СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ Российский патент 2017 года по МПК G01N33/30 G01N25/00 

Описание патента на изобретение RU2637621C1

Изобретение относится к технологии оценки качества жидких смазочных материалов.

Известен способ определения термоокислительной стабильности смазочных материалов, который включает испытание пробы смазочного материала в присутствии воздуха с перемешиванием, постоянного объема при оптимальной температуре, выбранной в зависимости от базовой основы смазочного материала и группы эксплуатационных свойств, в течение времени, характеризующего одинаковую степень окисления, причем через равные промежутки времени отбирают пробу окисленного смазочного материала, определяют фотометрированием коэффициент поглощения светового потока окисленным смазочным материалом, вязкость и коэффициент термоокислительной стабильности КТОС из соотношения КТОСП⋅μОИСХ, где КП - коэффициент поглощения светового потока окисленным смазочным материалом; μО, μИСХ - соответственно вязкость окисленного и исходного смазочного материалов, строят графическую зависимость коэффициента термоокислительной стабильности от коэффициента поглощения светового потока окисленным смазочным материалом и по тангенсу угла наклона этой зависимости к оси абсцисс на участке до точки перегиба определяют скорость образования промежуточных продуктов окисления, по тангенсу угла наклона зависимости к оси абсцисс после точки перегиба определяют скорость образования конечных продуктов окисления и их влияние на увеличение вязкости испытуемого смазочного материала, а по координатам точки перегиба зависимости определяют начало образования конечных продуктов окисления (Патент РФ №2247971 С1, дата приоритета 17.02.2004, дата публикации 10.03.2005, авторы: Ковальский Б.И. и др., RU).

Наиболее близким по технической сущности и достигаемому результату является способ определения термоокислительной стабильности смазочных материалов, при котором испытывают пробу смазочного материала постоянной массы в присутствии воздуха с перемешиванием, при оптимальных как минимум трех температурах ниже критической, выбранных в зависимости от базовой основы смазочного материала и группы эксплуатационных свойств, в течение времени, характеризующего одинаковую степень окисления, причем через равные промежутки времени отбирают пробу окисленного смазочного материала, определяют фотометрированием коэффициент поглощения светового потока, вязкость исходного и окисленного материалов, определяют относительную вязкость как отношение вязкости окисленного смазочного материала к вязкости исходного, а термоокислительную стабильность определяют по показателю отношения коэффициента поглощения светового потока к относительной вязкости, строят графические зависимости показателя термоокислительной стабильности от коэффициента поглощения светового потока, по которым определяют однородность состава продуктов окисления и температурную область работоспособности исследуемого смазочного материала (Патент РФ №2334976 С1, дата приоритета 26.12.2006, дата публикации 27.09.2008, авторы: Ковальский Б.И. и др., RU, прототип).

Общим недостатком известного аналога и прототипа является то, что известные способы обладают недостаточной информативностью о качестве товарных смазочных материалов, так как не учитывают изменение противоизносных свойств в процессе их термостатирования и их связь с оптическими свойствами и вязкостно-температурными характеристиками.

Технической проблемой, решаемой изобретением, является повышение информативности способа определения термоокислительной стабильности смазочных материалов путем учета процессов окисления и температурной деструкции и влияния их продуктов на противоизносные свойства и индекс вязкости.

Для решения технической проблемы предложен способ определения термоокислительной стабильности смазочных материалов, при котором испытывают пробы смазочного материала постоянной массы в присутствии воздуха, при оптимальных температурах ниже критической, выбранных в зависимости от базовой основы смазочного материала и группы эксплуатационных свойств, в течение времени, характеризующего одинаковую степень окисления, причем через равные промежутки времени отбирают пробу окисленного смазочного материала, фотометрируют ее, определяют параметры термоокислительной стабильности и проводят оценку процесса окисления. Согласно изобретению пробы смазочного материала постоянной массы испытывают как с перемешиванием, так и без перемешивания, при фотометрировании определяют оптическую плотность, часть термостатированной пробы используют для измерения кинематической вязкости при температурах 40 и 100°C, определяют индекс вязкости, часть пробы используют для определения противоизносных свойств, а термоокислительную стабильность исследуемого смазочного материала определяют по показателю отношения произведения оптической плотности и десятичного логарифма индекса вязкости к показателю противоизносных свойств, строят графические зависимости показателя термоокислительной стабильности от оптической плотности термостатированного смазочного материала при его испытании с перемешиванием и без перемешивания, по которым определяют влияние продуктов окисления и температурной деструкции на величину показателя термоокислительной стабильности.

На фиг. 1 приведены зависимости показателя термоокислительной стабильности от оптической плотности при испытании моторных масел различной базовой основы без перемешивания при температуре 180°C: 1 - минеральное Zic HIFLO 10W-40 SL; 2 - частично-синтетическое Castrol Magnatec 10W-40 R SL/CF; 3 - синтетическое ALPHA'S 5W-30 SN; на фиг. 2 - зависимости показателя термоокислительной стабильности от оптической плотности при испытании моторных масел с перемешиванием при температуре 180°C (обозначения те же); на фиг. 3 - зависимости показателя термоокислительной стабильности от оптической плотности при испытании моторных масел без перемешивания при температуре 170°C (обозначения те же); на фиг. 4 - зависимости показателя термоокислительной стабильности от оптической плотности при испытании моторных масел с перемешиванием при температуре 170°C (обозначения те же).

Способ определения термоокислительной стабильности смазочных материалов осуществляется следующим образом. Пробы исследуемого смазочного материала постоянной массы, например 100±0,1 г, нагревают до температуры ниже критической, например 180°C, и испытывают в двух вариантах: первый вариант с перемешиванием механической мешалкой для смешивания с кислородом воздуха и исследованием процессов окисления, а второй вариант - испытание без перемешивания, что позволяет исследовать процессы температурной деструкции. Температура термостатирования и частота вращения мешалки в процессе испытания поддерживались автоматически.

Через равные промежутки времени испытания отбирают часть пробы термостатированного смазочного материала для прямого фотометрирования и определения оптической плотности D, часть пробы используют для определения кинематической вязкости при температурах 40 и 100°C и вычисления индекса вязкости (ГОСТ 25371-97, ИСО 2909-81), а часть пробы используют для определения противоизносных свойств термостатированных масел на трехшариковой машине трения со схемой «шар-цилиндр» с параметрами: нагрузка 13 Н, скорость скольжения 0,68 м/с, температура смазочного материала в объеме 80°C, время испытания 2 часа. Противоизносные свойства термостатированных смазочных материалов оценивались по среднеарифметическому значению диаметра пятна износа на трех шарах с двух параллельных опытов. Термостатирование смазочных масел прекращалось после достижения оптической плотности значений равных 0,4-0,5.

Для выявления влияния температуры на оптическую плотность, индекс вязкости и противоизносные свойства испытания моторных масел проводили также при температуре 170°C с перемешиванием и без перемешивания. По полученным данным оптической плотности, индекса вязкости и противоизносным свойствам вычислялся показатель термоокислительной стабильности ПТОС

где D - оптическая плотность термостатированного смазочного материала; lgИВ - десятичный логарифм индекса вязкости; И - среднеарифметическое значение диаметра пятна износа, мм.

Результаты испытания моторных масел различной базовой основы сведены в таблицу. По полученным экспериментальным данным строились графические зависимости показателя термоокислительной стабильности ПТОС от оптической плотности для минерального масла Zic HIFLO 10W-40 SL (1), частично-синтетического Castrol Magnatec 10W-40 R SL/CF (2) и синтетического ALPHA'S 5W-30 SN (3) для температур 180°C (фиг. 1, фиг. 2) и 170°C (фиг. 3, фиг. 4), причем на фиг. 1 и фиг. 3 моторные масла исследовались без перемешивания, а на фиг. 2 и фиг. 4 - с перемешиванием, что позволило оценить влияние продуктов окисления и температурной деструкции на оптические свойства, индекс вязкости, противоизносные свойства и в целом на значение показателя термоокислительной стабильности.

Согласно данным (фиг. 1-4) зависимости показателя термоокислительной стабильности от оптической плотности независимо от температуры термостатирования и наличия или отсутствия перемешивания пробы испытуемого смазочного материала описываются линейными уравнениями вида

где α - коэффициент, характеризующий скорость изменения показателя термоокислительной стабильности.

Согласно данным таблицы показано, что скорость изменения показателя термоокислительной стабильности зависит от базовой основы смазочного материала, температуры термостатирования и степени перемешивания во время испытания.

Согласно данным (фиг. 1) при температуре испытания 180°C без перемешивания при одном и том же значении оптической плотности самое высокое значение показателя ПТОС установлено для минерального масла (1), а самое низкое для синтетического масла (3), однако при испытании моторных масел при температуре 180°C с перемешиванием установлен обратный результат, самое высокое значение показателя ПТОС установлено для синтетического масла (3), а самое низкое для минерального (1). Таким образом, продукты температурной деструкции (при отсутствии перемешивания масел) оказывают положительное влияние на минеральное масло (фиг. 1), а продукты окисления (фиг. 2) положительное влияние оказывают на синтетическое моторное масло.

При понижении температуры термостатирования до 170°C продукты температурной деструкции и окисление отрицательно влияют на синтетическое моторное масло (3) как с перемешиванием его при испытании, так и без перемешивания (фиг. 3, фиг. 4). Эти продукты оказывают положительное влияние на частично-синтетическое моторное масло (2) (фиг. 3, фиг. 4). Полученная информация имеет практическое значение при выборе моторных масел двигателей внутреннего сгорания.

Предлагаемое техническое решение позволяет повысить информативность способа определения термоокислительной стабильности смазочных материалов за счет учета температуры испытания, изменения оптической плотности, индекса вязкости и триботехнической характеристики и промышленно применимо.

Похожие патенты RU2637621C1

название год авторы номер документа
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ И ТЕМПЕРАТУРНОЙ СТОЙКОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ 2018
  • Ковальский Болеслав Иванович
  • Безбородов Юрий Николаевич
  • Петров Олег Николаевич
  • Ефремова Елена Александровна
RU2685582C1
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ 2016
  • Ковальский Болеслав Иванович
  • Петров Олег Николаевич
  • Шрам Вячеслав Геннадьевич
  • Абазин Дмитрий Дмитриевич
RU2618581C1
СПОСОБ КЛАССИФИКАЦИИ СМАЗОЧНЫХ МАТЕРИАЛОВ ПО ПАРАМЕТРАМ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ 2016
  • Ковальский Болеслав Иванович
  • Безбородов Юрий Николаевич
  • Афанасов Владимир Ильич
  • Рунда Михаил Михайлович
  • Батов Николай Сергеевич
RU2625037C1
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРНОЙ ОБЛАСТИ РАБОТОСПОСОБНОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ 2016
  • Ковальский Болеслав Иванович
  • Безбородов Юрий Николаевич
  • Афанасов Владимир Ильич
  • Ермилов Евгений Александрович
  • Батов Николай Сергеевич
RU2650602C1
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМООКИСЛИТЕЛЬНОЙ СТОЙКОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ 2016
  • Ковальский Болеслав Иванович
  • Сокольников Александр Николаевич
  • Ермилов Евгений Александрович
  • Балясников Валерий Александрович
  • Батов Николай Сергеевич
RU2627562C1
СПОСОБ ПРОГНОЗИРОВАНИЯ ПОКАЗАТЕЛЕЙ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ 2017
  • Ковальский Болеслав Иванович
  • Петров Олег Николаевич
  • Олейник Виктор Зиновьевич
  • Николенко Георгий Александрович
  • Агровиченко Дарья Валентиновна
RU2649660C1
СПОСОБ ПРОГНОЗИРОВАНИЯ ПОКАЗАТЕЛЕЙ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ 2019
  • Ковальский Болеслав Иванович
  • Петров Олег Николаевич
  • Шрам Вячеслав Геннадьевич
  • Лысянникова Наталья Николаевна
RU2695704C1
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ 2015
  • Ковальский Болеслав Иванович
  • Петров Олег Николаевич
  • Безбородов Юрий Николаевич
  • Шрам Вячеслав Геннадьевич
RU2598624C1
СПОСОБ ПОВЫШЕНИЯ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ СМАЗОЧНЫХ МАСЕЛ 2014
  • Ковальский Болеслав Иванович
  • Шрам Вячеслав Геннадьевич
  • Петров Олег Николаевич
RU2547263C1
СПОСОБ ОПРЕДЕЛЕНИЯ ПРЕДЕЛЬНО ДОПУСТИМЫХ ПОКАЗАТЕЛЕЙ РАБОТОСПОСОБНОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ 2019
  • Ковальский Болеслав Иванович
  • Верещагин Валерий Иванович
  • Безбородов Юрий Николаевич
  • Шрам Вячеслав Геннадьевич
  • Лысянникова Наталья Николаевна
RU2705942C1

Иллюстрации к изобретению RU 2 637 621 C1

Реферат патента 2017 года СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ

Изобретение относится к технологии оценки качества жидких смазочных материалов. При осуществлении способа испытывают пробы смазочного материала постоянной массы в присутствии воздуха, при оптимальных температурах ниже критической, выбранных в зависимости от базовой основы смазочного материала и группы эксплуатационных свойств, в течение времени, характеризующего одинаковую степень окисления, причем через равные промежутки времени отбирают пробу окисленного смазочного материала, фотометрируют ее, определяют параметры термоокислительной стабильности и проводят оценку процесса окисления. При этом пробы смазочного материала постоянной массы испытывают как с перемешиванием, так и без перемешивания, при фотометрировании определяют оптическую плотность, часть термостатированной пробы используют для измерения кинематической вязкости при температурах 40 и 100°C, определяют индекс вязкости, часть пробы используют для определения противоизносных свойств, а термоокислительную стабильность исследуемого смазочного материала определяют по показателю отношения произведения оптической плотности и десятичного логарифма индекса вязкости к показателю противоизносных свойств, строят графические зависимости показателя термоокислительной стабильности от оптической плотности термостатированного смазочного материала при его испытании с перемешиванием и без перемешивания, по которым определяют влияние продуктов окисления и температурной деструкции на величину показателя термоокислительной стабильности. Достигается повышение информативности способа определения термоокислительной стабильности смазочных материалов за счет учета температуры испытания, изменения оптической плотности, индекса вязкости и триботехнической характеристики.1 табл., 4 ил.

Формула изобретения RU 2 637 621 C1

Способ определения термоокислительной стабильности смазочных масел, при котором испытывают пробы смазочного материала постоянной массы в присутствии воздуха, при оптимальных температурах ниже критической, выбранных в зависимости от базовой основы смазочного материала и группы эксплуатационных свойств, в течение времени, характеризующего одинаковую степень окисления, причем через равные промежутки времени отбирают пробу окисленного смазочного материала, фотометрируют ее, определяют параметры термоокислительной стабильности и проводят оценку процесса окисления, отличающийся тем, что пробы смазочного материала постоянной массы испытывают как с перемешиванием, так и без перемешивания, при фотометрировании определяют оптическую плотность, часть термостатированной пробы используют для измерения кинематической вязкости при температурах 40 и 100°C, определяют индекс вязкости, часть пробы используют для определения противоизносных свойств, а термоокислительную стабильность исследуемого смазочного материала определяют по показателю отношения произведения оптической плотности и десятичного логарифма индекса вязкости к показателю противоизносных свойств, строят графические зависимости показателя термоокислительной стабильности от оптической плотности термостатированного смазочного материала при его испытании с перемешиванием и без перемешивания, по которым определяют влияние продуктов окисления и температурной деструкции на величину показателя термоокислительной стабильности.

Документы, цитированные в отчете о поиске Патент 2017 года RU2637621C1

СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ 2006
  • Ковальский Болеслав Иванович
  • Малышева Наталья Николаевна
  • Метелица Артем Александрович
  • Безбородов Юрий Николаевич
RU2334976C1
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ 2016
  • Ковальский Болеслав Иванович
  • Петров Олег Николаевич
  • Шрам Вячеслав Геннадьевич
  • Абазин Дмитрий Дмитриевич
RU2618581C1
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ 1992
  • Ковальский Б.И.
  • Деревягина Л.Н.
  • Кириченко И.А.
RU2057326C1
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ 2002
  • Ковальский Б.И.
  • Васильев С.И.
  • Янаев Е.Ю.
RU2219530C1
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ 2004
  • Ковальский Б.И.
  • Васильев С.И.
  • Безбородов Ю.Н.
  • Бадьина А.А.
RU2247971C1
US 5157963 A, 27.10.1992.

RU 2 637 621 C1

Авторы

Ковальский Болеслав Иванович

Ермилов Евгений Александрович

Безбородов Юрий Николаевич

Петров Олег Николаевич

Сокольников Александр Николаевич

Даты

2017-12-05Публикация

2017-05-22Подача