Носов Сергей Константинович
  • Рощин Антон Васильевич
  • Рощин Василий Ефимович
  • Черняховский Борис Петрович
RU2492245C1
СПОСОБ ПРИГОТОВЛЕНИЯ ОКСИДА ВАНАДИЯ 2014
  • Фу Цзыби
  • Сунь Чаохуэй
  • Ван Биньбинь
  • Чжан Линь
  • Хэ Вэньи
  • Шэнь Бяо
RU2562989C1
СПОСОБ ОБОГАЩЕНИЯ КОМПЛЕКСНЫХ ЖЕЛЕЗОТИТАНВАНАДИЕВЫХ РУД 2003
  • Тигунов Л.П.
  • Кушпаренко Ю.С.
  • Иванков С.И.
  • Исаев С.В.
RU2248246C1
Способ переработки ванадийсодержащего железотитанового концентрата 2015
  • Ракитина Елена Юрьевна
  • Гришин Николай Никитович
  • Нерадовский Юрий Николаевич
RU2606813C1
СПОСОБ ПЕРЕРАБОТКИ КОНВЕРТОРНЫХ ВАНАДИЙСОДЕРЖАЩИХ ШЛАКОВ 2003
  • Козлов Владиллен Александрович
  • Каменских А.А.
  • Карпов А.А.
  • Вдовин В.В.
RU2266343C2
ОБОГАЩЕННЫЙ ТИТАНОМ ОСТАТОК ИЛЬМЕНИТА, ЕГО ПРИМЕНЕНИЕ И СПОСОБ ПОЛУЧЕНИЯ ТИТАНОВОГО ПИГМЕНТА 2010
  • Чэнь Шучжун
  • Ван Боб Чжэнци
RU2518860C2

Иллюстрации к изобретению RU 2 684 462 C1

Реферат патента 2019 года СПОСОБ ПРЕОБРАЗОВАНИЯ И ВЫДЕЛЕНИЯ ВАНАДИЯ, ТИТАНА И ЖЕЛЕЗА ИЗ КОНЦЕНТРАТА НА ОСНОВЕ ВАНАДИЯ-ТИТАНА-ЖЕЛЕЗА В ОДНУ СТАДИЮ

Изобретение относится к способу извлечения ванадия, титана и железа из концентрата на основе ванадия-титана-железа в одну стадию. Способ включает следующие стадии. (1) Концентрат на основе ванадия-титана-железа смешивают и обжигают вместе с добавкой и восстанавливающим средством, при этом получают ванадийсодержащий чугун и обогащенный ванадием шлак. (2) Обогащенный ванадием-титаном шлак выщелачивают в воде и отфильтровывают, при этом получают ванадийсодержащий раствор и титановый шлак. Получают три продукта, а именно ванадийсодержащий чугун, ванадийсодержащий раствор и титановый шлак. Техническим результатом являются низкие капиталовложения, низкая стоимость производства, уменьшение загрязнения окружающей среды. 4 з.п. ф-лы, 1 ил., 2 табл., 6 пр.

Формула изобретения RU 2 684 462 C1

1. Способ извлечения ванадия, титана и железа из концентрата на основе ванадия-титана-железа, включающий стадии:

(1) смешивание концентрата на основе ванадия-титана-железа с восстанавливающим средством и добавкой, представляющей собой один элемент или смесь из элементов, выбранных из группы, включающей карбонат натрия, гидроксид натрия, сульфат натрия, хлорид натрия, борат натрия и бикарбонат натрия, проведение обжига в течение 0,5-4 часов при температуре 1100-1400°C с получением ванадийсодержащего чугуна и обогащенного ванадием и титаном шлака в виде твердого вещества, причем массовое отношение концентрат на основе ванадия-титана-железа : добавка : восстанавливающее средство составляет 100:(40-80):(20-50);

(2) выщелачивание обогащенного ванадием и титаном шлака, полученного на стадии (1), в воде и фильтрование с получением ванадийсодержащего раствора и титанового шлака.

2. Способ по п. 1, в котором составы концентрата на основе ванадия-титана-железа на стадии (1) содержат железо при общей массовой доле 30-60%, V2O5 при массовой доле 0,15-2,0% и TiO2 при массовой доле 5-35%.

3. Способ по п. 1, в котором восстанавливающее средство на стадии (1) представляет собой один элемент или смесь элементов, выбранных из группы, включающей антрацит, битуминозный уголь, бурый уголь и кокс.

4. Способ по п. 1, в котором ванадийсодержащий чугун на стадии (1) имеет массовую долю железа 90-98% и массовую долю ванадия 0,05-1%.

5. Способ по п. 1, в котором отношение воды к обогащенному ванадием и титаном шлаку в виде твердого вещества на стадии (2) составляет 1:1-5:1, температура выщелачивания составляет 30-100°C, а время выщелачивания составляет 0,5-4 часа.

Документы, цитированные в отчете о поиске Патент 2019 года RU2684462C1

СПОСОБ ИЗВЛЕЧЕНИЯ ВАНАДИЯ ИЗ ТИТАНОВАНАДИЕВЫХ ШЛАКОВ 2008
  • Макаров Юрий Витальевич
  • Садыхов Гусейнгулу Бахлул Оглы
  • Самойлова Галина Григорьевна
  • Мизин Владимир Григорьевич
RU2365649C1
RU 2013128260 А1, 27.12.2014
СПОСОБ ПЕРЕРАБОТКИ ВАНАДИЙСОДЕРЖАЩЕГО ТИТАНОМАГНЕТИТОВОГО КОНЦЕНТРАТА 2012
  • Носов Сергей Константинович
  • Рощин Антон Васильевич
  • Рощин Василий Ефимович
  • Черняховский Борис Петрович
RU2492245C1
US 3929461 А, 30.12.1975
DE 3536495 А1, 16.04.1987
JP 48022909 В, 10.07.1973
US 4448402 А1, 15.05.1984
EP 0179734 А1, 30.04.1986
JP 6011266 А, 21.01.1994.

RU 2 684 462 C1

Авторы

Ци, Тао

Чэнь, Дэшэн

И, Линюнь

Ван, Лина

Чжао, Хунсинь

Лю, Яхуэй

Ван, Вэйцзин

Юй, Хундун

Даты

2019-04-09Публикация

2017-01-31Подача