Изобретение относится к технологии оценки качества жидких смазочных материалов.
Известен способ определения термоокислительной стабильности смазочных материалов, включающий нагревание смазочного материала в присутствии воздуха, перемешивание, фотометрирование и определение параметров процессов окисления (Патент РФ №2219530 C1, дата приоритета 11.04.2002, дата публикации 20.12.2003, авторы: Ковальский Б.И. и др., RU).
Наиболее близким по технической сущности и достигаемому результату является принятый в качестве прототипа способ определения термоокислительной стабильности смазочных материалов, при котором испытывают пробу смазочного материала в присутствии воздуха с перемешиванием, постоянного объема при оптимальной температуре, выбранной в зависимости от базовой основы смазочного материала и группы эксплуатационных свойств, в течение времени, характеризующего одинаковую степень окисления, через равные промежутки времени отбирают пробу окисленного смазочного материала, определяют фотометрированием коэффициент поглощения светового потока, вязкость исходного и окисленного смазочного материала и проводят оценку процесса окисления, причем испытания смазочного материала проводят, как минимум, при трех температурах ниже критической, определяют относительную вязкость как отношение вязкости окисленного смазочного материала к вязкости исходного, а термоокислительную стабильность определяют по показателю отношения коэффициента поглощения светового потока к относительной вязкости, строят графическую зависимость показателя термоокислительной стабильности от коэффициента поглощения светового потока, по которой определяют однородность состава продуктов окисления и температурную область работоспособности исследуемого смазочного материала (Патент РФ №2334976 C1, дата приоритета 26.12.2006, дата публикации 27.09.2008, авторы: Ковальский Б.И. и др., RU, прототип).
Общим недостатком аналога и прототипа является то, что известные способы не обеспечивают возможность определения температурных пределов работоспособности смазочных материалов.
Задачей изобретения является определение температурных границ работоспособности смазочных материалов с использованием показателей термоокислительной стабильности и снижение трудоемкости исследований.
Поставленная задача решается тем, что в способе определения температурной области работоспособности смазочных материалов, при котором испытывают пробу смазочного материала в присутствии воздуха с перемешиванием постоянной массы, как минимум, при трех температурах, выбранных в зависимости от базовой основы смазочного материала и группы эксплуатационных свойств, в течение времени, характеризующего одинаковую степень окисления, причем через равные промежутки времени отбирают пробу окисленного смазочного материала, фотометрируют и проводят оценку процесса окисления. Согласно изобретению пробу смазочного материала термостатируют до установленного значения оптической плотности, после каждого промежутка времени испытания при каждой температуре пробу окисленного смазочного материала взвешивают, определяют массу испарившейся части пробы и коэффициент испаряемости как отношение испарившейся части пробы к массе пробы до испытания перед каждым временем испытания, отбирают часть пробы окисленного смазочного материала, фотометрируют, определяют оптическую плотность и показатель термоокислительной стабильности как сумму оптической плотности и коэффициента испаряемости, строят графические зависимости оптической плотности, испаряемости и показателя термоокислительной стабильности от времени и температуры испытания, по которым определяют время достижения установленных значений оптической плотности, испаряемости и показателя термоокислительной стабильности, а также значения этих показателей за установленное время испытания при каждой температуре, по этим данным строят графические зависимости времени достижения указанных значений оптической плотности, испаряемости и показателя термоокислительной стабильности, а также графические зависимости оптической плотности, испаряемости и показателя термоокислительной стабильности за установленное время окисления от температуры испытания, по которым определяют температуры начала процессов окисления, испарения и изменения показателя термоокислительной стабильности испытуемого смазочного материала и критические температуры этих процессов, а температурную область работоспособности определяют по наименьшим значениям начала процессов и критических температур.
На фиг. 1 представлены зависимости оптической плотности от времени и температуры термостатирования (а), времени достижения установленного значения оптической плотности (б) и оптической плотности за установленное время испытания (в) от температуры термостатирования минерального моторного масла Tavota Gastle 10W-30 SL; на фиг. 2 - зависимости испаряемости от времени и температуры термостатирования (а), времени достижения установленного значения испаряемости (б) и испаряемости за установленное время испытания (в) от температуры термостатирования минерального моторного масла Tavota Gastle 10W-30 SL; на фиг. 3 - зависимости показателя термоокислительной стабильности от времени и температуры термостатирования (а), времени достижения установленного значения показателя термоокислительной стабильности (б) и показателя термоокислительной стабильности за установленное время испытания (в) от температуры термостатирования минерального моторного масла Tavota Gastle 10W-30 SL: 1 - 180°C; 2 - 170°C; 3 - 160°C; на фиг. 4, 5, 6 - то же, для частично синтетического моторного масла Роснефть maximum 10W-40 SL/CF: 1 - 180°C; 2 - 170°C; 3 - 160°C; на фиг. 7, 8, 9 - то же, для синтетического моторного масла Mobil 5W-40 SJ/CF: 1 - 200°C; 2 - 190°C; 3 - 180°C; 4 - 170°C.
Способ определения температурной области работоспособности смазочных материалов осуществляется следующим образом.
Пробу исследуемого смазочного материала постоянной массы, например 100±0,1 г, испытывают минимум при трех температурах в зависимости от назначения при атмосферном давлении с перемешиванием. Температура и частота вращения мешалки в процессе термостатирования поддерживается автоматически. Продолжительность испытания определяется временем достижения оптической плотности значений, превышающих 0,1 для каждой температуры.
В процессе испытания через равные промежутки времени пробу окисленного смазочного материала взвешивают, определяют массу испарившейся пробы, коэффициент испаряемости как отношение массы испарившейся пробы к массе пробы до испытания, отбирают часть пробы для фотометрирования и определения оптической прочности D
где Фo - световой поток, падающий на слой окисленного смазочного материала;
Ф - световой поток, прошедший через слой смазочного материала в кювете.
По данным оптической плотности D и коэффициента испаряемости определяют показатель термоокислительной стабильности Птос исследуемого смазочного материала
где KG - коэффициент испаряемости
По данным оптической плотности, испаряемости и показателя термоокислительной стабильности строят графические зависимости этих показателей от времени и температуры испытания (фиг. 1а, 2а, 3а, 4а, 5а, 6а, 7а, 8а, 9а), по которым определяют время достижения, установленного для исследованных смазочных материалов, значений оптической плотности D=0,1, испаряемости G=2 граммам, показателя термоокислительной стабильности Птос=0,1, а также значения оптической плотности, испаряемости и показателя термоокислительной стабильности за установленное время испытания, например 8 часов, по полученным данным времени достижения установленного значения оптической плотности (D=0,1) и оптической плотности после 8 часов испытания строят графические зависимости этих показателей от температуры испытания (фиг. 1б, в; фиг. 4б, в; фиг. 7б, в), которые описываются полиномом второго порядка. Решая эти уравнения, определяют критическую температуру окисления (фиг. 1б, 4б, 7б) и температуру начала процесса окисления (фиг. 1в, 4в, 7в).
По данным времени достижения установленного значения испаряемости (G=2) и испаряемости после 8 часов испытания строят графические зависимости этих показателей от температуры испытания (фиг. 2б, в; фиг. 5б, в; фиг. 8б, в), которые описываются полиномом второго порядка. Решая эти уравнения, определяют критическую температуру испарения (фиг. 2б, 5б, 8б) и температуру начала процесса испарения исследованных моторных масел (фиг. 2в, 5в, 8в).
По данным времени достижения установленного значения показателя термоокислительной стабильности (Птос=0,1) и показателя термоокислительной стабильности после 8 часов испытания строят графические зависимости этих показателей от температуры испытания (фиг. 3б, в; фиг. 6б, в; фиг. 9б, в), которые описываются полиномом второго порядка. Решая эти уравнения, определяют критическую температуру для исследованных смазочных материалов (фиг. 3б, 6б, 9б) и температуру начала изменения показателя термоокислительной стабильности (фиг. 3в, 6в, 9в).
Результаты регрессионного анализа исследованных смазочных материалов сведены в таблицу 1, а результаты испытания по определению температурных областей работоспособности - в таблицу 2.
Согласно данным таблицы 2 температурная область работоспособности исследуемых масел составила для: минерального моторного масла от 138,3 до 182,83°C; частично синтетического от 143,3 до 176,72°C; и синтетического от 143 до 197,67°C. Эти данные позволяют обоснованно выбирать масла в зависимости от степени нагруженности двигателей внутреннего сгорания. По полученным данным наиболее термостойким является синтетическое моторное масло Mobil 5W-40SJ/CF, а менее термостойким частично синтетическое Роснефть Maximum 10W-40 SL/CF.
Предлагаемое техническое решение позволяет снизить трудоемкость испытаний за счет сокращения времени испытания и сравнивать различные смазочные материалы по сопротивлению окисления, испарения и изменения показателя термоокислительной стабильности в установленных температурных пределах.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМООКИСЛИТЕЛЬНОЙ СТОЙКОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ | 2016 |
|
RU2627562C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ И ТЕМПЕРАТУРНОЙ СТОЙКОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ | 2018 |
|
RU2685582C1 |
СПОСОБ ПРОГНОЗИРОВАНИЯ ПОКАЗАТЕЛЕЙ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ | 2017 |
|
RU2649660C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРЫ НАЧАЛА ИЗМЕНЕНИЯ ПОКАЗАТЕЛЕЙ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ И ПРЕДЕЛЬНОЙ ТЕМПЕРАТУРЫ РАБОТОСПОСОБНОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ | 2019 |
|
RU2722119C1 |
СПОСОБ КЛАССИФИКАЦИИ СМАЗОЧНЫХ МАТЕРИАЛОВ ПО ПАРАМЕТРАМ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ | 2016 |
|
RU2625037C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ИНТЕНСИВНОСТИ ПРОЦЕССОВ ОКИСЛЕНИЯ СМАЗОЧНЫХ МАСЕЛ | 2016 |
|
RU2621471C1 |
СПОСОБ ПРОГНОЗИРОВАНИЯ ПОКАЗАТЕЛЕЙ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ | 2019 |
|
RU2695704C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ПРЕДЕЛЬНО ДОПУСТИМЫХ ПОКАЗАТЕЛЕЙ РАБОТОСПОСОБНОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ | 2019 |
|
RU2705942C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ | 2006 |
|
RU2318206C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ СООТНОШЕНИЯ МЕЖДУ ПРОДУКТАМИ ОКИСЛЕНИЯ И ИСПАРЕНИЯ СМАЗОЧНЫХ МАСЕЛ ПРИ ТЕРМОСТАТИРОВАНИИ | 2020 |
|
RU2745699C1 |
Изобретение относится к технологии оценки качества жидких смазочных материалов. Предложен способ определения температурной области работоспособности смазочных материалов, при котором испытывают пробу смазочного материала в присутствии воздуха с перемешиванием, постоянной массы, минимум, при трех температурах, выбранных в зависимости от базовой основы и группы эксплуатационных свойств, в течение времени, характеризующего одинаковую степень окисления. Согласно изобретению пробу окисленного смазочного материала термостатируют до установленного значения оптической плотности, после каждого промежутка времени испытания при каждой температуре пробу окисленного смазочного материала взвешивают, определяют массу испарившейся части пробы и коэффициент испаряемости как отношение испарившейся части пробы к массе пробы до испытания. Отбирают часть пробы окисленного смазочного материала, фотометрируют, определяют оптическую плотность и показатель термоокислительной стабильности как сумму оптической плотности и коэффициента испаряемости. Строят графические зависимости оптической плотности, испаряемости и показателя термоокислительной стабильности от времени и температуры испытания, по которым определяют время достижения установленных значений оптической плотности, испаряемости и показателя термоокислительной стабильности, а также значения этих показателей за установленное время испытания при каждой температуре. По этим данным строят графические зависимости времени достижения указанных значений оптической плотности, испаряемости и показателя термоокислительной стабильности, а также графические зависимости оптической плотности, испаряемости и показателя термоокислительной стабильности за установленное время окисления от температуры испытания, по которым определяют температуры начала процессов окисления, испарения и изменения показателя термоокислительной стабильности испытуемого смазочного материала и критические температуры этих процессов, а температурную область работоспособности определяют по наименьшим значениям температур начала процессов и критических температур. Технический результат - сокращение времени испытаний и обеспечение возможности сравнения различных смазочных материалов по сопротивлению окисления, испарения и изменения показателя термоокислительной стабильности в установленных температурных пределах. 9 ил., 2 табл.
Способ определения температурной области работоспособности смазочных материалов, при котором испытывают пробу смазочного материала в присутствии воздуха с перемешиванием постоянной массы как минимум при трех температурах, выбранных в зависимости от базовой основы смазочного материала и группы эксплуатационных свойств, в течение времени, характеризующего одинаковую степень окисления, причем через равные промежутки времени отбирают пробу окисленного смазочного материала, фотометрируют и проводят оценку процесса окисления, отличающийся тем, что пробу смазочного материала термостатируют до установленного значения оптической плотности, после каждого промежутка времени испытания при каждой температуре пробу окисленного смазочного материала взвешивают, определяют массу испарившейся части пробы и коэффициент испаряемости как отношение испарившейся части пробы к массе пробы до испытания перед каждым временем испытания, отбирают часть пробы окисленного смазочного материала, фотометрируют, определяют оптическую плотность и показатель термоокислительной стабильности как сумму оптической плотности и коэффициента испаряемости, строят графические зависимости оптической плотности, испаряемости и показателя термоокислительной стабильности от времени и температуры испытания, по которым определяют время достижения установленных значений оптической плотности, испаряемости и показателя термоокислительной стабильности, а также значения этих показателей за установленное время испытания при каждой температуре, по этим данным строят графические зависимости времени достижения указанных значений оптической плотности, испаряемости и показателя термоокислительной стабильности, а также графические зависимости оптической плотности, испаряемости и показателя термоокислительной стабильности за установленное время окисления от температуры испытания, по которым определяют температуры начала процессов окисления, испарения и изменения показателя термоокислительной стабильности испытуемого смазочного материала и критические температуры этих процессов, а температурную область работоспособности определяют по наименьшим значениям температур начала процессов и критических температур.
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ | 2006 |
|
RU2334976C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ | 1992 |
|
RU2057326C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ | 2002 |
|
RU2219530C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ | 2004 |
|
RU2247971C1 |
Фотометрический анализатор жидкостей | 1979 |
|
SU851111A1 |
Способ получения 2-(ацетилметил)бензо-1,3-оксатиолов | 1973 |
|
SU458557A1 |
Авторы
Даты
2018-04-16—Публикация
2016-12-21—Подача