Изобретение относится к технологии нанесения покрытий на металлические поверхности с использованием концентрированных потоков энергии, в частности, к технологии получения на поверхности титановых имплантатов, работающих в организме человека, покрытий на основе циркония, которые могут быть использованы в области медицины с целью получения биосовместимых низкомодульных сплавов системы Ti-Zr.
Известно покрытие на имплантат из титана и его сплавов и способ его нанесения (RU №2154463, МПК А61К 6/033, A61N 1/32, опубл. 20.08.2000), которое содержит оксид титана и дополнительно содержит кальций-фосфатные соединения, взятые в определенном количественном соотношении. Способ его нанесения заключается в анодировании титана и его сплавов импульсным током в условиях искрового разряда, при этом процесс ведут в насыщенном растворе гидроксиапатита в фосфорной кислоте концентрацией 5-20% или 3-5% суспензии гидроксиапатита дисперсностью менее 100 мкм в этом насыщенном растворе.
Недостатком данного способа является то, что его реализация не позволяет получать сплошные и прочные покрытия, а также покрытия толщиной более 30 мкм.
Наиболее близким к заявляемому изобретению является покрытие на имплантат из титана и его сплавов и способ его приготовления (RU 2502526, МПК A61L 27/06, A61L 27/02, А61Е 2/02, опубл. 27.12.2013). Покрытие на имплант из титана и его сплавов состоит из двух слоев, первый слой состоит из оксидов титана, в основном TiO2, второй слой состоит из оксида алюминия гамма-модификации, общая толщина двухслойного покрытия составляет от 40 до 180 мкм при следующем соотношении компонентов, мас. %: оксид титана, в пересчете на TiO2 - 10-30; гамма-оксид алюминия - 70-90. Способ получения покрытия включает механическую обработку поверхности импланта, обезжиривание, термическую обработку для получения на поверхности импланта оксидов титана, последующее нанесение второго слоя. Обезжиривание ведут в растворе щелочи - KOH, NaOH, термическую обработку осуществляют в интервале температур 700-800°С с последующим получением двухслойного покрытия из оксида титана и оксида алюминия, при этом вначале наносят гидроксид алюминия в нагретом до 60-90°С растворе алюминатов щелочных металлов с последующей выдержкой в этом растворе до комнатной температуры, дальнейшей промывкой, сушкой и термической обработкой покрытия при температуре 500-600°С для получения вторичного покрытия из оксида алюминия.
Недостатком способа является низкая адгезия вторичного биоинертного или биосовместимого покрытия.
Технической проблемой, решаемой заявляемым изобретением является получение биоинертного или биосовместимого покрытия на основе циркония на поверхности различных титановых имплантатов с высокой адгезией.
Существующая техническая проблема решается тем, что предложен способ нанесения биоинертных покрытий на основе циркония на титановые имплантаты, включающий электрический взрыв циркониевой фольги массой 50-500 мг, формирование из продуктов взрыва импульсной многофазной плазменной струи, оплавление ею поверхности титанового имплантата при поглощаемой плотности мощности 1,5-1,8 ГВт/м2, осаждение на поверхность продуктов взрыва и формирование на ней биоинертного покрытия на основе циркония.
Технический результат, получаемый при осуществлении изобретения, заключается в том, что, при электрическом взрыве циркониевой фольги продукты разрушения образуют плазменную струю, служащую инструментом формирования на поверхности титановых имплантатов покрытия на основе циркония. Электровзрывное напыление приводит к формированию в покрытии высокодисперсной и однородной структуры. Преимущество заявляемого способа по сравнению с прототипом заключается в формировании поверхностного слоя с высокой адгезией покрытия с подложкой из титана, низкой шероховатостью и гомогенизированной структурой, что увеличивает срок службы имплантатов, и расширяет область практического применения.
Исследования методом сканирующей электронной микроскопии показали, что при электровзрывном напылении на титановых имплантатах путем электрического взрыва циркониевой фольги при поглощаемой плотности мощности 1,5-1,8 ГВт/м2 происходит формирование покрытия на основе циркония (фиг. 3). Указанный режим, при котором поглощаемая плотность мощности составляет 1,5-1,8 ГВт/м2, установлен эмпирически и является оптимальным, поскольку при интенсивности воздействия ниже 1,5 ГВт/м2 не происходит образование рельефа между покрытием и подложкой из титана, вследствие чего возможно отслаивание покрытия, а выше 1,8 ГВт/м2 происходит формирование развитого рельефа поверхности напыляемого покрытия. При значении массы алюминиевой фольги менее 50 мг покрытие неоднородно распределяется на поверхности титанового имплантата. При значении массе циркониевой фольги более 500 мг покрытие на основе циркония на поверхностях титановых имплантатов обладает большим количеством дефектов. Граница электровзрывного покрытия с подложкой не является ровной, что позволяет увеличить адгезию покрытия с подложкой.
Микротвердость измеряли на микротвердомере HVS-1000A. Значения микротвердости сформированных покрытий находятся в интервале 64-70 кгс/мм2. Нанотвердость измеряли с использованием системы Agilent U9820A Nano Indenter G200. Значения нанотвердости сформированных покрытий составляет 66 кгс/мм2. Модуль упругости сформированных покрытий составил 9700 кгс/мм2, предел прочности при растяжении 25,0 кгс/мм2. Биологическая аттестация in vitro показала, что электровзрывные покрытия на основе циркония покрытия на титановых подложках не оказывают цитотоксического действия, обладают высокой биоактивностью и проявляют антибактериальный эффект, что позволяет их рекомендовать для нанесения на имплантаты из биоинертных сплавов для остеосинтеза.
Способ поясняется рисунками, где:
на фиг. 1 представлена структура поперечного сечения поверхностного слоя электровзрывного покрытия на основе циркония на титане марки ВТ1-0;
на фиг. 2 - структура поперечного сечения границы между покрытием на основе циркония и титановой подложкой;
на фиг. 3 - структура покрытия на основе циркония.
Примеры конкретного осуществления способа:
Пример 1.
Обработке подвергали титановый штифт (ввинчивается в челюстную кость) дентального имплантата площадью 1 см2. Использовали циркониевую фольгу массой 50 мг. Сформированной плазменной струей оплавляли поверхность титанового штифта дентального имплантата при поглощаемой плотности мощности 1,5 ГВт/м2 и формировали на ней электровзрывное покрытие на основе циркония.
Получили биоинертное покрытие на основе циркония с высокой адгезией покрытия с подложкой на уровне когезии.
Пример 2.
Обработке подвергали титановую пластину Т-образную косую площадью 15 см2, применяемую для остеосинтеза дистального метаэпифиза лучевой кости. Использовали циркониевую фольгу массой 500 мг. Сформированной плазменной струей оплавляли поверхность Т-образной косой пластины при поглощаемой плотности мощности 1,8 ГВт/м2 и формировали на ней электровзрывное покрытие на основе циркония.
Получили биоинертное покрытие на основе циркония с высокой адгезией покрытия с подложкой на уровне когезии.
Предлагаемый способ позволяет сформировать поверхностный слой с высокой адгезией покрытия с подложкой из титана, низкой шероховатостью и гомогенизированной структурой, что увеличивает срок службы имплантатов, и расширяет область практического применения.
Изобретение относится к технологии нанесения покрытий на металлические поверхности с использованием концентрированных потоков энергии и направлено на формирование на титановых имплантатах покрытий на основе циркония. Способ включает электрический взрыв циркониевой фольги массой 50-500 мг, формирование из продуктов взрыва импульсной многофазной плазменной струи, оплавление ею поверхности титанового имплантата при поглощаемой плотности мощности 1,5-1,8 ГВт/м2, осаждение на поверхность продуктов взрыва и формирование на ней биоинертного покрытия на основе циркония. Предлагаемый способ позволяет сформировать поверхностный слой с высокой адгезией покрытия с подложкой из титана, низкой шероховатостью и гомогенизированной структурой, что увеличивает срок службы имплантатов, расширяет область практического применения. Способ может быть использован в медицинской технике, в травматологии и ортопедии для нанесения биоинертных покрытий на основе циркония с высокой адгезией. 3 ил., 2 пр.
Способ нанесения биоинертных покрытий на основе циркония на титановые имплантаты, включающий электрический взрыв циркониевой фольги массой 50-500 мг, формирование из продуктов взрыва импульсной многофазной плазменной струи, оплавление ею поверхности титанового имплантата при поглощаемой плотности мощности 1,5-1,8 ГВт/м2, осаждение на поверхность продуктов взрыва и формирование на ней биоинертного покрытия на основе циркония.
СПОСОБ ЭЛЕКТРОВЗРЫВНОГО НАНЕСЕНИЯ МЕТАЛЛИЧЕСКИХ ПОКРЫТИЙ НА КОНТАКТНЫЕ ПОВЕРХНОСТИ | 2009 |
|
RU2422555C1 |
СПОСОБ ФОРМИРОВАНИЯ ТИТАН-БОР-МЕДНЫХ ПОКРЫТИЙ НА МЕДНЫХ КОНТАКТНЫХ ПОВЕРХНОСТЯХ | 2010 |
|
RU2456369C1 |
СПОСОБ ФОРМИРОВАНИЯ МОЛИБДЕН-УГЛЕРОД-МЕДНЫХ ПОКРЫТИЙ НА МЕДНЫХ КОНТАКТНЫХ ПОВЕРХНОСТЯХ | 2011 |
|
RU2470089C1 |
СПОСОБ ЭЛЕКТРОВЗРЫВНОГО НАПЫЛЕНИЯ КОМПОЗИЦИОННЫХ ИЗНОСОСТОЙКИХ ПОКРЫТИЙ СИСТЕМЫ TiB-MO НА ПОВЕРХНОСТИ ТРЕНИЯ | 2013 |
|
RU2547974C2 |
WO 2009013714 A1, 29.01.2009. |
Авторы
Даты
2019-04-24—Публикация
2018-06-29—Подача