Изобретение относится к технологии оценки качества жидких смазочных материалов.
Известен способ определения термоокислительной стабильности смазочных материалов, при котором испытывают пробу смазочного материала постоянного объема в присутствии воздуха с перемешиванием, при оптимальной температуре, выбранной в зависимости от базовой основы смазочного материала и группы эксплуатационных свойств, в течение времени, характеризующего одинаковую степень окисления, причем через равные промежутки времени отбирают пробу окисленного смазочного материала, определяют фотометрированием коэффициент поглощения светового потока, вязкость исходного и окисленного смазочного материала и проводят оценку процесса окисления, причем испытания смазочного материала проводят, как минимум, при трех температурах ниже критической, определяют относительную вязкость как отношение вязкости окисленного смазочного материала к вязкости исходного, а термоокислительную стабильность определяют по показателю отношения коэффициента поглощения светового потока к относительной вязкости, строят графические зависимости показателя термоокислительной стабильности от коэффициента поглощения светового потока, по которым определяют однородность состава продуктов окисления и температурную область работоспособности исследуемого смазочного материала (Патент РФ №2334976 С1, дата приоритета 26.12.2006, дата публикации 27.09.2008, авторы Ковальский Б.И. и др., RU)
Наиболее близким по технической сущности и достигаемому результату является способ определения термоокислительной стабильности смазочных материалов, принятый в качестве прототипа, при котором испытывают пробы смазочного материала постоянного объема в присутствии воздуха с перемешиванием при оптимальных, как минимум, трех температурах ниже критической, выбранных в зависимости от базовой основы, назначения смазочного материала и группы эксплуатационных свойств, в течение времени, характеризующего одинаковую степень окисления, причем через равные промежутки времени отбирают пробу окисленного смазочного материала, фотометрируют, определяют кинематическую вязкость исходного и окисленного смазочного материала, определяют показатель термоокислительной стабильности, строят графические зависимости указанного показателя от параметров фотометрирования для выбранных температур и проводят оценку процесса окисления. Причем при фотометрировании определяют оптическую плотность, кинематическую вязкость определяют при температурах 40°С и 100°С, при этом определяют индекс вязкости и показатель относительного индекса вязкости как отношение индексов вязкости окисленного смазочного материала к товарному, а показатель термоокислительной стабильности определяют как отношение оптической плотности к показателю относительного индекса вязкости, по графическим зависимостям показателя термоокислительной стабильности от оптической плотности, построенным по результатам, полученным при выбранных температурах испытания, определяют влияние температуры и продуктов окисления на вязкостно-температурную характеристику испытуемого смазочного материала и выявляют наименьшую скорость изменения показателя термоокислительной стабильности при увеличении температуры окисления. (Патент РФ №2618581 С1, дата приоритета 18.02.2016, дата публикации 04.05.2017, авторы Ковальский Б.И. и др., RU, прототип).
Общим недостатком известного аналога и прототипа является ограниченная информативность о влиянии температурной области на вязкостно-температурные характеристики смазочных материалов и их влиянии на термоокислительную стабильность смазочных материалов и температурную стойкость.
Технической проблемой является повышение информативности способа определения термоокислительной стабильности и температурной стойкости смазочных материалов путем учета влияния температуры в широком диапазоне, процессов окисления, испарения, температурной деструкции и вязкостно-температурных характеристик.
Для решения технической проблемы предложен способ определения термоокислительной стабильности и температурной стойкости смазочных материалов, при котором испытывают пробы смазочного материала постоянной массы в присутствии воздуха при температурах ниже критической, выбранных в зависимости от базовой основы, назначения смазочного материала и группы эксплуатационных свойств, в течение времени, характеризующего одинаковую степень окисления, причем через равные промежутки времени отбирают пробу окисленного смазочного материала, фотометрируют, определяют оптическую плотность, кинематическую вязкость при температурах 40°С и 100°C, определяют индекс вязкости товарного и окисленного смазочного материалов, показатель термоокислительной стабильности, проводят оценку процесса окисления. Согласно изобретению, новым является то, что испытания пробы смазочного материала проводят при одной или нескольких температурах, причем через равные промежутки времени пробу термостатированного смазочного материала взвешивают, определяют массу испарившегося смазочного материала, отбирают часть пробы для прямого фотометрирования и определения оптической плотности, часть пробы используют для определения кинематической вязкости, вычисляют коэффициент термоокислительной стабильности как сумму оптической плотности и коэффициента испаряемости, а показатель термоокислительной стабильности определяют как произведение оптической плотности на индекс вязкости или как произведение коэффициента термоокислительной стабильности на индекс вязкости, строят графические зависимости показателя термоокислительной стабильности от оптической плотности или от коэффициента термоокислительной стабильности, и по тангенсу угла наклона к оси абсцисс определяют влияние базовой основы смазочного материала, температуры испытания, продуктов окисления или температурной деструкции или совместно продуктов окисления и температурной деструкции на значение индекса вязкости, причем, чем больше тангенс угла наклона зависимости, тем больше значение индекса вязкости при заданной оптической плотности.
Согласно изобретению, при термостатировании смазочных материалов с перемешиванием и при одной температуре, выбранной в соответствии с базовой основой и группой эксплуатационных свойств, осуществляют сравнение различных масел одного назначения по показателям термоокислительной стабильности.
Согласно изобретению, при трех температурах термостатирования смазочного материала с перемешиванием определяют показатель термоокислительной стабильности и влияние температуры, продуктов окисления или продуктов окисления и испарения на индекс вязкости.
Согласно изобретению, при термостатировании без перемешивания в температурном диапазоне от 100 до 300°С определяют влияние продуктов температурной деструкции на индекс вязкости.
На фиг. 1 представлены графические зависимости показателя термоокислительной стабильности от оптической плотности моторных масел: 1 - минеральное Роснефть Optimum 10w-40SG/CD; частично-синтетические 2 - Роснефть Maximum 10w-40 SL/CF, 3 - Лукойл Люкс 5w-40SL/CF, полученные при температуре термостатирования 180°С;
На фиг. 2а и 2б - графические зависимости показателей термоокислительной стабильности Птос=D×ИВ от оптической плотности (а) и коэффициента термоокислительной стабильности (б) при испытании минерального моторного масла Лукойл Супер 15w-40 SG/CD в температурном интервале от 140 до 180°С.
На фиг. 3 - графическая зависимость показателя термоокислительной стабильности Птс=D×ИВ от оптической плотности при температурной деструкции в интервале температур от 140 до 300°С при испытании частично синтетического моторного масла Лукойл Люкс 5w-40 SL/CF
Способ определения термоокислительной стабильности и температурной стойкости смазочных материалов предусматривает применение следующих средств контроля и испытания: прибора для определения процессов окисления; прибора для определения температурной деструкции; малообъемного вискозиметра для определения кинематической вязкости при температурах 40°С и 100°С; фотометрического устройства для прямого фотометрирования термостатированных смазочных материалов при толщине фотометрируемого слоя в 2 мм и электронных весов для измерения массы испарившегося смазочного материала при термостатировании.
Предлагаемый способ может быть реализован, в частности, в трех вариантах.
Первый вариант предусматривает термостатирование смазочных материалов при одной температуре, выбранной в соответствии с базовой основой (минеральное, трансмиссионное, гидравлическое, индустриальное) и группы эксплуатационных свойств. Применяется для сравнения различных масел одного назначения по показателям термоокислительной стабильности.
Второй вариант предусматривает применение способа при трех температурах термостатирования, что позволяет определить влияние температуры, продуктов окисления или окисления и испарения на индекс вязкости.
Третий вариант предусматривает применение способа в температурном диапазоне температур от 100 до 300°С, что позволяет определить влияние продуктов температурной деструкции на индекс вязкости.
Способ определения термоокислительной стабильности и температурной стойкости смазочных материалов осуществляется следующим образом для всех трех этапов. Пробу исследуемого смазочного материала постоянной массы, например 100±0,1, нагревают до выбранной температуры или диапазона температур в зависимости от базовой основы с перемешиванием с помощью механической мешалки для смешивания с кислородом воздуха. Причем при исследовании температурной стойкости (деструкции) перемешивание исключается. Температура и частота вращения механической мешалки поддерживаются автоматически.
Через равные промежутки времени пробу термостатированного масла взвешивают, определяют массу испарившегося смазочного материала, отбирают часть пробы для прямого фотометрирования и определения оптической плотности D
где 300 - показания фотометра при незаполненной маслом кювете, мкА;
П - показания фотометра при заполненной термостатированным маслом кювете, мкА.
Часть пробы используют для определения кинематической вязкости при температурах 40 и 100°С. Затем по ГОСТ 25371-97 (ИСО 2909-81) определяют индекс вязкости.
В процессе термостатирования смазочного материала изменяется оптическая плотность и испаряемость, влияющие на кинематическую вязкость и соответственно индекс вязкости, поэтому термоокислительную стабильность определяют коэффициентом Ктос, выраженным суммой:
где KG - коэффициент испаряемости
где m - масса испарившегося смазочного материала за время испытания t, г;
М - масса пробы до испытания, г.
Коэффициент Ктос учитывает только процессы окисления и испарения и не учитывает влияние продуктов этих процессов на кинематическую вязкость, поэтому в качестве показателя термоокислительной стабильности Птос предложено произведение:
или
Первое произведение учитывает эмпирическую связь между концентрацией продуктов окисления и индексом вязкости, а второе учитывает эмпирическую связь между процессами окисления, испарения и индексом вязкости.
Испытания смазочных материалов в первом варианте (при одной температуре) продолжают до достижения оптической плотности значений, равных 0,6-0,65.
Испытанию подвергались моторные масла: минеральное Роснефть Optimum 10w-40 SL/CF; частично синтетические Роснефть Maximum 10w-40 SL/CF и Лукойл Люкс 5w-40 SL/CF Результаты испытания сведены в таблицу 1 и представлены на фиг. 1. Данные зависимости описываются линейными уравнениями для масел:
Минерального Роснефть Optimum 10w-40 SG/CD (кривая 1)
Частично синтетических: Роснефть Maximum 10w-40 SL/CF (кривая 2)
Лукойл Люкс 5w-40SL/CF (кривая 3)
Анализ полученных формул (5-7) показывает, что при равном значении оптической плотности исследуемых моторных масел скорость изменения показателя Птос зависит от индекса вязкости, и она установлена более высокой для частично синтетических моторных масел. Кроме того, показатель термоокислительной стабильности может служить критерием для назначения группы эксплуатационных свойств по классификации API. Показано, что классификация минерального масла самая низкая из исследованных масел SG/SD и скорость изменения показателя термоокислительной стабильности Птос также низкая - 137,25, а классификация частично синтетических масел назначена производителями SL/CF, и скорость изменения показателей термоокислительной стабильности составила 141,03 и 148,65.
Испытания смазочных материалов по второму варианту (при трех температурах) проводили по вышеописанной технологии. Результаты исследования представлены в таблице 2 и на фиг. 2а и 2б.
Согласно данных фиг. 2а и 2б зависимости показателя термоокислительной стабильности
Уравнение (8) характеризует эмпирическую связь между продуктами окисления и индексом вязкости, а уравнения (9) - эмпирическую связь между продуктами окисления, испарения и индексом вязкости. Показано, что независимо от температуры испытания скорости изменения показателей термоокислительной стабильности
Испытание смазочных материалов по третьему варианту предусматривает изменение температуры в пределах от 140 до 300°С, при этом ограничиваются температурой, при которой оптическая плотность достигнет значения 0,6-0,7.
Продолжительность испытания составляет 8 часов при каждой температуре, причем термостатирование происходит без перемешивания испытуемого смазочного материала, а технология описана выше. Результаты испытания частично синтетического моторного масла Лукойл Люкс 5W-40 SL\CF сведены в таблицу 3, а также представлены на фиг. З. зависимостью показателя температурной стойкости
Согласно полученных данных, зависимость показателя температурной стойкости
Коэффициент 150 характеризует скорость изменения показателя температурной стойкости при увеличении оптической плотности.
Проведенными исследованиями смазочных материалов при одной температуре испытания установлено различие показателей термоокислительной стабильности
Смазочные материалы, термостатированные в широком интервале температур без перемешивания, характеризуют их температурную стойкость и определяются показателем температурной стойкости
Предлагаемое техническое решение позволяет повысить информативность способа определения термоокислительной стабильности и температурной стойкости смазочных материалов за счет учета влияния температуры, продуктов окисления, испарения и температурной деструкции на оптические свойства и индекс вязкости, а также промышленно применимо, так как позволяет сравнивать смазочные материалы различной базовой основы, что имеет практическое значение при их выборе и совершенствовании системы классификации по группам эксплуатационных свойств и вязкостно-температурным характеристикам.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ | 2015 |
|
RU2598624C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ | 2016 |
|
RU2618581C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ | 2017 |
|
RU2637621C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРНОЙ ОБЛАСТИ РАБОТОСПОСОБНОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ | 2016 |
|
RU2650602C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМООКИСЛИТЕЛЬНОЙ СТОЙКОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ | 2016 |
|
RU2627562C1 |
СПОСОБ КЛАССИФИКАЦИИ СМАЗОЧНЫХ МАТЕРИАЛОВ ПО ПАРАМЕТРАМ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ | 2016 |
|
RU2625037C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ СООТНОШЕНИЯ МЕЖДУ ПРОДУКТАМИ ОКИСЛЕНИЯ И ИСПАРЕНИЯ СМАЗОЧНЫХ МАСЕЛ ПРИ ТЕРМОСТАТИРОВАНИИ | 2020 |
|
RU2745699C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ СООТНОШЕНИЯ МЕЖДУ ПРОДУКТАМИ ТЕМПЕРАТУРНОЙ ДЕСТРУКЦИИ И ИСПАРЕНИЯ СМАЗОЧНЫХ МАСЕЛ ПРИ ТЕРМОСТАТИРОВАНИИ | 2020 |
|
RU2741242C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ИНТЕНСИВНОСТИ ПРОЦЕССОВ ОКИСЛЕНИЯ СМАЗОЧНЫХ МАСЕЛ | 2016 |
|
RU2621471C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ВЛИЯНИЯ ТЕМПЕРАТУРЫ И БАЗОВОЙ ОСНОВЫ СМАЗОЧНЫХ МАТЕРИАЛОВ НА КОНЦЕНТРАЦИЮ ПРОДУКТОВ ТЕРМОСТАТИРОВАНИЯ | 2021 |
|
RU2754096C1 |
Изобретение относится к технологии оценки качества жидких смазочных материалов. Предложен способ определения термоокислительной стабильности и температурной стойкости смазочных материалов, при котором испытывают пробы смазочного материала постоянной массы в присутствии воздуха при температурах ниже критической, выбранных в зависимости от базовой основы, назначения смазочного материала и группы эксплуатационных свойств, в течение времени, характеризующего одинаковую степень окисления. Новым является то, что испытания пробы смазочного материала проводят при одной или нескольких температурах, причем через равные промежутки времени пробу термостатированного смазочного материала взвешивают, определяют массу испарившегося смазочного материала, отбирают часть пробы для прямого фотометрирования и определения оптической плотности, часть пробы используют для определения кинематической вязкости. Вычисляют коэффициент термоокислительной стабильности как сумму оптической плотности и коэффициента испаряемости, определяют показатель термоокислительной стабильности как произведение оптической плотности на индекс вязкости или как произведение коэффициента термоокислительной стабильности на индекс вязкости. Строят графические зависимости показателя термоокислительной стабильности от оптической плотности или от коэффициента термоокислительной стабильности, и по тангенсу угла наклона к оси абсцисс определяют влияние базовой основы смазочного материала, температуры испытания, продуктов окисления или температурной деструкции или совместно продуктов окисления и температурной деструкции на значение индекса вязкости, причем, чем больше тангенс угла наклона зависимости, тем больше значение индекса вязкости при заданной оптической плотности. Технический результат - повышение информативности способа определения термоокислительной стабильности и температурной стойкости смазочных материалов путем учета влияния температуры, процессов окисления, испарения, температурной деструкции и вязкостно-температурных характеристик. 3 з.п. ф-лы, 3 табл., 3 ил.
1. Способ определения термоокислительной стабильности и температурной стойкости смазочных материалов, при котором испытывают пробы смазочного материала постоянной массы в присутствии воздуха при температурах ниже критической, выбранных в зависимости от базовой основы, назначения смазочного материала и группы эксплуатационных свойств, в течение времени, характеризующего одинаковую степень окисления, причем через равные промежутки времени отбирают пробу окисленного смазочного материала, фотометрируют, определяют оптическую плотность, кинематическую вязкость при температурах 40°С и 100°С, определяют индекс вязкости товарного и окисленного смазочных материалов, показатель термоокислительной стабильности, проводят оценку процесса окисления, отличающийся тем, что испытания пробы смазочного материала проводят при одной или нескольких температурах, причем через равные промежутки времени пробу термостатированного смазочного материала взвешивают, определяют массу испарившегося смазочного материала, отбирают часть пробы для прямого фотометрирования и определения оптической плотности, часть пробы используют для определения кинематической вязкости, вычисляют коэффициент термоокислительной стабильности как сумму оптической плотности и коэффициента испаряемости, а показатель термоокислительной стабильности определяют как произведения оптической плотности на индекс вязкости или как произведение коэффициента термоокислительной стабильности на индекс вязкости, строят графические зависимости показателя термоокислительной стабильности от оптической плотности или от коэффициента термоокислительной стабильности, и по тангенсу угла наклона к оси абсцисс определяют влияние базовой основы смазочного материала, температуры испытания, продуктов окисления или температурной деструкции или совместно продуктов окисления и температурной деструкции на значение индекса вязкости, причем, чем больше тангенс угла наклона зависимости, тем больше значение индекса вязкости при заданной оптической плотности.
2. Способ по п. 1, отличающийся тем, что при термостатировании смазочных материалов с перемешиванием и при одной температуре, выбранной в соответствии с базовой основой и группой эксплуатационных свойств, осуществляют сравнение различных масел одного назначения по показателям термоокислительной стабильности.
3. Способ по п. 1, отличающийся тем, что при трех температурах термостатирования смазочного материала с перемешиванием определяют показатель термоокислительной стабильности и влияние температуры, продуктов окисления или продуктов окисления и испарения на индекс вязкости.
4. Способ по п. 1, отличающийся тем, что при термостатировании без перемешивания в температурном диапазоне от 100°С до 300°С определяют влияние продуктов температурной деструкции на индекс вязкости.
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ | 2016 |
|
RU2618581C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ | 2006 |
|
RU2334976C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ | 2004 |
|
RU2247971C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ | 1992 |
|
RU2057326C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ | 2008 |
|
RU2371706C1 |
CN 103091365 A, 08.05.2013 | |||
CN 101915785 B, 25.07.2012. |
Авторы
Даты
2019-04-22—Публикация
2018-07-23—Подача