СПОСОБ ПОЛУЧЕНИЯ ЭЛАСТОМЕРНОГО КОМПОЗИТА, АРМИРОВАННОГО ДИОКСИДОМ КРЕМНИЯ И УГЛЕРОДНОЙ САЖЕЙ, И ПРОДУКТЫ, СОДЕРЖАЩИЕ ЭЛАСТОМЕРНЫЙ КОМПОЗИТ Российский патент 2019 года по МПК C08K3/04 C08K3/36 C08J3/16 C08J3/205 C08J3/215 C08J3/22 C08J5/02 C08L7/02 C08L9/10 C08L21/02 

Описание патента на изобретение RU2689750C1

[0001] Настоящее изобретение относится к способам получения дисперсно-армированных эластомерных композитов. Более конкретно, настоящее изобретение относится к армированному частицами эластомерному композиту, изготовленному способом получения влажной маточной смеси.

[0002] Многочисленные продукты, имеющие промышленное значение, получают из эластомерных композиций, в которых дисперсный армирующий материал диспергирован в любом материале из числа разнообразных синтетических эластомеров, натурального каучука или эластомерных смесей. Углеродную сажу и диоксид кремния, например, широко используют в качестве армирующих агентов в натуральном каучуке и других эластомерах. Обычно готовят маточную смесь, которая представляет собой предварительную смесь армирующего материала, эластомера и различных необязательных добавок, таких как масло для наполнения. Из таких эластомерных композиций получают многочисленные продукты промышленного значения. Такие продукты включают, например, шины транспортных средств, в которых различные эластомерные композиции могут быть использованы для коронной зоны шины, боковин, обрезиненного провода и каркаса. Другие изделия включают, например, втулки подушки двигателя, конвейерные ленты, стеклоочистители, уплотняющие материалы, облицовочные материалы, рулевые колеса, бамперы и т.п.

[0003] Хорошее диспергирование дисперсных армирующих агентов в каучуковых компаундах в течение определенного времени рассматривалось в качестве одной из наиболее важных технических задач для достижения хорошего качества и стабильных эксплуатационных характеристик продукта, и значительные усилия были предприняты, чтобы разработать способы улучшения качества диспергирования. Приготовление маточной смеси и другие операции смешения оказывают прямое воздействие на эффективность смешения и на качество диспергирования. В общем случае, например, когда для армирования каучука используют углеродную сажу, приемлемые макродисперсии углеродной сажи часто могут быть достигнуты в смешанной сухим способом маточной смеси. Однако высококачественное, равномерное диспергирование диоксида кремния за счет способов сухого смешения имеет проблемы, и различные решения были выдвинуты промышленностью, относящиеся к этой проблеме, например, предложены осажденный диоксид кремния в форме «высокодиспергируемого диоксида кремния» («ВДДК» («HDS»)) или текучие гранулы «ВДДК». Более интенсивное перемешивание может улучшить диспергирование диоксида кремния, но также может ухудшить качество эластомера, в котором наполнитель диспергируют. Это особенно проблематично в случае натурального каучука, который высоко чувствителен к механической/термической деградации.

[0004] Помимо методик сухого смешения известна подача эластомерного латекса или полимерного раствора и густой суспензии углеродной сажи или диоксида кремния в емкость с перемешиванием. Такие методики «получения влажной маточной смеси» могут быть использованы с натуральным каучуковым латексом и эмульгированными синтетическими эластомерами, такими как бутадиен-стирольный каучук (SBR). Однако, хотя этот влажный метод был перспективным, когда наполнителем является углеродная сажа, такой влажный метод вызывает сомнения в достижении приемлемого эластомерного композита, когда наполнителем является диоксид кремния. Конкретные методики производства влажной маточной смеси, такие как методика, раскрытая в патенте США № 6048923, содержание которого включено в данный документ посредством ссылки, не были эффективны в случае производства эластомерного композита, в котором используют частицы диоксида кремния в качестве единственного или основного армирующего агента.

[0005] Таким образом, существует необходимость в улучшении методов, с помощью которых вводят диоксид кремния и углеродную сажу в эластомерные композиты в способе с получением влажной маточной смеси, например, в способе, в котором используют объединение двух текучих сред вместе в условиях непрерывных, обладающих большой энергией ударных нагрузок, с тем чтобы получить приемлемый эластомерный композит, содержащий частицы диоксида кремния в качестве единственного или основного армирующего агента.

СУЩНОСТЬ НАСТОЯЩЕГО ИЗОБРЕТЕНИЯ

[0006] Отличительным признаком настоящего изобретения является разработка способов производства эластомерных композитов с использованием процесса получения влажной маточной смеси, который позволяет применять диоксид кремния и углеродную сажу и все еще с успехом получать желаемые дисперсно-армированные эластомерные композиты.

[0007] Для достижения этих и других преимуществ и в соответствии с целями настоящего изобретения, которые осуществлены и широко описаны в документе, настоящее изобретение относится к контролируемому и избирательному размещению или введению диоксида кремния и углеродной сажи в процессе с влажной маточной смесью, который формирует дисперсно-армированный эластомерный композит.

[0008] Настоящее изобретение также относится к способу изготовления эластомерного композита в процессе получения влажной маточной смеси, который включает, но не ограничивается этим, использование текучей среды, которая включает эластомерный латекс, и использование дополнительной текучей среды, которая включает дестабилизированную дисперсию диоксида кремния и углеродной сажи в форме микрочастиц. «Дополнительную текучую среду» предоставляют или в виде i) двух потоков, содержащих дисперсию, содержащую углеродную сажу, и дестабилизированную дисперсию, содержащую диоксид кремния; или в виде ii) одного потока, содержащего дисперсию, содержащую углеродную сажу и дестабилизированную дисперсию, содержащую диоксид кремния; или в виде iii) дестабилизированной дисперсии, содержащей диоксид кремния и углеродную сажу. Две текучие среды объединяют вместе в условиях непрерывного потока и при выбранных скоростях. Объединение происходит таким образом, что диоксид кремния и углеродную сажу диспергируют внутри эластомерного латекса и одновременно (или почти одновременно) эластомерный латекс преобразуют из жидкости в твердый или полутвердый эластомерный композит, например, в твердую или полутвердую, содержащую диоксид кремния, непрерывную каучуковую фазу. Это может происходить, например, приблизительно за две секунды или меньше, например, за долю секунды, вследствие того, что одна текучая среда, ударяя другую текучую среду с достаточной энергией, вызывает равномерное и тщательное распределение частиц диоксида кремния и углеродной сажи в эластомере. Использование дестабилизированной дисперсии диоксида кремния в таком процессе получения маточной смеси, делает возможным формирование эластомерного композита с желаемыми свойствами.

[0009] Настоящее изобретение также относится к эластомерным композитам, полученным в любом одном или нескольких способах настоящего изобретения. Настоящее изобретение также относится к изделиям, которые изготовлены из эластомерного(ых) композита(ов) или включают эластомерный(е) композит(ы) по настоящему изобретению.

[0010] Следует понимать, что как вышеизложенное общее описание, так и приведенное ниже подробное описание являются только иллюстративными и пояснительными и, как полагают, дают дополнительное разъяснение настоящего изобретения, которое заявлено.

[0011] Прилагаемые чертежи, которые включены и которые составляют часть данной заявки, иллюстрируют различные характерные признаки настоящего изобретения и вместе с описанием предназначены для разъяснения принципов настоящего изобретения.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

[0012] ФИГ. 1(a), 1(b) и 1(c) представляют собой схемы, иллюстрирующие типичные устройства для смешения, которые могут быть использованы в настоящем изобретении и которые были использованы в некоторых из примеров.

[0013] ФИГ. 2 представляет собой блок-схему различных стадий, которые имеют место при формировании эластомерного композита в соответствии с вариантами осуществления настоящего изобретения и при изготовлении каучуковых компаундов с такими эластомерными композитами.

[0014] ФИГ. 3-7 представляют собой блок-схемы различных стадий, которые могут иметь место при приготовлении дисперсии, содержащей диоксид кремния и углеродную сажу, для использования в смесительных устройствах, которые могут быть использованы в настоящем изобретении.

ПОДРОБНОЕ ОПИСАНИЕ НАСТОЯЩЕГО ИЗОБРЕТЕНИЯ

[0015] Настоящее изобретение относится к избирательному и оперативному введению диоксида кремния, а также углеродной сажи в эластомерный латекс в непрерывном, быстром способе получения влажной маточной смеси. Этот способ может быть проведен в полуограниченной реакционной зоне, такой как трубчатая смесительная камера или другая смесительная камера устройства, приемлемого для проведения такого процесса, при контролируемых параметрах объемного расхода и скорости, приводящих к имеющим практическое значение свойствам, которые не могли бы быть достигнуты, если бы не такое избирательное и оперативное применение в особенности диоксида кремния. Как разъяснено более подробно в документе, за счет «избирательного применения» настоящее изобретение использует дестабилизированную дисперсию диоксида кремния. И путем «оперативного» введения настоящее изобретение использует, по меньшей мере, две отдельные текучие среды, одну текучую среду, которая включает эластомерный латекс, и другую текучую среду, которая включает дестабилизированную дисперсию диоксида кремния и углеродной сажи. Две текучие среды могут быть поданы насосом или перенесены в реакционную зону, такую как полуограниченная реакционная зона. Две текучие среды могут быть объединены в условиях непрерывного потока и при выбранных условиях по объемному расходу и скорости. Объединение под давлением за счет выбранных условий по разности скоростей обладает достаточно большой энергией, чтобы диоксид кремния и углеродная сажа могли быть распределены за две секунды или меньше, например, за миллисекунды, внутри эластомерного латекса, и эластомерный латекс был преобразован из жидкой в твердую фазу, такую как дисперсно-армированный эластомерный композит в форме твердой или полутвердой, содержащей диоксид кремния, непрерывной каучуковой фазы.

[0016] Настоящее изобретение частично относится к способу производства кремнийоксидного эластомерного композита, содержащему, состоящему по существу из, состоящему из, или включающему:

(a) обеспечение непрерывного потока под давлением, по меньшей мере, первой текучей среды, содержащей дестабилизированную дисперсию частиц (например, диоксида кремния и углеродной сажи), и обеспечение непрерывного потока второй текучей среды, содержащей эластомерный латекс;

(b) регулирование объемных расходов первой текучей среды и второй текучей среды с целью получения эластомерного композита, имеющего содержание диоксида кремния приблизительно от 15 до 180 масс.ч. на 100 масс.ч. каучука; и

(c) объединение потока первой текучей среды и потока второй текучей среды (например, в полуограниченной реакционной зоне) при ударном действии (ударной нагрузке), обладающей большой энергией достаточной для распределения диоксида кремния и углеродной сажи внутри эластомерного латекса, с получением потока твердой, содержащей диоксид кремния и углеродную сажу, непрерывной каучуковой фазы или полутвердой, содержащей диоксид кремния и углеродную сажу, непрерывной каучуковой фазы. Способ преобразует эластомерный латекс из жидкости в поток твердой или полутвердой, содержащей диоксид кремния и углеродную сажу, непрерывной каучуковой фазы. Содержащая диоксид кремния и углеродную сажу, непрерывная каучуковая фаза может быть выделена в виде по существу непрерывного потока твердой или полутвердой, содержащей диоксид кремния и углеродную сажу, непрерывной каучуковой фазы. Что касается пункта (а) по первой текучей среде, то первая текучая среда может быть представлена или в виде i) двух потоков, содержащих дисперсию, содержащую углеродную сажу, и дестабилизированную дисперсию, содержащую диоксид кремния; или в виде ii) одного потока, содержащего дисперсию, содержащую углеродную сажу и дестабилизированную дисперсию, содержащую диоксид кремния; или в виде iii) дестабилизированной дисперсии, содержащей диоксид кремния и углеродную сажу. Дополнительные детали и/или возможные варианты способов по настоящему изобретению описаны ниже. Также ниже более подробно представлены разновидности i), ii) и iii).

[0017] Как используют в данном документе, «диоксид кремния» означает диоксид кремния в форме микрочастиц или частицу, покрытую диоксидом кремния, и включает осажденный диоксид кремния в любой форме, такой как гранулы высокодиспергируемого диоксида кремния (ВДДК (HDS)), гранулы не-ВДДК, агрегаты диоксида кремния и частицы диоксида кремния; коллоидный диоксид кремния; коллоидальный диоксид кремния; и любую их комбинацию. Такой диоксид кремния или покрытые диоксидом кремния частицы могут быть химически обработаны для включения функциональных групп, связанных с поверхностью (прикрепленных (например, химически прикрепленных) или прилипших (например, адсорбированных)) к поверхности диоксида кремния. Таким образом, «диоксид кремния» включает любую частицу, имеющую поверхность, по существу состоящую из диоксида кремния, или диоксид кремния, имеющий функциональные группы, связанные с поверхностью или прикрепленные к ней.

[0018] Как используют в данном случае, «дисперсия» означает стабильную суспензию твердых частиц в водной текучей среде, в которой заряд у поверхности частиц предупреждает агломерацию частиц, и дисперсия характеризуется значением дзета-потенциала больше чем или равным 30 мВ.

[0019] Дзета-потенциал используют для измерения стабильности заряженных частиц, таких как частицы диоксида кремния, диспергированных в текучей среде. Измерение дзета-потенциала может иметь отклонение, например, ±2 мВ, и, как используют в данном случае, значение дзета-потенциала относится к абсолютной величине числа, например, величина дзета-потенциала минус 30 мВ имеет большее значение, чем величина дзета-потенциала минус 10 мВ.

[0020] Как используют в документе, «дестабилизированная дисперсия» означает суспензию твердых частиц в водной текучей среде, где заряд у поверхности частиц был понижен за счет присутствия агента или за счет обработки твердых частиц, и характеризуется значением дзета-потенциала меньше чем 30 мВ, или более предпочтительно дзета-потенциалом меньше чем 28 мВ или меньше чем 25 мВ. Водной текучей средой может быть вода, смешивающаяся с водой текучая среда (например, спирт или простой эфир), частично смешивающаяся с водой текучая среда или смесь текучих сред, которая содержит, по меньшей мере, смешивающуюся с водой или частично смешивающуюся с водой текучую среду.

[0021] Как используется в документе, термины «густая суспензия диоксида кремния» и «дисперсия» означают дисперсию диоксида кремния (которая также может включать углеродную сажу) в водной текучей среде, где заряд у поверхности диоксида кремния предупреждает агломерацию частиц, и дисперсия характеризуется величиной дзета-потенциала со значением, по меньшей мере, 30 мВ. Густая суспензия или дисперсия диоксида кремния могут быть дестабилизированы за счет обработки с помощью подходящего(их) агента(ов) или за счет обработки диоксида кремния с целью снижения заряда на поверхности диоксида кремния, и получаемая в результате дестабилизированная густая суспензия диоксида кремния (или дестабилизированная дисперсия диоксида кремния) характеризуется значением дзета-потенциала меньше чем 30 мВ.

[0022] Как используется в данном случае, термины «однородная» и «равномерно», как подразумевают, для специалиста в данной области техники обычно означают, что концентрация компонента, например, дисперсного наполнителя, в любой данной фракции или процентной доле (например, 5%) объема является такой же (например, в пределах 2%), как и концентрация этого компонента во всем объеме рассматриваемого материала, например, эластомерного композита или дисперсии. Специалист в данной области техники будет способен подтвердить статистическую однородность материала, если потребуется, путем измерения концентрации компонента, используя несколько образцов, отобранных из разных мест (например, около поверхности или глубже в объеме).

[0023] Как используется в данном случае, «кремнийоксидный эластомерный композит» означает маточную смесь (предварительную смесь армирующего материала (который может включать углеродную сажу), эластомера и различных необязательных добавок, таких как масло для наполнения) объединенного каучука, содержащего армирующее количество (например, приблизительно от 15 до 180 масс.ч. на 100 масс.ч. каучука) диспергированного диоксида кремния. Кремнийоксидный эластомерный композит может содержать необязательные дополнительные компоненты, такие как кислота, соль, антиоксидант, противостарители, связующие агенты, незначительные количества (например, 10% масс. или меньше от всех материалов в форме частиц) других микрочастиц, технологические вспомогательные вещества и/или масло для наполнения, или любые их комбинации.

[0024] Как используется в документе, «твердая, содержащая диоксид кремния и углеродную сажу, непрерывная каучуковая фаза» или «содержащая частицы непрерывная каучуковая фаза» означает композит, имеющий непрерывную каучуковую фазу и равномерно диспергированную фазу армирующих частиц (например, диоксида кремния и углеродной сажи), а также, например, до 90% масс. водной текучей среды. Твердая, содержащая диоксид кремния и углеродную сажу, непрерывная каучуковая фаза может находиться в форме бесконечного каната или червя. При сдавливании такие изделия высвобождают воду. Твердая, содержащая диоксид кремния и углеродную сажу, непрерывная каучуковая фаза может содержать необязательные дополнительные компоненты, такие как кислота, соль, антиоксидант, связующие агенты, незначительные количества других микрочастиц (например, 10% масс. или меньше от всех материалов в форме частиц) и/или технологические вспомогательные вещества, или любые их комбинации.

[0025] Как используется в данном случае, «полутвердая, содержащая диоксид кремния и углеродную сажу, непрерывная каучуковая фаза» означает композит с пастообразной консистенцией, имеющий содержащую диоксид кремния и углеродную сажу непрерывную каучуковую фазу. Полутвердый продукт имеет непрерывную фазу каучука с захваченными диоксидом кремния и углеродной сажей, равномерно распределенными по всей каучуковой фазе. Полутвердая, содержащая диоксид кремния и углеродную сажу, непрерывная каучуковая фаза остается объединенной и выталкивает воду, удерживая при этом содержание твердых веществ, при дополнительной переработке на одной или нескольких последующих операциях, выбранных с целью превращения пастообразного или гелеобразного материала в твердую, содержащую диоксид кремния и углеродную сажу, непрерывную каучуковую фазу.

[0026] Как используется в документе, «объединенный» материал представляет собой материал, находящийся по существу в единой форме, которая образована за счет адгезии многих более мелких частей, таких как эластичная, твердая масса каучука, образованная за счет адгезии многих небольших каучуковых частиц друг к другу.

[0027] Как используется в документе, «непрерывный поток» представляет собой установившийся или постоянный поток текучей среды без приостановки работы от источника подачи (например, емкости). Однако следует понимать, что при временных приостановках потока (например, на секунду или несколько минут) его все еще будут считать непрерывным потоком (например, при переключении подачи от различных областей хранения подачи, таких как емкости и т.п., или при отключении потоков для адаптации процессов на последующих блоках, или для технического обслуживания оборудования).

[0028] ФИГ. 3-7 показывают различные примеры процессов, которые могут быть использованы для приготовления дестабилизированной дисперсии, которая содержит диоксид кремния вместе с углеродной сажей. Такие приводимые в качестве примеров процессы не являются охватывающими все разнообразные процессы, которые могут быть реализованы с использованием способов настоящего изобретения. На ФИГ. 3 углеродную сажу 300 (например, в форме гранул или микрочастиц) объединяют с водой или водной текучей средой 302 с получением густой суспензии углеродной сажи 306. Густая суспензия углеродной сажи затем может быть подвергнута одной или нескольким стадиям перемешивания, и/или перемалывания, и/или измельчения, и/или другим стадиям механической обработки, другим стадиям немеханической обработки, как обозначено с помощью четырехугольника 310. Четырехугольники, изображенные на фигурах пунктирными линиями, представляют собой необязательные стадии или процессы, которые могут быть использованы. Как правило, с помощью одной или нескольких технологических стадий 310 получают густую суспензию углеродной сажи 314, которая представляет собой густую суспензию однородно диспергированной углеродной сажи, которая по существу свободна от более крупных агломерированных частиц. Параллельно с этими стадиями воду или водную текучую среду 302 из того же самого источника или из другого источника, чем в случае углеродной сажи, объединяют с диоксидом кремния 304 с получением густой суспензии диоксида кремния 308. Густая суспензия диоксида кремния может быть подвергнута разнообразным технологическим стадиям, таким как перемалывание, и/или перемешивание, и/или измельчение, и/или другие механические и/или немеханические технологические стадии, а также другим стадиям, описанным в данном документе, чтобы получить в результате дестабилизированную дисперсию, которая содержит или включает диоксид кремния. Как раскрыто в данном случае, дополнительная(ые) стадия(и) 312 может/могут включать добавление, по меньшей мере, одной кислоты и/или соли с получением дестабилизированной дисперсии диоксида кремния 316. В дальнейшем густую суспензию углеродной сажи и дестабилизированную густую суспензию диоксида кремния можно считать «первой текучей средой» применительно к настоящему изобретению, но, как показано на ФИГ. 3, густые суспензии могут быть добавлены в реакционную зону 103 в виде двух отдельных потоков: один поток, содержащий дисперсию, содержащую углеродную сажу, и другой поток, содержащий дестабилизированную дисперсию, содержащую диоксид кремния. Способ, по которому два потока вводят в реакционную зону 103, может представлять собой вариант с одинаковыми объемными расходами или разными объемными расходами, и/или с одинаковыми или разными параметрами, и/или при одинаковых или разных давлениях. Как показано на ФИГ. 3 и как описано в настоящей заявке, вторую текучую среду, которая содержит эластомерный латекс 105, также вводят в реакционную зону 103.

[0029] В качестве возможного варианта, как изображено на ФИГ. 4, может быть использована разновидность процесса ФИГ. 3. Применительно к фигурам одинаковые позиции имеют одинаковое определение с ФИГ. 3, если не указано иное. Как видно на ФИГ. 4, углеродную сажу 300 объединяют с водой или водной текучей средой 302 с получением густой суспензии углеродной сажи 306. Кроме того, воду или водную текучую среду 302 из того же самого источника или из другого источника объединяют с диоксидом кремния 304 с получением густой суспензии диоксида кремния 308. Последующие технологические стадии для углеродной сажи могут иметь место, как показано с помощью четырехугольника 310, и последующая обработка густой суспензии диоксида кремния, чтобы получить в результате дестабилизированную густую суспензию диоксида кремния, может иметь место, как показано в четырехугольнике 312. В отличие от ФИГ. 3 вместо использования двух отдельных потоков для введения густой суспензии углеродной сажи и густой суспензии диоксида кремния в реакционную зону 103, в одном возможном варианте, показанном на ФИГ. 4, густую суспензию углеродной сажи и дестабилизированную дисперсию, содержащую диоксид кремния, объединяют перед реакционной зоной 103 так, что получают один поток 318, который определяют как смешанную густую суспензию (например, дестабилизированную дисперсию частиц), которую затем вводят в реакционную зону 103.

[0030] На ФИГ. 5 представлен возможный вариант, где углеродную сажу 300 и воду или водную текучую среду 302 объединяют вместе с диоксидом кремния 304, все в одной емкости 320, с получением густой суспензии, содержащей углеродную сажу и диоксид кремния. Смешанную густую суспензию 320 затем необязательно подвергают дополнительной обработке, которая может включать перемалывание, измельчение, флюидизирование, перемешивание и/или другие технологические стадии, чтобы вызвать дестабилизацию густой суспензии с присутствующим диоксидом кремния, например, добавление, по меньшей мере, одной кислоты и/или соли. Следует отметить, что, так как смешанная густая суспензия включает углеродную сажу, степень дестабилизации может быть меньше, чем было бы желательно в случае дисперсии, которая содержит эквивалентное количество диоксида кремния без углеродной сажи. Смешанная густая суспензия 324 (например, дестабилизированная дисперсия частиц) может быть затем введена в реакционную зону 103.

[0031] На ФИГ. 6 углеродную сажу 300 и диоксид кремния 304 объединяют с получением сухой смеси двух компонентов 326 и затем эту сухую смесь 326 объединяют с водой или водной текучей средой 350 с получением влажной смеси 328, которая затем может быть подвергнута дополнительным технологическим стадиям 330, которые могут бы быть теми же самыми стадиями, как на ФИГ. 5 для технологической стадии 322. В результате все это приводит к образованию смешанной хорошо диспергированной густой суспензии 332 (например, дестабилизированной дисперсии частиц), которая затем может быть введена в реакционную зону 103.

[0032] На ФИГ. 7 диоксид кремния 304 объединяют с водой или водной текучей средой 302 с получением густой суспензии диоксида кремния 308, которая затем может быть подвергнута дополнительным технологическим стадиям 312, как описано на ФИГ. 3. Эта дисперсия, содержащая диоксид кремния 316 (например, дестабилизированная дисперсия частиц), может быть затем введена в реакционную зону 103. Затем сухая углеродная сажа в форме микрочастиц может быть впрыснута или иным образом введена или в дисперсию, содержащую диоксид кремния 316, перед ее введением в реакционную зону 103, или может быть введена отдельно 338, например, в виде углеродной сажи, флюидизированной в потоке воздуха, в реакционную зону 103, в то время как дестабилизированную дисперсию, содержащую диоксид кремния 316, вводят в реакционную зону 103, или углеродная сажа может быть введена в латексный поток 340.

[0033] Массовое отношение (или в пересчете на общую массу наполнителя) диоксида кремния к углеродной саже в случае любого из процессов настоящего изобретения может составлять приблизительно от 45:55 или от 50:50 (диоксид кремния:углеродная сажа) до менее чем 90:10 или 89,9:10, или от 50:50 до 89:11, или от 60:40 до 85:15, или от 70:30 до 80:20.

[0034] Эластомерный композит может быть произведен в способе с непрерывным потоком, при котором используют жидкую смесь эластомерного латекса и дестабилизированную дисперсию диоксида кремния (которая может включать углеродную сажу). Любые приспособление, или устройство, или система могут быть использованы при условии, что приспособление, устройство или система могут функционировать так, чтобы жидкая смесь эластомерного латекса и дестабилизированной дисперсии диоксида кремния (которая может включать углеродную сажу) могла быть объединена в условиях непрерывного потока и в условиях контролируемых объемного расхода, давления и скорости, включая, но без ограничения, устройство, показанное на фигуре 1(a), (b) или (c), или любой тип эдуктора или эжектора, или любое другое приспособление, выполненное так, чтобы объединять непрерывный поток, по меньшей мере, двух потоков жидкости в условиях контролируемых объемного расхода, давления и скорости в реакционную зону и через нее. Устройство, описанное в публикациях US 2011/0021664, US 6048923, WO 2011/034589, WO 2011/034587, US 2014/0316058 и WO 2014/110499 (каждая из которых включена во всей ее полноте посредством ссылки), также может быть использовано в рассматриваемых способах или адаптировано к рассматриваемым способам. Кроме того, могут быть использованы эжекторы и эдукторы или сифоны, такие как водоструйные эдукторы или пароструйные сифоны, (например, устройства, коммерчески доступные от компании Schutte & Koerting, Trevose, PA).

[0035] Устройство может включать различные питающие резервуары, трубы, клапаны, расходомеры и насосы, чтобы контролировать объемный расход, давление и скорость. Кроме того, как показано у впускного отверстия (3) на фигурах 1(a), (b) и (c), различные типы и размеры насадок или другие размеры дроссельного отверстия регулирующих элементов (3a) могут быть использованы, чтобы контролировать скорость густой суспензии диоксида кремния. Объемные размеры реакционной зоны (13) могут быть выбраны так, чтобы обеспечивать желаемые объемные расходы текучих сред и эластомерного композита. Впускное отверстие (11), подающее эластомерный латекс в реакционную зону, может быть сужено, чтобы создавать разные объемные расходы и разные скорости. Приспособления могут включать впускное отверстие (11) постоянного диаметра, без какого-либо сужения у отверстия, ведущего к реакционной зоне.

[0036] В настоящем способе текучую среду, которая включает эластомерный латекс, и дополнительную текучую среду, которая включает дестабилизированную дисперсию диоксида кремния и углеродной сажи, подаваемую в виде одного потока или в виде отдельных потоков, например, в виде струи под давлением, объединяют вместе в условиях непрерывного потока и при выбранных объемных расходах, давлении и скоростях, чтобы быстро и тщательно смешать две текучие среды. Объединение, например, в полуограниченном пространстве под давлением происходит так, что диоксид кремния и углеродную сажу распределяют по всему эластомерному латексу и одновременно эластомерный латекс превращают из жидкости в твердую или полутвердую фазу латекса, то есть, происходит инверсия жидкости в твердое вещество, или коагуляция, с захватом распределенного диоксида кремния, углеродной сажи и воды в каучук и с образованием твердой или полутвердой, содержащей диоксид кремния и углеродную сажу, непрерывной каучуковой фазы в непрерывном или полунепрерывном потоке, выходящем из реакционной зоны (например, из отверстия на дне (7) на фигурах 1(a)-(c)). На этом этапе продукт можно считать эластомерным композитом из непрерывной каучуковой фазы, содержащей частицы диоксида кремния, содержащим диоксид кремния объединенным каучуком или дисперсно-армированным эластомерным композитом. Полагают, что частицы диоксида кремния и углеродной сажи вначале должны быть распределены в эластомерном латексе с получением желаемого продукта, а инверсия жидкой в твердую фазу следует сразу же после распределения диоксида кремния и углеродной сажи. Однако с помощью непрерывного и чрезвычайно высокоскоростного объединения текучих сред (то есть, за меньше чем 2 сек, меньше чем 1 сек, меньше чем 0,5 сек, меньше чем 0,25 сек, меньше чем 0,1 сек или порядка миллисекунд) и интенсивного и тщательного перемешивания относительно небольших объемов текучих сред в реакционной зоне (например, объемов текучей среды порядка 10-500 см3) параллельные стадии распределения частиц диоксида кремния и углеродной сажи и превращения эластомерного латекса из жидкости в твердую фазу могут произойти почти одновременно. «Реакционная зона», как используют в данном случае, представляет собой зону, в которой тщательное смешение происходит вместе с коагуляцией смеси. Смесь продвигается через реакционную зону и к выходному отверстию (7).

[0037] Типичный способ получения эластомерного композита включает одновременную подачу первой текучей среды, содержащей дестабилизированную дисперсию диоксида кремния и углеродной сажи (подаваемую в виде одного потока или в виде двух отдельных потоков), и второй текучей среды, содержащей эластомерный латекс (например, латекс натурального каучука), в реакционную зону. Первая текучая среда, содержащая дестабилизированную дисперсию диоксида кремния и углеродной сажи, может быть подана с расходом в пересчете на ее объем, и вторая текучая среда, содержащая эластомерный латекс, может быть подана с расходом в пересчете на ее объем (то есть, объемные расходы). Объемные расходы любой из первой текучей среды, второй текучей среды или как первой, так и второй текучей среды могут быть отрегулированы или обеспечены так, чтобы получать эластомерный композит, имеющий содержание диоксида кремния от 15 до 180 частей на сто частей каучука (масс.ч. на 100 масс.ч. каучука) (например, от 35 до 180 масс.ч. на 100 масс.ч. каучука, от 20 до 150 масс.ч. на 100 масс.ч. каучука, от 25 до 125 масс.ч. на 100 масс.ч. каучука, от 25 до 100 масс.ч. на 100 масс.ч. каучука, от 35 до 115 масс.ч. на 100 масс.ч. каучука, или от 40 до 115 масс.ч. на 100 масс.ч. каучука, или от 40 до 90 масс.ч. на 100 масс.ч. каучука и т.д.). Текучая среда, которая содержит дестабилизированную дисперсию частиц (например, диоксида кремния и углеродной сажи), в некоторых вариантах осуществления изобретения может быть названа первой текучей средой. Эта текучая среда представляет собой текучую среду, отдельную от текучей среды, содержащей эластомерный латекс. Любая текучая среда может быть введена через одно впускное отверстие или одну точку впрыска, или через более чем одно впускное отверстие или более чем одну точку впрыска.

[0038] Соотношение объемных расходов первой текучей среды (текучей среды, которая содержит, по меньшей мере, дестабилизированную дисперсию диоксида кремния и углеродной сажи) и второй текучей среды (латексной текучей среды) можно регулировать, чтобы обеспечить возможность получения желаемого эластомерного композита. Примеры таких соотношений объемных расходов включают, но без ограничения, объемное соотношение от 0,4:1 (первая текучая среда ко второй текучей среды) до 3,2:1; от 0,2:1 до 2:1 и т.п. Соотношение объемных расходов между первой текучей средой и второй текучей средой может быть скорректировано с помощью любого средства или технического приема. Например, объемный расход первой или второй текучей среды, или обеих, может быть скорректирован путем a) повышения объемного расхода, b) снижения объемного расхода и/или c) регулирования объемных расходов текучих сред относительно друг друга. Давление, создаваемое за счет физических ограничений, прикладываемых к потоку первой текучей среды, вызывает формирование высокоскоростной струи, которая создает условия, чтобы объединение дестабилизированной дисперсии диоксида кремния с эластомерным латексом происходило быстро, например, за долю секунды. Например, время, в течение которого две текучие среды смешивают и происходит инверсия жидкости в твердую фазу, может составлять порядка миллисекунд (например, приблизительно от 50 до 1500 мс или приблизительно от 100 до 1000 мс). Для данного выбора текучих сред, если скорость первой текучей среды является слишком низкой, чтобы адекватно смешивать текучие среды, или время пребывания является слишком коротким, то твердая каучуковая фаза и поток твердого продукта могут не появиться. Если продолжительность процесса является слишком длинной, в реакционной зоне может возникать реактивное давление и непрерывный поток материалов остановится. Аналогично, если скорость первой текучей среды слишком высокая и продолжительность процесса слишком короткая, твердая каучуковая фаза и поток твердого продукта могут не появиться.

[0039] Как описано ранее, относительные объемные расходы первой текучей среды (дестабилизированной суспензии диоксида кремния и углеродной сажи в виде смешанного потока или в виде двух отдельных потоков) и второй текучей среды (латекса) могут быть скорректированы, и, когда, по меньшей мере, одну соль используют в качестве дестабилизирующего агента, предпочтительно корректировать соотношение объемных расходов дестабилизированной суспензии диоксида кремния к эластомерному латексу так, чтобы оно составляло от 0,4:1 до 3,2:1. Могут быть использованы и другие соотношения расходов.

[0040] Когда, по меньшей мере, одну кислоту используют в качестве дестабилизирующего агента, предпочтительно корректировать соотношение объемных расходов дестабилизированной суспензии диоксида кремния (или дестабилизированной густой суспензии частиц) к эластомерному латексу так, чтобы одно составляло от 0,2:1 до 2:1. Могут быть использованы и другие соотношения расходов.

[0041] Эластомерный латекс может содержать, по меньшей мере, одно основание (например, аммиак), и дестабилизированная дисперсия диоксида кремния (или дестабилизированная дисперсия частиц) может быть получена путем добавления, по меньшей мере, одной кислоты, где мольное отношение кислоты в первой текучей среды (диоксид кремния) и основания (например, аммиака) во второй текучей среды (латекс) составляет, по меньшей мере, 1,0, или, по меньшей мере, 1,1, или, по меньшей мере, 1,2, например, от 1 до 2 или от 1,5 до 4,5. Основание в эластомерном латексе может присутствовать в разных количествах, например, но без ограничения, от 0,3 до приблизительно 0,7% масс. (в пересчете на общую массу эластомерного латекса), или в других количествах ниже или выше этого интервала.

[0042] Дестабилизированная дисперсия частиц, в виде одного потока или в виде двух отдельных потоков, может быть подана к реакционной зоне предпочтительно в виде непрерывной, высокоскоростной, например, приблизительно от 6 до 250 м/с, или приблизительно от 30 до 200 м/с, или приблизительно от 10 до 150 м/с, или приблизительно от 6 до 200 м/с, струи впрыскиваемой текучей среды, и текучая среда, содержащая эластомерный латекс, может подана при относительно более низкой скорости, например, приблизительно от 0,4 до 11 м/с, или приблизительно от 0,4 до 5 м/с, или приблизительно от 1,9 до 11 м/с, или приблизительно от 1 до 10 м/с или приблизительно от 1 до 5 м/с. Скорости текучих сред выбирают с целью оптимизации смешения между текучими средами и быстрой коагуляции эластомерного латекса. Скорость эластомерного латекса, подаваемого в реакционную зону, предпочтительно должна быть достаточно высокой, чтобы создавать турбулентный поток для лучшего смешения с дестабилизированной густой суспензией частиц. С другой стороны, скорость эластомерного латекса необходимо поддерживать достаточной низкой, чтобы латекс не мог коагулировать под действием сдвигающего усилия до его хорошего смешения с дестабилизированной суспензией частиц. Кроме того, скорость эластомерного латекса необходимо поддерживать достаточно низкой перед тем, как он поступит в реакционную зону, для предупреждения забивки линий подачи латекса из-за коагуляции латекса под действием высокого сдвига. Аналогично, также существует оптимальный интервал скорости дестабилизированной дисперсии частиц. Существует теория, что, если скорость дестабилизированной густой суспензии частиц слишком высокая, скорость обусловленной сдвигом агломерации частиц диоксида кремния могла бы быть слишком высокой, чтобы позволить адекватное, равномерное смешение между частицами диоксида кремния (и углеродной сажи) и частицами эластомерного латекса.

[0043] Когда в настоящем изобретении диоксид кремния и углеродную сажу смешивают с латексом, диоксид кремния, как правило, представляет собой частицу, которая требует дестабилизации в таком процессе с точки зрения достижения желательной твердой или полутвердой непрерывной каучуковой фазы. Таким образом, некоторая часть обсуждения в данном случае сфокусирована на диоксиде кремния и его дестабилизации при понимании, что это могло бы быть применено равнозначно к дисперсиям частиц, которые включают не только диоксид кремния, но также углеродную сажу.

[0044] Загущение при сдвиге из-за агломерации и образования сетки частиц диоксида кремния также могло бы уменьшить турбулентность дестабилизированной густой суспензии диоксида кремния и отрицательно повлиять на смешение между диоксидом кремния и латексом. С другой стороны, если скорость дестабилизированной густой суспензии диоксида кремния слишком низкая, может отсутствовать достаточное смешение между частицами диоксида кремния и частицами эластомерного латекса. Предпочтительно, по меньшей мере, одна из текучих сред, поступающих в реакционную зону, имеет турбулентное течение. В общем случае, из-за слишком высокой вязкости типичной дестабилизированной дисперсии диоксида кремния относительно типичного эластомерного латекса необходима намного более высокая скорость дестабилизированной дисперсии диоксида кремния для создания хорошей гидродинамики для смешения с эластомерным латексом и для быстрой коагуляции латекса. Такая высокая скорость потока дестабилизированной дисперсии диоксида кремния может вызывать кавитацию в реакционной зоне, усиливая быстрое смешение текучих сред и распределение частиц диоксида кремния в эластомерном латексе. Скорость дестабилизированной дисперсии диоксида кремния может быть изменена за счет использования разных соотношений объемных расходов, или разных насадок или наконечников (шире или уже в диаметре) у впускного отверстия (3a), которое подает первую текучую среду, содержащую дестабилизированную дисперсию диоксида кремния. При использовании насадки для повышения скорости дестабилизированной дисперсии диоксида кремния, насадка может быть предусмотрена под давлением, находящемся в интервале приблизительно от 30 до 3000 фунт/кв.дм (0,21-20,7 МПа), или приблизительно от 30 до 200 фунт/кв.дм (0,21-1,38 МПа), или приблизительно от 200 до 3000 фунт/кв.дм (1,38-20,7 МПа, или приблизительно от 500 до 2000 фунт/кв.дм (3,35-13,79 МПа), или при относительном давлении, по меньшей мере, в 2 раза выше, чем давление, прикладываемое к текучей среде, содержащей эластомерный латекс, или выше в 2-100 раз. Вторая текучая среда эластомерного латекса может быть предоставлена, например, под давлением, находящемся в интервале приблизительно от 20 до 30 фунт/кв.дм (0,14-0,21 МПа). Давление в системе подачи первой текучей среды может быть приблизительно до 500 фунт/кв.дм (3,45 МПа).

[0045] На основании технологических параметров, описанных в изобретении, таких как скорость текучей среды дестабилизированной густой суспензии частиц, скорость латексной текучей среды, относительные расходы текучих сред дестабилизированной густой суспензии частиц и латекса, концентрация дестабилизирующего агента, такого как соль и/или кислота, концентрация диоксида кремния в дестабилизированной густой суспензии, массовый процент каучука в латексе, концентрация аммиака в латексе и/или отношение кислоты (если она присутствует) к аммиаку, можно контролировать, получать и/или предсказывать формирование твердой или полутвердой, содержащей диоксид кремния, непрерывной каучуковой фазы в пределах интервала желаемого содержания диоксида кремния. Таким образом, процессом можно управлять в пределах оптимального интервала параметров. Следовательно, a) скорость одной или обеих текучих сред, b) соотношение объемных расходов текучих сред, c) дестабилизированная природа диоксида кремния, d) концентрация дисперсного диоксида кремния, например, от 6 до 35% масс., в дестабилизированной дисперсии диоксида кремния, и e) содержание сухого каучука, например, от 10 до 70% масс., в латексе, могут обеспечить смешение в условиях высокой ударной нагрузки так, чтобы вызвать инверсию жидкости в твердое вещество эластомерного латекса и равномерно диспергировать диоксид кремния в латексе при выбранном отношении диоксида кремния к каучуку, и, таким образом, получить поток твердой или полутвердой, содержащей диоксид кремния, непрерывной каучуковой фазы. Выделение потока твердой или полутвердой, содержащей диоксид кремния, непрерывной каучуковой фазы может быть достигнуто любым обычным техническим приемом выделения твердого или полутвердого потока материала. При выделении твердый или полутвердый поток может иметь возможность поступать в контейнер, или емкость, или другое приспособление для выдерживания. Такие контейнер или емкость для выдерживания могут содержать раствор соли или кислоты, или оба компонента, чтобы вызвать дополнительную коагуляцию продукта до более эластичного состояния. Например, выделение может представлять собой транспортировку или подачу насосом твердого потока на другие технологические участки или устройства для дополнительной обработки, некоторые возможные варианты которых описаны в изобретении. Выделение может быть непрерывным, полунепрерывным или периодическим. Концевая часть спускного отверстия реакционной зоны предпочтительно является полуограниченной и сообщается с атмосферой, и поток твердого или полутвердого эластомерного композита предпочтительно извлекают при давлении окружающей среды, обеспечивая возможность непрерывной работы процесса.

[0046] Поток твердой, содержащей диоксид кремния и углеродную сажу, непрерывной каучуковой фазы может находиться в форме более или менее эластичных канатовидных «червей» или глобул. Твердая, содержащая диоксид кремния и углеродную сажу, непрерывная каучуковая фаза может быть растянута до 130-150% от ее первоначальной длины без разрушения. В других случаях полутвердая, содержащая диоксид кремния и углеродную сажу, непрерывная каучуковая фаза может находиться в форме неэластичной, вязкой пасты или гелеобразного материала, который может проявлять эластичные свойства. В каждом случае выходящий продукт представляет собой единое текучее твердое вещество, консистенция которого может быть высокоэластичной или малоэластичной и вязкой. Выходящий из реакционной зоны продукт может представлять собой по существу постоянный поток, образующийся одновременно с постоянно действующей подачей текучих сред эластомерного латекса и дестабилизированной дисперсии диоксида кремния в реакционную зону. Этапы процесса, такие как приготовление текучих сред, могут быть выполнены в виде непрерывных, полу-непрерывных или периодических операций. Полученная твердая или полутвердая, содержащая диоксид кремния и углеродную сажу, непрерывная каучуковая фаза может быть подвергнута последующим стадиям дополнительной обработки, включающим непрерывные, полу-непрерывные или периодические операции.

[0047] Твердая или полутвердая, содержащая диоксид кремния и углеродную сажу, непрерывная каучуковая фаза, возникающая в процессе, содержит воду или другую водную текучую среду и растворенные вещества из первоначальных текучих сред, и, например, может содержать приблизительно от 40 до 95% масс. воды, или от 40 до 90% масс. воды, или приблизительно от 45 до 90% масс. воды, или приблизительно от 50 до 85% масс. воды, или приблизительно от 60 до 80% масс. воды в пересчете на общую массу потока дисперсно-армированного эластомерного композита. При желании после формирования твердой или полутвердой, содержащей диоксид кремния и углеродную сажу, непрерывной каучуковой фазы, имеющей такое содержание воды, этот продукт может быть подвергнут соответствующим стадиям обезвоживания и пластикации и стадиям компаундирования, чтобы получить желаемые свойства каучука и изготовить каучуковые компаунды. Дополнительные детали процесса и другие стадии постобработки представлены ниже и могут быть использованы в любом варианте осуществления настоящего изобретения.

[0048] Полутвердая, содержащая диоксид кремния и углеродную сажу, непрерывная каучуковая фаза может быть превращена в твердую, содержащую диоксид кремния и углеродную сажу, непрерывную каучуковую фазу. Это, например, может быть осуществлено, если подвергнуть полутвердую, содержащую диоксид кремния и углеродную сажу, непрерывную каучуковую фазу механическим стадиям, которые удаляют воду из композита, и/или выдержать полутвердый материал в течение некоторого времени (например, после выделения из реакционной зоны на участке вне технологической линии), например, от 10 мин до 24 час или больше; и/или путем нагревания полутвердой, содержащей диоксид кремния и углеродную сажу, непрерывной каучуковой фазы для удаления воды (например, при температуре приблизительно от 50 до 200°C); и/или, если подвергнуть полутвердый материал воздействию кислоты или дополнительной кислоты, например, в кислотной ванне, или воздействию соли или дополнительной соли, или солевой ванны, или комбинации кислоты и соли и т.п. Может быть использована одна или несколько, или все из этих стадий. Фактически, одна или несколько, или все из стадий могут быть использованы в качестве стадии(й) дополнительной обработки, даже если твердую, содержащую диоксид кремния и углеродную сажу, непрерывную каучуковую фазу выделяют изначально или позднее.

[0049] Степень дестабилизации густой суспензии диоксида кремния, по меньшей мере, частично, определяет количество диоксида кремния, которое может присутствовать в кремнийоксидном эластомерном композите (например, захваченное и распределенное равномерно внутри композита) для данной концентрации диоксида кремния в густой суспензии диоксида кремния и для данного содержания сухого каучука в латексе. При более низких выбранных заданных отношениях диоксида кремния к каучуку (например, от 15 до 45 масс.ч. на 100 масс.ч. каучука), концентрация дестабилизирующего агента может не быть достаточно высокой в густой суспензии диоксида кремния и, в конечном итоге, в смеси (диоксид кремния)/латекс, чтобы быстро коагулировать и сформировать твердую или полутвердую, содержащую диоксид кремния, непрерывную каучуковую фазу. Кроме того, выбор соответствующих концентраций диоксида кремния и каучука и соответствующих относительных расходов текучих сред, как описано в документе, представляют собой факторы, которые следует учитывать для формирования твердого или полутвердого продукта. Например, при относительно низких отношениях объемных расходов дестабилизированной густой суспензии к латексу количество дестабилизирующего агента в дестабилизированной густой суспензии диоксида кремния может быть недостаточным, чтобы способствовать быстрой коагуляции эластомерного латекса в реакционной зоне. Как правило, для данного эластомерного латекса более низкие загрузки диоксида кремния могут быть достигнуты за счет повышения дестабилизации густой суспензии диоксида кремния и/или за счет уменьшения массовой доли диоксида кремния в дестабилизированной густой суспензии.

[0050] Когда дисперсию диоксида кремния дестабилизируют, частицы диоксида кремния, как правило, флоккулируют. Если дисперсия диоксида кремния слишком сильно дестабилизирована, диоксид кремния может «вываливаться» из раствора и становиться неприемлемым для применения в предпочтительных вариантах осуществления.

[0051] Когда происходит дестабилизация, поверхностные заряды на диоксиде кремния обычно удаляют не полностью. Однако иногда, когда частицы диоксида кремния или дисперсию диоксида кремния обрабатывают с целью дестабилизации, изоэлектрическая точка (ИЭТ (IEP)) может переходить по значениям от отрицательного дзета-потенциала до положительного дзета-потенциала. Обычно в случае диоксида кремния суммарный заряд на поверхности частиц диоксида кремния уменьшается, и уменьшается при проведении дестабилизации и значение дзета-потенциала.

[0052] Для более высоких отношений диоксида кремния к каучуку в кремнийоксидном эластомерном композите можно выбирать более высокие концентрации диоксида кремния в дестабилизированной густой суспензии и/или более высокое соотношение объемных расходов кремнийоксидной текучей среды к латексной текучей среде. После того как густую суспензию диоксида кремния дестабилизируют и первоначально объединят с латексной текучей средой, если смесь не коагулирует, соотношение объемных расходов первой текучей среды и второй текучей среды может быть скорректировано, например, путем уменьшения объемного расхода латекса, что эффективно обеспечивает более высокое отношение диоксида кремния к каучуку в эластомерном композите. На этом этапе регулирования количества присутствующего латекса количество латекса составляет или становится количеством, которое не вызывает избыточного разбавления концентрации дестабилизирующего агента во всей смеси, так что желаемый продукт может быть сформирован в пределах времени пребывания в реакционной зоне. Для получения желаемого отношения диоксида кремния к каучуку в эластомерном композите доступны различные возможные варианты. В качестве возможного варианта уровень дестабилизации густой суспензии диоксида кремния может быть увеличен, например, за счет уменьшения значения дзета-потенциала дестабилизированной густой суспензии диоксида кремния (например, путем добавления больше соли и/или кислоты). Или, в качестве возможного варианта, концентрация диоксида кремния в дестабилизированной суспензии диоксида кремния может быть скорректирована, например, за счет понижения или повышения концентрации диоксида кремния в дестабилизированной густой суспензии диоксида кремния. Или, в качестве возможного варианта, может быть использован латекс, который имеет более высокое содержание каучука, или латекс может быть разбавлен до более низкого содержания каучука, или может быть увеличен относительный расход латекса. Или, в качестве возможного варианта, расход и размер отверстия (где каждый параметр может контролировать скорость или влиять на скорость рабочей(их) жидкости(ей)) или относительная ориентация потоков двух текучих сред могут быть модифицированы, чтобы укоротить или удлинить время пребывания объединенных текучих сред в реакционной зоне, и/или изменить степень и тип турбулентного движения в точке удара первой текучей среды на вторую текучую среду. Любые один, или два, или больше из таких возможных вариантов могут быть использованы для регулирования параметров процесса и получения целевого или желаемого отношения диоксида кремния к каучуку в эластомерном композите.

[0053] Степень или уровень дестабилизации густой суспензии диоксида кремния является главным фактором при определении, какое отношение диоксида кремния к каучуку может быть достигнуто в кремнийоксидном эластомерном композите. Дестабилизирующий агент, используемый для дестабилизации диоксида кремния в густой суспензии, может играть роль при ускорении коагуляции частиц эластомерного латекса, когда дестабилизированную густую суспензию диоксида кремния смешивают с эластомерным латексом в реакционной зоне. Существует теория, что скорость коагуляции латекса в реакционной зоне может зависеть от концентрации дестабилизирующего агента в объединенных текучих средах. Установлено, что за счет проведения процесса производства кремнийоксидного эластомерного композита при различных условиях, можно определить пороговую концентрацию дестабилизирующего агента, присутствующего в объединенной смеси текучих сред во время смешения, которая эффективна для производства твердой или полутвердой, содержащей диоксид кремния, непрерывной каучуковой фазы. Примеры выбора и регулирования технологических условий для достижения пороговой концентрации, чтобы получить твердую или полутвердую, содержащую диоксид кремния, непрерывную каучуковую фазу, описаны в приведенных ниже примерах. Если пороговая концентрация для данного выбора и состава текучих сред, объемных потоков и скоростей не соответствует им или превышает их, твердая или полутвердая, содержащая диоксид кремния, непрерывная каучуковая фаза обычно не будет получена.

[0054] На минимальную степень дестабилизации густой суспензии диоксида кремния (или на дестабилизацию густой суспензии частиц) указывает значение дзета-потенциала меньше чем 30 мВ (например, дзета-потенциалы от -29,9 до 29,9 мВ, приблизительно от -28 до 20 мВ, приблизительно от -27 до 10 мВ, приблизительно от -27 до 0 мВ, приблизительно от -25 до 0 мВ, приблизительно от -20 до 0 мВ, приблизительно от -15 до 0 мВ, приблизительно от -10 до 0 мВ и т.д.). Если густая суспензия диоксида частиц была дестабилизирована до такого интервала дзета-потенциала, то при объединении с эластомерным латексом диоксид кремния в дестабилизированной густой суспензии может быть введен в твердую или полутвердую, содержащую диоксид кремния, непрерывную каучуковую фазу.

[0055] Хотя может быть желательно дестабилизировать латекс перед его объединением с содержащей диоксид кремния густой суспензией, в условиях сдвига, таких как условия, имеющие место при непрерывной подаче насосом латекса в реакционную зону, трудно дестабилизировать латексную текучую среду заранее, не вызвав преждевременную коагуляцию латекса. Однако дестабилизирующий агент, используемый в дестабилизированной густой суспензии диоксида кремния, может присутствовать в избыточном количестве, чтобы усилить дестабилизацию латекса, и/или уменьшить разбавление агента после объединения дестабилизированной густой суспензии диоксида кремния и латексной текучей среды. В качестве другого возможного варианта при особенно высоких концентрациях диоксида кремния (например, >25% масс. диоксида кремния в густой суспензии диоксида кремния) некоторое дополнительное количество дестабилизирующего агента может быть добавлено отдельно к смеси дестабилизированной густой суспензии диоксида кремния и эластомерного латекса в реакционной зоне, чтобы усилить коагуляцию латекса.

[0056] Без привлечения какой-либо теории, считают, что процесс производства кремнийоксидного эластомерного композита, как полагают, формирует взаимопроникающие когерентные сетки как из частиц каучука, так и из агрегатов диоксида кремния приблизительно за две секунды или меньше, например, за долю секунды, когда две текучие среды объединяют и происходит инверсия фазы, приводящая к твердому или полутвердому материалу, содержащему такие сетки с инкапсулированной водой. Такое быстрое образование полимерной сетки обеспечивает возможность непрерывного производства твердой или полутвердой, содержащей диоксид кремния, непрерывной каучуковой фазы. Полагают, что вызванная сдвигом агломерация частиц диоксида кремния, пока дестабилизированная густая суспензия диоксида кремния проходит через впускную насадку, чтобы быть объединенной с эластомерным латексом, может быть полезна для создания уникального равномерного расположения частиц в каучуковых маточных смесях и для захвата частиц диоксида кремния внутрь каучука через гетерокоагуляцию между частицами диоксида кремния и каучука. Также существует еще одна теория, что без такой взаимопроникающей сетки не может существовать композит из твердой или полутвердой непрерывной каучуковой фазы, содержащей диспергированные частицы диоксида кремния, в форме червя или твердых кусочков, например, которая инкапсулирует 40-95% масс. воды и удерживает весь или большую часть диоксида кремния при последующих процессах обезвоживания, включающих обжимание и механическую обработку с высокой энергией.

[0057] Существует теория, что формирование полимерной сетки диоксида кремния повышает, по меньшей мере, частично, вызванную сдвигом агломерацию частиц диоксида кремния, пока дестабилизированная густая суспензия диоксида кремния проходит через находящуюся под давлением насадку (3a) при высокой скорости через первое впускное отверстие (3) в реакционную зону (13), как показано на ФИГ. 1. Этот процесс ускоряют путем уменьшения стабильности диоксида кремния в дестабилизированной густой суспензии, когда густая суспензия диоксида кремния была дестабилизирована (например, путем обработки густой суспензии диоксида кремния солью или кислотой, или обеими).

[0058] Существует теория, что инверсия латекса из жидкой в твердую фазу может быть результатом различных факторов, включающих вызванную сдвигом коагуляцию от смешения с высокоскоростной струей дестабилизированной густой суспензии диоксида кремния, взаимодействие поверхности диоксида кремния с компонентами латекса, ионную или химическую коагуляцию из-за контакта с густой суспензией диоксида кремния, содержащей дестабилизирующий агент, и комбинацию таких факторов. Чтобы сформировать материал композита, содержащий взаимопроникающие полимерную сетку диоксида кремния и латексную полимерную сетку, скорости образования каждой полимерной сетки, а также скорость смешения, должны быть сбалансированы. Например, в случае сильно дестабилизированных густых суспензий диоксида кремния при высокой концентрации соли в суспензии агломерация и образование сетки частиц диоксида кремния в условиях сдвига происходит быстро. В этом случае объемные расходы и скорости устанавливают так, чтобы латекс имел высокую скорость коагуляции для образования взаимопроникающих полимерных сеток (диоксида кремния)/каучука. Скорости образования являются более низкими с более слабо дестабилизированными суспензиями диоксида кремния.

[0059] Один типичный способ производства дисперсно-армированного эластомерного композита включает подачу непрерывного потока текучей среды, которая содержит, по меньшей мере, эластомерный латекс (иногда называемый второй текучей средой), через впускное отверстие 11 (ФИГ. 1 (a), (b) и/или (c)) в реакционную зону 13 при объемном расходе приблизительно от 20 до 1900 л/ч. Способ также включает подачу непрерывного потока другой текучей среды, содержащей дестабилизированную дисперсию диоксида кремния, через впускное отверстие 3 (иногда называемой первой текучей средой) под давлением, что может быть выполнено с помощью наконечников насадки (на ФИГ. 1, у позиции 3a), при объемном расходе от 30 до 1700 л/ч. Дестабилизированное состояние дисперсии диоксида кремния и ударное воздействие потоков двух текучих сред (вводимых у впускных отверстий 3 и 11) при условиях с высокой энергией, созданной за счет введения первой текучей среды в виде высокоскоростной струи (например, приблизительно от 6 до 250 м/с), которая ударяет более низкоскоростную латексную текучую среду (например, 0,4-11 м/с), входящую в реакционную зону под углом приблизительно перпендикулярно к высокоскоростной струе первой текучей среды, является эффективным для тщательного смешения частиц (например, диоксида кремния и углеродной сажи) с потоком латекса, способствуя равномерному распределению частиц в потоке твердой, содержащей диоксид кремния и углеродную сажу, непрерывной каучуковой фазы, выходящей из выпускного отверстия реакционной зоны.

[0060] В качестве возможного варианта эластомерный латекс, вводимый, например, через впускное отверстие 11, может представлять собой смесь двух или нескольких латексов, например, смесь двух или нескольких синтетических латексов. В качестве возможного варианта приспособления на ФИГ. 1(a), (b) и/или (c) могут быть модифицированы, чтобы они имели одно или несколько дополнительных впускных отверстий с тем, чтобы вводить другие компоненты в реакционную зону, например, один или несколько дополнительных латексов. Например, на ФИГ. 1(c) впускное отверстие 14 может быть использовано для введения другого латекса помимо использования впускного отверстия 11. Одно или несколько дополнительных впускных отверстий могут быть последовательными друг к другу, или могут находиться по соседству друг от друга, или могут быть установлены в любой ориентации, пока материал (например, латекс), вводимый через впускное(ые) отверстие(я), имеет достаточно времени для его диспергирования или его введения в образующийся поток. В публикации WO 2011/034587, включенной в данный документ во всей ее полноте посредством ссылки, ФИГ. 1, 2A и 2B предлагают примеры дополнительных впускных отверстий и их ориентации, которые могут быть адаптированы для использования с вариантами осуществления настоящего изобретения. В качестве конкретного примера одно впускное отверстие может вводить поток, который включает латекс натурального каучука, и дополнительное впускное отверстие может вводить синтетический эластомерный латекс, и эти потоки латексов могут быть объединены с потоком дестабилизированной дисперсии диоксида кремния, давая поток твердой или полутвердой, содержащей диоксид кремния, непрерывной каучуковой фазы. Когда более чем одно впускное отверстие используют для введения эластомерного латекса, расходы могут быть одинаковыми или могут отличаться друг от друга.

[0061] ФИГ. 2 показывает пример с использованием блок-схемы из различных стадий, которые могут присутствовать при формировании эластомерного композита. Как показано на ФИГ. 2, дестабилизированную дисперсию частиц (первая текучая среда) 100 вводят в реакционную зону 103, и текучую среду, содержащую эластомерный латекс (вторая текучая среда) 105, также вводят в реакционную зону 103. Например, поток твердой или полутвердой, содержащей диоксид кремния и углеродную сажу, непрерывной каучуковой фазы покидает реакционную зону 103 и необязательно может поступать в зону выдерживания 116 (например, в емкость для выдерживания с добавлением или без добавления раствора соли или кислоты, чтобы дополнительно усилить коагуляцию каучука и формирование полимерных сеток (диоксида кремния)/каучука); и необязательно может поступать напрямую или после переключения к зоне выдерживания 116 в зону обезвоживания 105; необязательно может поступать в (смеситель непрерывного действия)/компаундер 107; необязательно может поступать на мельницу (например, мельницу открытого типа, так называемую вальцовую мельницу) 109; может быть подвергнут дополнительному сильному перемалыванию 111 (при таких же или других условиях, как в мельнице 109) (например, при таком же или другом потреблении энергии); может быть подвергнут необязательному перемешиванию с помощью смесителя 115, и/или может быть гранулирован с использованием гранулятора, и затем необязательно может быть уложен в кипы с использованием кипного пресса 119, и необязательно может быть разбит на части с использованием дополнительного смесителя 121.

[0062] Что касается диоксида кремния, то один или несколько типов диоксида кремния, или любая комбинация диоксидов кремния могут быть использованы в любом варианте осуществления настоящего изобретения. Диоксид кремния, подходящий для армирования эластомерных композитов, может быть охарактеризован площадью поверхности (по методу БЭТ.) приблизительно от 20 до 450 м2/г; приблизительно от 30 до 450 м2/г; приблизительно от 30 до 400 м2/г; или приблизительно от 60 до 250 м2/г; и в случае протекторов шин для тяжелых транспортных средств - площадью поверхности по БЭТ приблизительно от 60 до 250 м2/г или, например, приблизительно от 80 до 200 м2/г. В настоящих способах в качестве наполнителя может быть использован высокодиспергируемый осажденный диоксид кремния. Высокодиспергируемый диоксид кремния (ВДДК), как понимают, означает любой диоксид кремния, имеющий значительную способность к дисагломерации и диспергированию в эластомерной матрице. Такие результаты можно наблюдать известным образом с помощью электронного или оптического микроскопа на тонких срезах эластомерного композита. Примеры технических сортов ВДДК включают диоксид кремния Perkasil® GT 3000GRAN от компании WR Grace & Co, диоксид кремния Ultrasil® 7000 от компании Evonik Industries, диоксид кремния Zeosil® 1165 MP и 1115 MP от компании Solvay S.A., диоксид кремния Hi-Sil® EZ 160G от компании PPG Industries, Inc. и диоксид кремния Zeopol® 8741 или 8745 от компании JM Huber Corporation. Обычный не-ВД осажденный диоксид кремния также может быть использован. Примеры технических сортов обычного осажденного диоксида кремния включают диоксид кремния Perkasil® KS 408 от компании WR Grace & Co, диоксид кремния Zeosil® 175GR от компании Solvay S.A., диоксид кремния Ultrasil® VN3 от компании Evonik Industries, диоксид кремния Hi-Sil® 243 от компании PPG Industries, Inc. и диоксид кремния Hubersil® 161 от компании JM Huber Corporation. Также может быть использован гидрофобный осажденный диоксид кремния с прикрепленными к поверхности силановыми связующими агентами. Примеры технических сортов гидрофобного осажденного диоксида кремния включают диоксид кремния Agilon® 400, 454 или 458 от компании PPG Industries, Inc. и диоксиды кремния Coupsil от компании Evonik Industries, например, диоксид кремния Coupsil 6109.

[0063] Как правило, диоксид кремния (например, частицы диоксида кремния) имеет содержание диоксида кремния, по меньшей мере, 20% масс., по меньшей мере, 25% масс., по меньшей мере, 30% масс., по меньшей мере, 35% масс., по меньшей мере, 40% масс., по меньшей мере, 50% масс., по меньшей мере, 60% масс., по меньшей мере, 70% масс., по меньшей мере, 80% масс., по меньшей мере, 90% масс., или почти 100% масс., или 100% масс., или приблизительно от 20 до 100% масс. все в пересчете на общую массу частицы. Любой(ые) диоксид(ы) кремния может/могут быть химически функционализирован(ы), например, чтобы прикрепить или адсорбировать химические группы, например, прикрепить или адсорбировать органические группы. Может быть использована любая комбинация диоксида(ов) кремния. Диоксид кремния, который образует густую суспензию диоксида кремния и/или дестабилизированную густую суспензию диоксида кремния, может представлять собой, частично или полностью, диоксид кремния, имеющий гидрофобную поверхность, который может представлять собой диоксид кремния, который является гидрофобным, или диоксид кремния, который стал гидрофобным за счет превращения поверхности в гидрофобную путем обработки (например, химической обработки). Гидрофобная поверхность может быть получена путем химической модификации частиц диоксида кремния с помощью гидрофобизующих силанов без ионных групп, например, с помощью бис-триэтоксисилилпропилтетрасульфида. Такая поверхностная реакция на диоксиде кремния может быть проведена на отдельной технологической стадии до диспергирования, или осуществлена in situ в дисперсии диоксида кремния. Поверхностная реакция уменьшает плотность силанольных групп на поверхности диоксида кремния, уменьшая в результате плотность ионного заряда частицы диоксида кремния в густой суспензии. Подходящие частицы диоксида кремния с гидрофобно-обработанной поверхностью для использования в дисперсиях могут быть получены от коммерческих поставщиков, например, диоксид кремния Agilon® 454 и диоксид кремния Agilon® 400 от компании PPG Industries. Дисперсии диоксида кремния и дестабилизированные дисперсии диоксида кремния могут быть приготовлены с использованием частиц диоксида кремния, имеющих низкую поверхностную плотность силанольных групп. Такой диоксид кремния может быть получен посредством дегидроксилирования при температурах свыше 150°C, например, в процессе кальцинирования.

[0064] Любой армирующий или не армирующий сорт углеродной сажи может быть выбран для получения желаемого свойства в конечной каучуковой композиции. Примеры армирующих сортов представляют собой N110, N121, N220, N231, N234, N299, N326, N330, N339, N347, N351, N358 и N375. Примеры полу-армирующих сортов включают N539, N550, N650, N660, N683, N762, N765, N774, N787 и/или N990.

[0065] Углеродная сажа может иметь любую статистическую площадь поверхностного слоя (STSA), например, лежащую в интервале от 10 до 250 м2/г, от 11 до 250 м2/г, от 20 до 250 м2/г или выше, например, по меньшей мере, 70 м2/г, например, от 70 до 250 м2/г, или 80 до 200 м2/г или от 90 до 200 м2/г, или от 100 до 180 м2/г, от 110 до 150 м2/г, от 120 до 150 м2/г и т.д. В качестве примера углеродная сажа может иметь йодное число (I2 No) приблизительно от 5 до 35 мг I2/г углеродной сажи (по стандарту ASTM D1510). Углеродная сажа может представлять собой печную сажу или углеродный продукт, включающий кремнийсодержащие разновидности и/или металлсодержащие разновидности, и т.п. Углеродная сажа применительно к настоящему изобретению может представлять собой многофазную совокупность частиц, содержащую, по меньшей мере, одну углеродную фазу, и, по меньшей мере, одну фазу металлсодержащих разновидностей или одну фазу кремнийсодержащих разновидностей (также известна как обработанная кремнийсодержащим соединением углеродная сажа, например, материалы ECOBLACK™ от компании Cabot Corporation). Как указано, углеродная сажа может представлять собой сажу для резиновой смеси, и особенно армирующий сорт углеродной сажи или полу-армирующий сорт углеродной сажи. Йодное число (I2 No.) определяют в соответствии с методикой испытания стандарта ASTM D1510. Величину STSA (статистической площади поверхностного слоя) определяют на основе методики испытания стандарта ASTM D-5816 (измерена по адсорбции азота). Число абсорбции масла (OAN) определяют на основе стандарта ASTM D1765-10. Углеродные сажи, продаваемые под торговыми марками Regal®, Black Pearls®, Spheron®, Sterling®, Emperor®, Monarch®, Shoblack™ и Vulcan®, доступными от компании Cabot Corporation, под торговыми марками Raven®, Statex®, Furnex® и Neotex® и сериями CD и HV, доступными от компании Chemicals, и под торговыми марками Corax®, Durax®, Ecorax® и Purex® и серией CK, доступными от компании Evonik (Degussa) Industries, и другие наполнители, подходящие для использования в каучуке или в шинной промышленности, также могут быть применены для использования с различными вариантами осуществления. Подходящие химически функционализированные углеродные сажи включают сажи, раскрытые в публикациях WO 96/18688 и US2013/0165560, описания которых включены в данный документ посредством ссылки. Могут быть использованы смеси любых из этих углеродных саж.

[0066] Углеродная сажа может представлять собой окисленную углеродную сажу, например, предварительно окисленную с использованием окисляющего агента. Окисляющие агенты включают, но без ограничения, воздух, газообразный кислород, озон, NO2 (включая смеси NO2 и воздуха), пероксиды, такие как пероксид водорода, персульфаты, включая персульфат натрия, калия или аммония, гипогалогениты, такие как гипогалогенит натрия, галогениты, галогенаты или пергалогенаты (такие как хлорит натрия, хлорат натрия или перхлорат натрия), окисляющие кислоты, такие как азотная кислота, и содержащие переходный металл оксиданты, такие как перманганатные соли, тетраоксид осмия, оксиды хрома или нитрат аммония-церия. Могут быть использованы смеси оксидантов, особенно смеси газообразных оксидантов, таких как кислород и озон. Кроме того, могут быть использованы углеродные сажи, полученные с помощью других методов модификации поверхности для введения ионных или ионогенных групп на поверхность пигмента, таких как хлорирование и сульфирование. Способы, которые могут быть использованы для приготовления предварительно окисленной углеродной сажи, хорошо известны в данной области техники, и некоторые типы окисленной углеродной сажи коммерчески доступны.

[0067] Кроме того, густая суспензия диоксида кремния и/или дестабилизированная густая суспензия диоксида кремния может содержать, в качестве варианта, незначительное количество (10% масс. или меньше из расчета на общую массу дисперсного материала) любых частиц не диоксида кремния и не углеродной сажи, таких как оксид цинка или карбонат кальция, или других материалов в форме частиц, полезных в каучуковых композициях.

[0068] Диоксид кремния может быть диспергирован в водной текучей среде в соответствии с любым техническим приемом, известным специалисту в данной области техники. Дисперсия диоксида кремния в форме микрочастиц может быть подвергнута механической обработке, например, для уменьшения размера частиц. Это может быть выполнено до, или при проведении, или после проведения дестабилизации дисперсии и может способствовать незначительно или в большой степени дестабилизации дисперсии. Механическая обработка может предусматривать или включать измельчение, перемалывание, перетирание, ударное измельчение или обработку текучей среды с высоким усилием сдвига, или любую их комбинацию.

[0069] Например, густая суспензия диоксида кремния может быть приготовлена путем диспергирования диоксида кремния в текучей среде с помощью процесса измельчения. Такой способ измельчения понижает размер большей части агломератов диоксида кремния (например, свыше 80% об.) в текучей среде до менее 10 микрон, и предпочтительно до менее 1 микрона, типичного размерного интервала коллоидных частиц. Текучей средой может быть вода, водная текучая среда или неводная полярная текучая среда. Густая суспензия, например, может содержать приблизительно от 6 до 35% масс. содержащих диоксид кремния частиц в пересчете на массу густой суспензии. Размер частиц диоксида кремния может быть определен с использованием метода рассеивания света. Такая густая суспензия при приготовлении ее в воде с использованием частиц диоксида кремния, имеющих низкое содержание остаточной соли, при рН 6-8 обычно имеет значение дзета-потенциала больше чем или равное 30 мВ и показывает хорошую стойкость к агрегации, гелеобразованию и осаждению в емкости-накопителе с медленным перемешиванием (например, при скорости перемешивания ниже 60 об/мин). Так как хорошо измельченные частицы диоксида кремния обычно стабильны в воде при pH около 7 вследствие высоких отрицательных зарядов на диоксиде кремния, как правило, необходимо очень высокое усилие сдвига для преодоления отталкивающего энергетического барьера между частицами, чтобы вызвать агломерацию частиц.

[0070] В типичных способах применения диоксида кремния, такого как гранулы ВДДК, диоксид кремния может быть смешан с водой, и полученную смесь пропускают через коллоидную мельницу, трубопроводный измельчитель или т.п. с получением дисперсии текучей среды. Эту текучую среду затем подают на гомогенизатор, который более тонко диспергирует наполнитель в жидкости-носителе с образованием густой суспензии. Типичными гомогенизаторами являются, но без ограничения, система Microfluidizer®, коммерчески доступная от компании Microfluidics International Corporation (Newton, Mass., USA). Также приемлемыми являются такие гомогенизаторы, как модели MS18, MS45 и MC120, и серия гомогенизаторов, поставляемых компанией APV Homogenizer Division of APV Gaulin, Inc. (Wilmington, Mass., USA). Коммерчески доступными являются другие подходящие гомогенизаторы, и они будут очевидны для специалиста в данной области техники с учетом преимущества настоящего изобретения. Оптимальное рабочее давление по всему гомогенизатору может зависеть от фактического оборудования, типа диоксида кремния и/или содержания диоксида кремния. Для примера, гомогенизатор может функционировать при давлении приблизительно от 10 до 5000 фунт/кв.дм (0,07-34,47 МПа) или выше, например, приблизительно от 10 до 1000 фунт/кв.дм (0,07-6,89 МПа), приблизительно от 1000 до 1700 фунт/кв.дм (6,89-11,72 МПа), приблизительно от 1700 до 2200 фунт/кв.дм (11,72-15,17 МПа), приблизительно от 2200 до 2700 фунт/кв.дм (15,17-18,62 МПа), приблизительно от 2700 до 3300 фунт/кв.дм (18,62-22,75 МПа), приблизительно от 3300 до 3800 фунт/кв.дм (22,75-26,20 МПа), приблизительно от 3800 до 4300 фунт/кв.дм (26,20-29,65 МПа) или приблизительно от 4300 до 5000 фунт/кв.дм (29,65-34,47 МПа). Как указано ранее, дисперсию диоксида кремния в форме микрочастиц дестабилизируют перед проведением процесса получения маточной смеси, и дисперсия может быть дестабилизирована в соответствии с одной из методик, упомянутых выше, до проведения, при проведении или после проведения любого измельчения или аналогичного механического процесса.

[0071] В зависимости от применяемого способа приготовления влажной маточной смеси высокая концентрация диоксида кремния в густой суспензии может быть использована, чтобы упростить задачу удаления избытка воды или другого носителя. В случае дестабилизированной дисперсии частиц диоксида кремния используемой жидкостью может быть вода, или другая водная текучая среда, или другая текучая среда. В случае дестабилизированной дисперсии может быть использовано приблизительно от 6 до 35% масс. наполнителя, например, приблизительно от 6 до 9% масс., приблизительно от 9 до 12% масс., приблизительно от 12 до 16% масс., приблизительно от 10 до 28% масс., приблизительно от 16 до 20% масс., приблизительно от 20 до 24% масс., приблизительно от 24 до 28% масс., или приблизительно от 28 до 30% масс. в пересчете на массу дестабилизированной дисперсии. В случае дестабилизированной дисперсии более высокая концентрация диоксида кремния может иметь преимущества. Например, концентрация диоксида кремния в дестабилизированной густой суспензии может составлять, по меньшей мере, 10% масс. или, по меньшей мере, 15% масс. в пересчете на массу густой суспензии (например, приблизительно от 12 до 35% масс., или приблизительно от 15,1 до 35% масс., или приблизительно от 20 до 35% масс.), что может создавать преимущества, такие как, но без ограничения, уменьшенное количество сточных вод, повышенные объемы выпуска и/или уменьшенные размера оборудования, необходимого для процесса. Специалисту в данной области техники будет понятно, с учетом преимущества данного описания, что концентрация диоксида кремния (в % масс.) в густой суспензии диоксида кремния (и в дестабилизированной густой суспензии диоксида кремния) должна быть согласована с другими технологическими параметрами при проведении влажного способа, чтобы получить желаемое отношение диоксида кремния к каучуку (в масс.ч. на 100 масс.ч. каучука) в конечном продукте.

[0077] Подробная информация по дисперсии диоксида кремния дополнительно приведена ниже. В общем случае дисперсия может представлять собой материал, содержащий больше чем одну фазу, где, по меньшей мере, одна из фаз содержит, или включает, или состоит из тонкоизмельченных фазовых доменов необязательно в интервале коллоидных размеров, диспергированных по всей непрерывной фазе. Дисперсия или густая суспензия, которая включает диоксид кремния, или кремнийоксидная дисперсия может быть получена в виде стабильной суспензии дисперсного диоксида кремния в водной текучей среде, в которой заряд у поверхности частиц предупреждает агломерацию частиц, и дисперсия характеризуется значением дзета-потенциала больше чем или равным 30 мВ. В таких дисперсиях частицы диоксида кремния остаются в стабильной дисперсии и/или суспензии относительно агломерации и коалесценции, например, по меньшей мере, в течение 8 час. Стабильная дисперсия может представлять собой дисперсию, где сохраняется постоянный размер частиц и в которой частицы не оседают или не образуют гель, или требуется очень длительное время, чтобы осаждение было заметно при наличии медленного или периодического перемешивания, например, нет заметного осаждения через 8 час, или 12 час, или 24 час, или 48 час. Например, в случае коллоидных частиц диоксида кремния, хорошо диспергированных в водной текучей среде, стабильность в общем случае можно наблюдать при значениях pH от 8 до 10. Кроме того, при медленном перемешивании дисперсии частицы диоксида кремния остаются суспендированными в текучей среде за счет поверхностного заряда частиц, полярности поверхности частиц, pH, выбранной концентрации частиц, поверхностной обработки частиц и их комбинаций. Текучая среда может представлять собой воду или включать воду, водную смесь или смешиваемую с водой или частично смешиваемую с водой текучую среду, например, различные спирты, простые эфиры и другие низкомолекулярные смешиваемые с водой растворители, предпочтительно имеющие C1-C5-органические группы (например, этанол, метанол, пропанол, этиловый эфир, ацетон и т.п.). Как показано выше, дисперсия, например, может содержать приблизительно от 6 до 35% масс., приблизительно от 10 до 28% масс., приблизительно от 12 до 25% масс., или приблизительно от 15 до 30% масс. содержащих диоксид кремния частиц в пересчете на массу дисперсии.

[0073] Стабильная дисперсия может представлять собой коллоидную дисперсию. В общем случае коллоидная дисперсия или коллоид может представлять собой вещество, где диспергированные частицы суспендированы по всему другому веществу. Частицы дисперсной фазы имеют диаметр приблизительно от 1 до 1000 нм, и, как правило, приблизительно от 100 до 500 нм. В стабильной коллоидной дисперсии размер частиц, плотность и концентрация являются такими, что сила тяжести не заставляет частицы легко выпадать в осадок из дисперсии. Коллоиды со значением дзета-потенциала 30 мВ или выше обычно рассматривают как стабильные коллоидные системы. Понижение стабильности частиц (например, диоксида кремния) в коллоиде или дисперсии вследствие стабилизации заряда может быть измерено по уменьшению значения дзета-потенциала. Размер частиц может быть измерен с помощью метода рассеивания света.

[0074] Дестабилизированная дисперсия диоксида кремния или дестабилизированная дисперсия частиц, как можно понять, представляет собой дисперсию диоксида кремния в текучей среде, в которой ослабленные силы отталкивания частица-частица создают возможность образования кластеров из частиц и формирования сетки или геля частица-частица диоксида кремния, когда дестабилизированную дисперсию подвергают воздействию эффективного по величине сдвигового усилия. В некоторых случаях механический сдвиг может вызвать дестабилизацию дисперсий диоксида кремния и образование кластеров из частиц диоксида кремния. Чем выше степень дестабилизации густой суспензии диоксида кремния, тем более низкое сдвигающее усилие необходимо для агрегации частиц и тем выше скорость агрегации частиц. В случае дестабилизированной дисперсии дисперсия может содержать приблизительно от 6 до 35% масс. дисперсного диоксида кремния (в пересчете на массу дисперсии), например, приблизительно от 8 до 35% масс., приблизительно от 10 до 28% масс., приблизительно от 12 до 25% масс., приблизительно от 15 до 30% масс. Водная текучая среда в дестабилизированной дисперсии частиц диоксида кремния может представлять собой или включать воду, водную смесь или смешиваемую с водой или частично смешиваемую с водой текучую среду, например, различные спирты, простые эфиры и другие низкомолекулярные смешиваемые с водой растворители, предпочтительно имеющие C1-C5-органические группы (например, этанол, метанол, пропанол, этиловый эфир, ацетон и т.п.). Для получения кремнийоксидных эластомерных композитов стабильность частиц диоксида кремния в густой суспензии или дисперсии уменьшают (то есть, дестабилизируют) за счет снижения электростатического энергетического барьера между частицами с использованием эффективного количества дестабилизирующего агента, такого как кислота, или соль, или обе, перед смешением густой суспензии с латексом. Дестабилизирующий агент может быть выбран по его способности понижать взаимодействие отталкивающихся зарядов между поверхностями частиц, которое предупреждает агломерацию частиц в текучей среде.

[0075] Дестабилизированная дисперсия диоксида кремния или дисперсия, которая включает диоксид кремния, может быть получена путем понижения pH дисперсии диоксида кремния близко к изоэлектрической точке диоксида кремния (pH около 2 для типичных гидрофильных диоксидов кремния). Например, дестабилизация диоксида кремния может быть достигнута путем добавления кислоты, чтобы понизить pH дисперсии диоксида кремния в форме микрочастиц до значения от 2 до 4, уменьшая в результате значение дзета-потенциала дисперсии до меньше чем 30 мВ, например, приблизительно до ниже 28 мВ (например, значение дзета-потенциала приблизительно от 18 до 6 мВ для муравьиной кислоты в качестве дестабилизирующего агента). Добавление кислоты и/или соли к густой суспензии диоксида кремния может эффективно понижать стабильность частиц диоксида кремния, диспергированных в воде. Мольная концентрация кислоты или соли обычно является доминирующим фактором, который определяет дзета-потенциал дестабилизированной густой суспензии диоксида кремния. В общем случае достаточное количество кислоты или соли, или обеих, может быть использовано для уменьшения значения дзета-потенциала густой суспензии диоксида кремния до меньше чем 30 мВ, например, до 28 мВ или меньше, предпочтительно до 25 мВ или меньше, для получения полутвердой или твердой, содержащей диоксид кремния, непрерывной каучуковой фазы.

[0076] Количество кислоты, используемой для дестабилизации дисперсии диоксида кремния, может представлять собой количество для получения значения дзета-потенциала в дестабилизированной дисперсии меньше чем 30 мВ, например, 28 мВ или меньше, или 25 мВ или ниже. Кислота может представлять собой, по меньшей мере, одну органическую или неорганическую кислоту. Кислота может представлять собой или включать уксусную кислоту, муравьиную кислоту, лимонную кислоту, фосфорную кислоту или серную кислоту, или любые их комбинации. Кислота может представлять собой или включать содержащую C1-C4-алкил кислоту. Кислота может представлять собой или включать кислоту, которая имеет молекулярную массу или средневесовую молекулярную массу ниже 200, например, молекулярную массу ниже 100, или ниже 75, или приблизительно от 25 до 100. Количество кислоты может меняться и зависит от дисперсии диоксида кремния, которую дестабилизируют. Количество кислоты может составлять, например, приблизительно от 0,8 до 7,5% масс., например, приблизительно от 1,5 до 7,5% масс. или больше (в пересчете на общую массу текучей среды, содержащей дисперсию диоксида кремния). Если кислота является единственным используемым дестабилизирующим агентом, количество кислоты может представлять собой количество, которое понижает pH дисперсии диоксида кремния, по меньшей мере, на 2 единицы pH, или, по меньшей мере, до pH 5 или ниже, или интервал значений pKa кислоты или кислот при использовании с тем, чтобы уменьшить взаимодействия зарядов между частицами.

[0077] Дестабилизированная дисперсия может быть получена путем обработки дисперсии, которая включает диоксид кремния, дестабилизирующим агентом, содержащим одну или несколько солей, чтобы изменить дзета-потенциал густой суспензии до описанного выше интервала. Соль может представлять собой или включать, по меньшей мере, одну металлическую соль (например, металлов из группы 1, 2 или 13). Соль может представлять собой или включать кальциевую соль, магниевую соль или алюминиевую соль. Примеры противоионов включают нитрат-, ацетат-, сульфат-, галоген-ионы, такие как хлорид, бромид, йодид и т.п. Количество соли может составлять, например, приблизительно от 0,2 до 2% масс. или больше, например, приблизительно от 0,5 или 1 до 1,6% масс. (в пересчете на массу текучей среды, содержащей дестабилизированную дисперсию диоксида кремния).

[0078] Для дестабилизации дисперсии, которая содержит диоксид кремния, может быть использована комбинация, по меньшей мере, одной соли и/или, по меньшей мере, одной кислоты.

[0079] Когда дестабилизированную дисперсию, которая содержит диоксид кремния, получают путем добавления, по меньшей мере, одной соли, концентрация соли в дестабилизированной дисперсии может составлять приблизительно от 10 до 160 мМ, или другие количества выше или ниже этого интервала.

[0080] Когда дестабилизированную дисперсию, которая включает диоксид кремния, получают путем добавления, по меньшей мере, одной кислоты, концентрация кислоты в дестабилизированной дисперсии может составлять приблизительно от 200 до 1000 мМ, например, приблизительно от 340 до 1000 мМ, или другие количества выше или ниже этого интервала.

[0081] Дестабилизированная дисперсия может быть приготовлена с использованием частиц диоксида кремния, обработанных так, чтобы они содержали соответствующее количество поверхностных функциональных групп, несущих положительные заряды с тем, чтобы в достаточной степени уменьшить суммарные заряды на поверхности диоксида кремния для понижения значения дзета-потенциала дисперсии ниже 30 мВ. Суммарный заряд на поверхности диоксида кремния в результате такой поверхностной обработки может быть положительным вместо отрицательного. Положительно заряженная функциональная группа может быть введена к поверхности диоксида кремния посредством химического прикрепления или физической адсорбции. Например, поверхность диоксида кремния может быть обработана N-триметоксисилилпропил-N,N,N-триметиламмонийхлоридом или до или после приготовления дисперсии диоксида кремния. Также можно адсорбировать катионные покрывающие агенты, такие как амин-содержащие молекулы и основные аминокислоты, на поверхности диоксида кремния. Существует теория, что суммарный положительный заряд на поверхности частиц диоксида кремния может усиливать коагуляцию латекса, который содержит отрицательно заряженные частицы каучука, посредством гетерокоагуляции.

[0082] Что касается «второй текучей среды», которая содержит, по меньшей мере, один эластомерный латекс, то эта текучая среда может содержать один или несколько эластомерных латексов. Эластомерный латекс можно считать стабильной коллоидной дисперсией каучука, и он может содержать, например, приблизительно от 10 до 70% масс. каучука в пересчете на общую массу латекса. Каучук может быть диспергирован в текучей среде, такой как вода, или, например, другая водная текучая среда. Водосодержание в такой текучей среде (или содержание воды) может составлять 40% масс. или больше, например, 50% масс. или больше, или 60% масс. или больше, или 70% масс. или больше, например, приблизительно от 40 до 90% масс. в пересчете на массу текучей среды, содержащей, по меньшей мере, один эластомерный латекс. Подходящие эластомерные латексы включают как натуральные, так и синтетические эластомерные латексы и латексные смеси. Например, эластомерный латекс может быть получен синтетическим путем полимеризацией мономера, такого как стирол, который был эмульгирован с помощью поверхностно-активных веществ. Латекс должен быть приемлемым для выбранного способа приготовления влажной маточной смеси и предполагаемого назначения или области применения конечного каучукового продукта. Специалист в данной области техники будет способен выбрать подходящий эластомерный латекс или подходящую смесь эластомерных латексов для использования в способах и устройствах, раскрытых в данном документе, с учетом преимущества данного изобретения.

[0083] Эластомерный латекс может представлять собой или может включать натуральный каучук, например, эмульсию натурального каучука. Типичные натуральные каучуковые латексы включают, но без ограничения, млечный сок, концентрат латекса (произведенный, например, упариванием, центрифугированием или сливкообразованием), снятый латекс (например, надосадочная жидкость, остающаяся после производства концентрата латекса центрифугированием) и смеси любых двух или нескольких из них в любой пропорции. Латекс натурального каучука, как правило, обрабатывают аммиаком, чтобы законсервировать его, и pH обработанного латекса, как правило, находится в интервале от 9 до 11. Содержание аммиака в натуральном каучуковом латексе может быть скорректировано и может быть уменьшено, например, путем барботирования азота по всему латексу или через латекс. Как правило, предприятия-поставщики латексов освобождают латекс от шлама путем добавления диаммонийфосфата. Также они могут стабилизировать латекс путем добавления лаурата аммония. Латекс натурального каучука может быть разбавлен до желаемого содержания сухого каучука (ССК (DRC)). Таким образом, латекс, который может быть использован в данном случае, может представлять собой очищенный от шлама латекс. Также может быть включен вторичный консервант, смесь тетраметилтиурамдисульфида и оксида цинка (TZ-раствор). Латекс должен быть приемлем для выбранного способа приготовления влажной маточной смеси и предполагаемого назначения или области применения конечного каучукового продукта. Латекс, как правило, готовят в водной несущей жидкости (например, в воде). Количество водной несущей жидкости может меняться и составлять, например, приблизительно от 30 до 90% масс. в пересчете на массу текучей среды. Другими словами, такие натуральные каучуковые латексы могут содержать или могут быть доведены до содержания каучука, например, приблизительно от 10 до 70% масс. Выбор подходящего латекса или смеси латексов будет находиться в рамках квалификации специалиста в данной области техники с учетом преимущества настоящего изобретения, и критерии выбора в целом хорошо известны в промышленности.

[0084] Латекс натурального каучука также может быть химически модифицирован таким же образом. Например, он может быть обработан, чтобы химическим или ферментативным путем модифицировать или восстановить различные некаучуковые компоненты, или молекулы каучука сами могут быть модифицированы с помощью различных мономеров или других химических групп, таких как хлор. Латексы эпоксидированного натурального каучука могут быть особенно значимы с практической точки зрения, так как эпоксидированный каучук, как полагают, взаимодействует с поверхностью диоксида кремния (Martin, et al., Rubber Chemistry и Technology, May 2015, doi:10.5254/rct15.85940). Типичные способы химической модификации натуральных каучуковых латексов описаны в публикациях европейских патентов №№ 1489102, 1816144 и 1834980, публикациях патентов Японии №№ 2006152211, 2006152212, 2006169483, 2006183036, 2006213878, 2006213879, 2007154089 и 2007154095, патенте Великобритании № GB2113692, патентах США №№ 6841606 и 7312271 и публикации патента США № 2005-0148723. Также могут быть использованы другие способы, известные специалистам в данной области техники.

[0085] Другие типичные эластомеры включают, но без ограничения, каучуки, полимеры (например, гомополимеры, сополимеры и/или терполимеры) 1,3-бутадиена, стирола, изопрена, изобутилена, 2,3-диалкил-1,3-бутадиена, где алкил может представлять собой метил, этил, пропил и др., арилонитрила, этилена, пропилена и т.п. Эластомер может иметь температуру стеклования (Tст), измеренную с помощью дифференциальной сканирующей калориметрии (ДСК (DSC)), находящуюся в интервале приблизительно от -120 до 0°C. Примеры включают, но без ограничения, бутадиен-стирольный каучук (БСК (SBR)), натуральный каучук и его производные, такие как хлорированный каучук, полибутадиен, полиизопрен, поли(стирол-co-бутадиен) и маслонаполненные производные любого из них. Также могут быть использованы смеси любых из перечисленных выше. Латекс может находиться в водной несущей жидкости. Конкретные подходящие синтетические каучуки включают: сополимеры стирола и бутадиена, содержащие приблизительно от 10 до 70% масс. стирола и приблизительно от 90 до 30% масс. бутадиена, такие как сополимер 19 частей стирола и 81 части бутадиена, сополимер 30 частей стирола и 70 частей бутадиена, сополимер 43 частей стирола и 57 частей бутадиена и сополимер 50 частей стирола и 50 частей бутадиена; полимеры и сополимеры сопряженных диенов, такие как полибутадиен, полиизопрен, полихлорпрен и т.п., и сополимеры таких сопряженных диенов с содержащим этиленовую группу мономером, сополимеризуемым с ними, таким как стирол, метилстирол, хлорстирол, арилонитрил, 2-винилпиридин, 5-метил-2-винилпиридин, 5-этил-2-винилпиридин, 2-метил-5-винилпиридин, аллил-замещенные акрилаты, винилкетон, метилизопропенилкетон, метилвиниловый эфир, альфа-метиленкарбоновые кислоты и их сложные эфиры и амиды, такие как акриловая кислота и амид диалкилакриловой кислоты. Также подходящими для использования в данном случае являются сополимеры этилена и других высших альфа-олефинов, таких как пропилен, 1-бутен и 1-пентен. Также могут быть использованы смеси двух или нескольких типов эластомерного латекса, включая смеси синтетического и натурального каучукового латекса, или с двумя или нескольким типами синтетического или натурального каучука.

[0086] Каучуковые композиции могут содержать, помимо эластомера, наполнителя и связующего агента, различные технологические добавки, нефтяные мягчители, противостарители, антиоксиданты и/или другие добавки.

[0087] Количество диоксида кремния (в частях на сто частей каучука или в масс.ч. на 100 масс.ч. каучука), присутствующего в эластомерном композите, может составлять приблизительно от 15 до 180 масс.ч. на 100 масс.ч. каучука, приблизительно от 20 до 150 масс.ч. на 100 масс.ч. каучука, приблизительно от 25 до 80 масс.ч. на 100 масс.ч. каучука, приблизительно от 35 до 115 масс.ч. на 100 масс.ч. каучука, приблизительно от 35 до 100 масс.ч. на 100 масс.ч. каучука, приблизительно от 40 до 100 масс.ч. на 100 масс.ч. каучука, приблизительно от 40 до 90 масс.ч. на 100 масс.ч. каучука, приблизительно от 40 до 80 масс.ч. на 100 масс.ч. каучука, приблизительно от 29 до 175 масс.ч. на 100 масс.ч. каучука, приблизительно от 40 до 110 масс.ч. на 100 масс.ч. каучука, приблизительно от 50 до 175 масс.ч. на 100 масс.ч. каучука, приблизительно от 60 до 175 масс.ч. на 100 масс.ч. каучука и т.д.

[0088] Эластомерный композит необязательно может включать некоторое количество углеродной сажи для цвета, проводимости, и/или устойчивости к УФ, и/или для других целей.

[0089] Как указывалось, углеродная сажа, находящаяся в эластомерном композите (армирующих сортов или не армирующих сортов), может присутствовать в интервале, например, от больше чем 10% масс. и до приблизительно 55% масс., или от больше чем 10% масс. и до приблизительно 50% масс., или от больше чем 15% масс. и до приблизительно 40% масс. в пересчете на массу всех частиц, присутствующих в эластомерном композите. Любой сорт или тип углеродной сажи может быть использован, например, армирующие или полу-армирующие печные углеродные сажи для шин и т.п.

[0090] В любом способе производства эластомерного композита способ также включает одну или несколько приведенных ниже стадий после сформирования твердой или полутвердой, содержащей диоксид кремния и углеродную сажу, непрерывной каучуковой фазы:

- одна или несколько стадий выдерживания или стадий дальнейшего отверждения или коагуляции для развития дополнительной эластичности;

- одна или несколько стадий обезвоживания может быть использована с целью обезвоживания композита с получением обезвоженного композита;

- одна или несколько стадий экструдирования;

- одна или несколько стадий каландрования;

- одна или несколько стадий перемалывания с получением молотого композита;

- одна или несколько стадий гранулирования;

- одна или несколько стадий укладывания в кипы с получением кипованных продукта или смеси;

- кипованные смесь или продукт могут быть разъединены с получением гранулированной смеси;

- одна или несколько стадий смешения или компаундирования с получением компаундированного композита.

[0091] В качестве еще одного примера следующая последовательность стадий может иметь место и каждая стадия может быть повторена любое число раз (с одинаковыми или разными настройками) после сформирования твердой или полутвердой, содержащей диоксид кремния и углеродную сажу, непрерывной каучуковой фазы:

- одна или несколько стадий выдерживания или стадий дальнейшей коагуляции для развития дополнительной эластичности;

- обезвоживание композита (например, эластомерного композита, выходящего из реакционной зоны) с получением обезвоженного композита;

- смешение или компаундирование обезвоженного композита с получением компаундированной смеси;

- перемалывание компаундированной смеси с получением молотой смеси (например, вальцевание);

- гранулирование или перемешивание молотой смеси;

- необязательно укладывание смеси в кипы после гранулирования или перемешивания с получением кипованной смеси;

- необязательно разъединение кипованной смеси и перемешивание.

[0092] В любом варианте осуществления связующий агент может быть введен на любой из стадий (или на множестве стадий или позиций), пока связующий агент имеет возможность становиться диспергированным в эластомерном композите.

[0093] В качестве еще одного примера твердая или полутвердая, содержащая диоксид кремния и углеродную сажу, непрерывная каучуковая фаза, выходящая из реакционной зоны или области, может быть передана с помощью подходящего устройства (например, транспортерной ленты или конвейера) в экструдер-водоотделитель. Подходящие экструдеры-водоотделители хорошо известны и коммерчески доступны, например, от компании French Oil Mill Machinery Co. (Piqua, Ohio, USA). В ином случае или в добавление к этому твердая или полутвердая, содержащая диоксид кремния и углеродную сажу, непрерывная каучуковая фаза может быть сжата, например, между металлическими пластинами, чтобы вытолкнуть, по меньшей мере, часть фазы водной текучей среды, например, вытеснить водную текучую среду до такого уровня, что содержание воды в таком материале будет составлять меньше 40% масс.

[0094] В общем случае стадии последующей обработки могут включать сдавливание эластомерного композита для удаления приблизительно от 1 до 15% масс. или больше фазы водной текучей среды в пересчете на общую массу эластомерного композита. Экструдер-водоотделитель может доводить содержание воды в эластомерном композите, например, практически приблизительно от 40-95% до 5-60% (например, до содержания воды приблизительно от 5 до 10%, приблизительно от 10 до 20%, приблизительно от 15 до 30% или приблизительно от 30 до 50%), причем все % масс. в пересчете на общую массу композита. Экструдер-водоотделитель может быть использован для уменьшения содержания воды в эластомерном композите приблизительно до 35% масс. или до других количеств. Оптимальное содержание воды может меняться в зависимости от используемого эластомера, количества и/или типа наполнителя и приспособлений, применяемых для пластикации обезвоженного продукта. Эластомерный композит может быть обезвожен до требуемого содержания воды, после чего полученный обезвоженный продукт может быть дополнительно пластицирован, будучи одновременно высушен до желаемого уровня влажности (например, приблизительно от 0,5 до 10%, например, приблизительно от 0,5 до 1%, приблизительно от 1 до 3%, приблизительно от 3 до 5% или приблизительно от 5 до 10%, предпочтительно ниже 1%, причем все % масс. в пересчете на общую массу продукта). Механическая энергия, передаваемая материалу, может обеспечить улучшение свойств каучука. Например, обезвоженный продукт может быть механически переработан с помощью одного или нескольких устройств из числа смесителя непрерывного действия, закрытого резиносмесителя, двухшнекового экструдера, одношнекового экструдера или вальцовой мельницы. Такая необязательная стадия смешения может обладать способностью пластицировать смесь, и/или создавать площадь поверхности или открывать поверхность, что может способствовать удалению воды (по меньшей мере, части ее), которая может присутствовать в смеси. Подходящие устройства для пластикации хорошо известны и коммерчески доступны, в том числе, например, смеситель непрерывного действия Unimix и машина мВX (Mixing, Venting, eXtruding - смешение, вентилирование, экструдирование) от компании Farrel Corporation of Ansonia, CT, USA, удлиненный смеситель непрерывного действия от компании Pomini Inc., смеситель непрерывного действия Pomini, двухвинтовые экструдеры с вращающимися в одном направлении взаимозацепляющимися шнеками, двухвинтовые экструдеры с вращающимися в противоположных направлениях, не находящимися в зацеплении шнеками, смесители Бенбери, смесители Брабендера, закрытые резиносмесители с взаимозацепляющимися роторами, закрытые резиносмесители для пластикации, компаундирующий экструдер непрерывного действия, двухосный пластификатор-экструдер, производимый компанией Kobe Steel, Ltd., и смеситель непрерывного действия Kobe. Альтернативное пластицирующее оборудование известно специалистам в данной области техники и может быть использовано.

[0095] Пока обезвоженный продукт перерабатывают в требуемом оборудовании, оборудование передает энергию материалу. Не привязываясь к какой-либо конкретной теории, полагают, что трение, возникающее при проведении механической пластикации, приводит к нагреванию обезвоженного продукта. Некоторая часть от этого тепла расходуется на нагревание и испарение влаги в обезвоженном продукте. Часть воды также может быть удалена за счет отжима материала одновременно с нагреванием. Температура должна быть достаточно высокой, чтобы быстро испарить воду в поток, который высвобождают в атмосферу и/или удаляют из оборудования, но не настолько высокой, чтобы чрезмерно вулканизировать каучук. Обезвоженный продукт может достигать температуры приблизительно от 130 до 180°C, например, приблизительно от 140 до 160°C, особенно когда связующий агент добавляют перед проведением или при проведении пластикации. Связующий агент может включать небольшое количество серы, и температура должна поддерживаться на достаточно низком уровне, чтобы предотвратить поперечное сшивание каучука во время пластикации.

[0096] В качестве возможного варианта добавки могут смешаны с обезвоженным продуктом в механическом смесителе. Говоря точнее, в механический смеситель могут быть добавлены такие добавки, как наполнитель (который может быть тем же самым или может отличаться от наполнителя, используемого в смесителе; типичные наполнители включают диоксид кремния, углеродную сажу и/или оксид цинка), другие эластомеры, другая или дополнительная маточная смесь (то есть, такой(ие) же или другой эластомерный(ые) композит(ы), содержащий(е) диоксид кремния и/или углеродную сажу), антиоксиданты, связующие агенты, пластификаторы, технологические добавки (например, стеариновая кислота, которая также может быть использована в качестве вулканизирующего средства, жидкие полимеры, масла, воски и т.п.), смолы, антипирены, масла для наполнения и/или смазывающие вещества, а также смеси любых из них. Дополнительные эластомеры могут быть объединены с обезвоженным продуктом с получением эластомерных смесей. Подходящие эластомеры включают любые из эластомеров в форме латекса в процессе смешения, описанного выше, и эластомеры типа EPDM, который не доступен в форме латекса, и могут представлять собой тот же самый эластомер или могут отличаться от эластомера в содержащем диоксид кремния эластомерном композите. Типичные эластомеры включают, но без ограничения, каучуки, полимеры (например, гомополимеры, сополимеры и/или терполимеры) 1,3-бутадиена, стирола, изопрена, изобутилена, 2,3-диалкил-1,3-бутадиена, где алкил может представлять собой метил, этил, пропил и т.д., арилонитрила, этилена, пропилена и т.п. Способы производства смесей из маточных смесей описаны в принадлежащих одному заявителю патентах США №№ 7105595, 6365663 и 6075084 и в публикации PCT WO 2014/189826. Антиоксидант (пример ингибитора деструкции) может представлять собой антиоксидант аминного типа, антиоксидант фенольного типа, антиоксидант имидазольного типа, металлическую соль карбамата, п-фенилендиамин(ы) и/или дигидротриметил-хинолин(ы), полимеризованный хининовый антиоксидант, и/или воск, и/или другие антиоксиданты, используемые в рецептурах эластомеров. Конкретные примеры включают, но без ограничения, N-(1,3-диметилбутил)-N'-фенил-п-фенилендиамин (6-PPD, например, ANTIGENE 6C, доступный от компании Sumitomo Chemical Co., Ltd., и NOCLAC 6C, доступный от компании Ouchi Shinko Chemical Industrial Co., Ltd.), «Ozonon» 6C от компании Seiko Chemical Co., Ltd., полимеризованный 1,2-дигидро-2,2,4-триметилхинолин (TMQ, например, Agerite Resin D, доступный от компании R.T. Vanderbilt), 2,6-ди-трет-бутил-4-метилфенол (доступный как Vanox PC от компании Vanderbilt Chemicals LLC), бутилгидрокситолуол (BHT) и бутилгидроксианизол (BHA) и т.п. Другие типичные антиоксиданты могут представлять собой, например, дифенил-п-фенилендиамин и другие, такие как, например, антиоксиданты, описанные в публикации «The Vanderbilt Rubber Handbook» (1978), рр. 344-346.

[0097] Связующий агент может представлять собой или включать один или несколько силановых связующих агентов, один или несколько цирконатных связующих агентов, один или несколько титанатных связующих агентов, один или несколько содержащих нитрогруппу связующих агентов, или любую их комбинацию. Связующий агент может представлять собой или включать бис(3-триэтоксисилилпропил)тетрасульфан (например, Si 69 от компании Evonik Industries; Struktol SCA98 от компании Struktol Company), бис(3-триэтоксисилилпропил)дисульфан (например, Si 75 и Si 266 от компании Evonik Industries; Struktol SCA985 от компании Struktol Company), 3-тиоцианатопропилтриэтокисилан (например, Si 264 от компании Evonik Industries), гамма-меркаптопропил-триметоксисилан (например, VP Si 163 от компании Evonik Industries; Struktol SCA989 от компании Struktol Company), гамма-меркаптопропилтриэтоксисилан (например, VP Si 263 от компании Evonik Industries), динеоалканолатоди(3-меркапто)-пропионато-O-цирконий,N,N'-бис(2-метил-2-нитропропил)-1,6-диаминогексан, S-(3-(триэтоксисилил)пропил)октантиоат (например, связующий агент NXT от компании Momentive, Friendly, WV), и/или связующие агенты, которые химически подобны или которые имеют одну или больше таких же химических групп. Дополнительные конкретные примеры связующих агентов, по торговым наименованиям, включают, но без ограничения, VP Si 363 от компании Evonik Industries. Следует принимать во внимание, что любая комбинация эластомеров, добавок и дополнительной маточной смеси может быть добавлена к обезвоженному продукту, например, в компаундере.

[0098] В качестве возможного варианта обезвоженный продукт может быть пластицирован с использованием закрытого резиносмесителя, такого как смеситель Бенбери или Брабендера. Обезвоженный продукт вначале может быть доведен до содержания влаги приблизительно от 3 до 40% масс., например, приблизительно от 5 до 20% масс. или приблизительно от 20 до 30% масс. Влагосодержание может быть достигнуто путем обезвоживания до желаемого уровня или путем обезвоживания крошки обезвоженного продукта до промежуточного влагосодержания в качестве первого этапа, а затем дополнительным снижением влагосодержания за счет нагревания полученного обезвоженного продукта или за счет позволения воде испаряться из обезвоженного продукта при комнатной температуре, или с помощью других способов, известных специалистам в данной области техники. Обезвоженный продукт затем может быть пластицирован в закрытом резиносмесителе пока не будут достигнуты желаемый уровень влажности или желаемое потребление механической энергии. Обезвоженный продукт может быть пластицирован вплоть до достижения заранее заданной температуры, может быть охлажден и затем помещен назад в закрытый резиносмеситель один или несколько раз, чтобы передать материалу дополнительную энергию. Примеры температур включают температуры приблизительно от 140 до 180°C, например, приблизительно от 145 до 160°C или приблизительно от 150 до 155°C. Обезвоженный продукт может быть раскатан в лист в валковой мельнице после каждой пластикации в закрытом резиносмесителе. При другом подходе или в дополнение к этому обезвоженный продукт, который был пластицирован в смесителе Бенбери или Брабендера, может быть дополнительно пластицирован на открытых вальцах.

[0099] В качестве возможного варианта пластицированный продукт может быть дополнительно переработан на открытых вальцах. Пластицированный продукт может быть выгружен из компаундера непрерывного действия в виде длинного отрезка экструдата и может быть нарезан на более мелкие отрезки перед поступлением в открытые вальцы. Пластицированный продукт необязательно может быть подан в открытые вальцы конвейером. Конвейер может представлять собой конвейерную ленту, трубопровод, трубу или другие подходящие средства для транспортировки пластицированного продукта из компаундера непрерывного действия к открытым вальцам. Открытые вальцы могут включать парноработающие вальцы, которые необязательно могут быть нагреты или охлаждены, чтобы обеспечить улучшенную работу открытых вальцов. Другие рабочие параметры открытых вальцов могут включать воздушный зазор между вальцами, высоту отвала, то есть, запас материала в зазоре между и поверх вальцов, и скорость каждого вальца. Скорость каждого вальца и температуру рабочей среды, используемой для охлаждения каждого вальца, можно контролировать независимо для каждого вальца. Воздушный зазор может составлять приблизительно от 3 до 10 мм или приблизительно от 6 до 8 мм. Скорость вращения вальцов может составлять приблизительно от 15 до 70 об/мин, и вальцы могут крутиться в направлении друг к другу относительно впускной стороны мельницы. Коэффициент трения, отношение скорости принимающего вальца, например, вальца, на котором собирается пластицированный продукт, к скорости подающего вальца может составлять приблизительно от 0,9 до 1,1. Рабочая среда, используемая для охлаждения вальцов, может иметь температуру приблизительно от 35 до 90°C, например, приблизительно от 45 до 60°C, приблизительно от 55 до 75°C или приблизительно от 70 до 80°C. Помимо регулирования работы открытых вальцов с целью придания пластицированному продукту желаемого уровня пластикации и высушивания также желательно, чтобы производимый открытыми вальцами продукт мог собираться на принимающем вальце в виде гладкого листа. Не привязываясь к какой-либо конкретной теории, полагают, что температуры более холодного вальца способствуют достижению этой цели. Открытые вальцы могут понижать температуру пластицированного продукта по примерным подсчетам приблизительно до 110-140°C. Время пребывания пластицированного продукта в мельнице может быть определено отчасти по скорости вальцов, воздушному зазору и желаемых степени пластикации и сушки и может составлять приблизительно от 10 до 20 мин для материала, который уже был пластицирован, например, в двухвинтовом смесителе непрерывного действия.

[0100] Специалисту в данной области техники будет понятно, что различные комбинации устройств могут быть применены для пластикации и высушивания до твердой, содержащей диоксид кремния и углеродную сажу, непрерывной каучуковой фазы, производимой в соответствии с различными вариантами осуществления. В зависимости от того, какое устройство используют, может быть желательно, чтобы оно работало при других условиях, чем описанные выше условия, чтобы придать материалу меняющиеся степени воздействия и высушивания. Кроме того, может быть желательно использовать больше чем один конкретный тип устройства, например, открытые вальцы или закрытый резиносмеситель последовательно, или пропускать пластицированный продукт через данное устройство больше одного раза. Например, пластицированный продукт может быть пропущен через открытые вальцы два, или три, или больше раз, или пропущен через два, или три, или больше открытых вальцов, расположенных последовательно. В последнем случае может быть желательно, чтобы открытые вальцы работали при разных рабочих условиях, таких как, скорость, температура, другое (например, более высокое) потребление энергии и т.д. Пластицированный продукт может быть пропущен через одни, два или три открытые вальцы после того, как он был пластицирован в закрытом резиносмесителе.

[0101] Эластомерный композит может быть использован для производства продукта, содержащего эластомер или каучук. В качестве возможного варианта эластомерный композит может быть использован или произведен для применения в различных частях шины, например, в покрышках, протекторах шин, боковинах шин, обрезиненной проволоке для шин и прокладочной резине для восстановленных шин. С другой стороны, или в дополнение к этому эластомерный композит может быть использован в случае шлангов, герметизирующих материалов, уплотнителей, противовибрационных изделий, гусеничных лент, накладок гусеничных лент для оборудования на гусеничном ходу, такого как бульдозеры и др.; для опор двигателей, сейсмических стабилизаторов, горно-шахтного оборудования, такого как грохоты; для облицовки горного оборудования, конвейерных лент, обкладки желобов, облицовки шламонасосов, для компонентов буровых насосов, таких как крыльчатки, седла клапанов, корпуса клапанов, ступицы поршней, штанги поршней, плунжеры; для крыльчаток для различных областей применения, таких как крыльчатки для перемешивания шламов и для шламонасосов, для обкладки шаровых мельниц, циклонов и гидроциклонов, для компенсаторов теплового расширения; для судового оборудования, такого как облицовки насосов (например, землечерпальных насосов и насосов забортных двигателей), в шлангах (например, шлангах для землечерпальных работ и шлангах забортных двигателей) и в другом судовом оборудовании; для уплотнения валов при применении в судостроительной, нефтепромысловой, аэрокосмической областях и других областях, в пропеллерных валах, облицовках трубной проводки для транспортировки, например, нефтеносных песков и/или битуминозных песков, и в случае других областей применения, где необходимы устойчивость к истиранию и/или улучшенные динамические характеристики. Вулканизированный эластомерный композит может быть использован в роллерах, кулачковых шайбах, валах, трубах, вкладышах с нарезкой для транспортных средств или в других областях применения, где необходимы устойчивость к истиранию и/или улучшенные динамические характеристики.

[0102] Традиционные методики компаундирования могут быть использованы для объединения вулканизирующих агентов и других добавок, известных в данной области техники, включая рассмотренные выше добавки применительно к обезвоженному продукту, с высушенным эластомерным композитом в зависимости от предполагаемого применения.

[0103] Настоящее изобретение также относится к эластомерному композиту, полученному с помощью одного или нескольких способов, описанных в настоящем изобретении. С помощью настоящего изобретения может быть произведено изделие из твердой, содержащей диоксид кремния и углеродную сажу, каучуковой фазы и содержащее, по меньшей мере, 25 масс.ч. диоксида кремния на 100 масс.ч. каучука (например, по меньшей мере, 29 масс.ч. диоксида кремния на 100 масс.ч. каучука, по меньшей мере, 35 масс.ч. диоксида кремния на 100 масс.ч. каучука, по меньшей мере, 40 масс.ч. диоксида кремния на 100 масс.ч. каучука), диспергированного в каучуке, и, по меньшей мере, 40% водной текучей среды, и имеющее размер по длине (L), где изделие из твердой, содержащей диоксид кремния и углеродную сажу, непрерывной каучуковой фазы может быть растянуто, по меньшей мере, до 130-150% от (L) без разрушения. Изделие из твердой, содержащей диоксид кремния и углеродную сажу, каучуковой фазы может иметь, по меньшей мере, 10 масс.ч. на 100 масс. ч. каучука углеродной сажи, диспергированной в каучуке (например, в натуральном каучуке), например, по меньшей мере, 10 масс.ч. углеродной сажи на 100 масс. ч. каучука, по меньшей мере, 15 масс.ч. углеродной сажи на 100 масс. ч. каучука или, по меньшей мере, 20 масс.ч. углеродной сажи на 100 масс. ч. каучука.

[0104] Если не указано конкретно, все относительные пропорции материалов, приведенные в документе в процентах, являются массовыми процентами.

[0105] Настоящее изобретение будет дополнительно пояснено с помощью приведенных ниже примеров, которые, как подразумевают, являются по своей природе только иллюстративными.

ПРИМЕРЫ

[0106] В этих примерах «млечный сок» представляет собой млечный сок (Muhibbah Lateks Sdn Bhd, Malaysia), имеющий содержание сухого каучука приблизительно 30% масс. «Латексный концентрат» представляет собой латексный концентрат (высокоаммонийный сорт от компании Muhibbah Lateks Sdn Bhd, Malaysia или от компании Chemionics Corporation, Tallmadge, Ohio), разбавленный приблизительно на 50% до содержания сухого каучука приблизительно 30% масс. с использование чистой воды или воды с аммиаком в количестве от 0,6 до 0,7% масс. Если не указано иное, «диоксид кремния» представляет собой осажденный диоксид кремния ZEOSIL® Z1165 MP от компании Solvay USA Inc., Cranbury, NJ (ранее называвшейся Rhodia.

[0107] Термогравиметрический анализ. Фактические уровни загрузки диоксида кремния определяют с помощью термогравиметрического анализа (ТГА (TGA)), следуя методу ISO 6231.

[0108] Содержание воды в продукте. Испытуемый материал нарезают на кусочки мм-размера и для проведения измерений загружают на рычажные весы, проградуированные в процентах влажности (например, модель MB35 и модель MB45; Ohaus Corporation, Parsippany NJ). Содержание воды определяют при 130°C в течение от 20 до 30 мин до достижения испытуемым образцом постоянной массы.

[0109] Дзета-потенциал густой суспензии. В этих примерах измеряют дзета-потенциал густых суспензий микрочастиц с использованием ZetaProbe Analyzer™ от компании Colloidal Dynamics, LLC, Ponte Vedra Beach, Florida USA. С помощью многочастотной электроакустической технологии зонд ZetaProbe замеряет дзета-потенциал напрямую при концентрациях частиц вплоть до 60% об. Прибор вначале калибруют с использованием калибровочной жидкости KSiW, поставляемой компанией Colloidal Dynamics (2,5 мСм/см). Затем образец (40 г) помещают в тефлоновую чашку на 30 мл (Part #A80031) с магнитной мешалкой, и чашку устанавливают на перемешивающее основание (Part #A80051) при скорости перемешивания 250 об/мин. Измерения проводят с использованием погружаемого зонда 173 в одноточечном режиме с 5-ти точечным проходом при температуре окружающей среды (примерно 25°C). Данные анализируют с использованием ZP версии программного обеспечения 2.14c Polar™, предоставляемого компанией Colloidal Dynamics. Величины дзета-потенциала могут быть отрицательными или положительными в зависимости от полярности заряда на частицах. «Значение» дзета-потенциала относится к абсолютному значению (например, значение дзета-потенциала -35 мВ означает более высокое значение, чем дзета-потенциал -20 мВ). Значение дзета-потенциала отражает степень электростатического отталкивания между одинаково заряженными частицами в дисперсии. Чем выше значение дзета-потенциала, тем более стабильны частицы в дисперсии. Измерения дзета-потенциала проводят на густых суспензиях дисперсного диоксида кремния, как описано ниже.

[0110] Сухой диоксид кремния взвешивают и объединяют с деионизированной водой с использованием бачка объемом 5 галлонов (18,9 л) и высокоскоростного вертикального лабораторного смесителя с бандажированной лопастью (Silverson Model AX3, Silverson Machines, Inc., East Longmeadow, MA; работающего при 5200-5400 об/мин в течение от 30 до 45 мин). Как только диоксид кремния будет грубо диспергирован в воде и может быть подан насосом, густую суспензию диоксида кремния переносят с помощью перистальтического насоса (система Masterflex 7592-20 - привод и регулятор, насосная насадка 77601-10, с использованием трубной проводки I/P 73; Cole-Palmer, Vernon Hills, IL) в смесительный контур со встроенным смесителем типа ротор-статор с высоким сдвиговым усилием (Silverson Model 150LB, расположенным после перистальтического насоса, работающим при 60 Гц) в сборную емкость (сосуд объемом 30 галлонов (113,6 л) с выходным отверстием в выпуклом дне) и измельчают, чтобы дополнительно разрушить агломераты диоксида кремния и любые оставшиеся гранулы диоксида кремния. Густую суспензию в сборной емкости затем заставляют циркулировать при расходе 2 л/мин с использованием того же самого перистальтического насоса через смесительный контур в течение времени, достаточного для оборота, по меньшей мере, 5-7 раз всего объема густой суспензии (>45 мин), чтобы гарантировать, что любые агломераты диоксида кремния были соответствующим образом измельчены и распределены. Вертикальную мешалку (Ika Eurostar с регулированием мощности по вязкости visc-P7; IKA-Works, Inc., Wilmington, NC) с якорной лопастью с низким сдвиговым усилием, вращающейся приблизительно при 60 об/мин, используют в сборной емкости, чтобы предотвратить гелеобразование или седиментацию частиц диоксида кремния. Кислоту (муравьиную кислоту или уксусную кислоту, химически чистые от компании Sigma Aldrich, St. Louis, MO) или соль (нитрат кальция, хлорид кальция, ацетат кальция или сульфат алюминия, химически чистые от компании Sigma Aldrich, St. Louis, MO) добавляют к густой суспензии в сборной емкости после измельчения. Количество диоксида кремния в густой суспензии и тип и концентрация кислоты или соли указаны в приведенных ниже конкретных примерах.

[0111] Иллюстративный способ B. Если указано в приведенных ниже примерах, иллюстративный способ проводят с использованием иллюстративного способа B. В способе B сухой диоксид кремния взвешивают и объединяют с деионизированной водой с использованием бачка объемом 5 галлонов (18,9 л) и высокоскоростного вертикального лабораторного смесителя с бандажированной лопастью (Silverson Model AX3, Silverson Machines, Inc., East Longmeadow, MA; работающего при 5200-5400 об/мин в течение 30-45 мин). Как только диоксид кремния будет грубо диспергирован в воде и может быть подан насосом, густую суспензию диоксида кремния переносят с помощью перистальтического насоса (система Masterflex 7592-20, привод и регулятор, насосная насадка 77601-10, с использованием трубной проводки I/P 73; Cole-Palmer, Vernon Hills, IL) в смесительный контур со встроенным смесителем типа ротор-статор с высоким сдвиговым усилием (Silverson Model 150LB, расположенным после перистальтического насоса, работающим при 60 Гц) в сборную емкость (сосуд объемом 30 галлонов (113,6 л) с выходным отверстием в выпуклом дне) и измельчают, чтобы дополнительно разрушить агломераты диоксида кремния и любые оставшиеся гранулы. Густую суспензию в сборной емкости затем заставляют циркулировать при расходе 2 л/мин через смесительный контур в течение времени, достаточного для оборота, по меньшей мере, 5-7 раз всего объема густой суспензии (>45 мин), чтобы гарантировать, что любые агломераты диоксида кремния были соответствующим образом измельчены и диспергированы. Вертикальную мешалку (Ika Eurostar с регулированием мощности по вязкости visc-P7; IKA-Works, Inc., Wilmington, NC) с якорной лопастью с низким сдвиговым усилием, вращающейся приблизительно при 60 об/мин, используют в сборной емкости, чтобы предотвратить гелеобразование или седиментацию частиц диоксида кремния. Кислоту (муравьиную кислоту или уксусную кислоту, химически чистые от компании Sigma Aldrich, St. Louis, MO) или соль (нитрат кальция, хлорид кальция, ацетат кальция или сульфат алюминия, химически чистые от компании Sigma Aldrich, St. Louis, MO) добавляют к густой суспензии в сборной емкости после измельчения.

[0112] Латекс подают с использованием перистальтического насоса (система Masterflex 7592-20, привод и регулятор, насосная насадка 77601-10, с использованием трубной проводки I/P 73; Cole-Palmer, Vernon Hills, IL) через второе впускное отверстие (11) и в реакционную зону (13), конфигурированную аналогично реакционной зоне, показанной на фигуре 1(b). Расход латекса регулируют приблизительно от 25 до 250 кг/ч, чтобы модифицировать соотношения диоксида кремния к каучуку в эластомерных композитах.

[0113] Когда диоксид кремния хорошо диспергирован в воде, густую суспензию подают насосом из сборной емкости через мембранный дозирующий насос (LEWA-Nikkiso America, Inc., Holliston, MA) и через демпфер пульсаций (чтобы понизить колебания давления из-за действия диафрагмы) в реакционную зону или сборную емкость посредством Т-образного соединителя петли рециркуляции. Направление густой суспензии контролируют с помощью двух пневматических шаровых клапанов, причем один направляет густую суспензию в реакционную зону и другой направляет густую суспензию в сборную емкость. Когда густая суспензия диоксида кремния готова для смешения с латексом, в линии, питающей первое впускное отверстие (3) в реакционную зону, повышают давление до 100-150 фунт/кв.дм (0,69-1,03 МПа), закрыв оба клапана. Шаровой клапан, направляющий густую суспензию в реакционную зону, затем открывают и находящуюся под давлением густую суспензию диоксида кремния подают к насадке (ВД от 0,020 до 0,070 дюйм (0,05-0,18 см) (3a), показанную на фигуре 1(b), при начальном давлении от 100 до 150 фунт/кв.дм (0,69-1,03 МПа), так что густую суспензию вводят в реакционную зону в виде высокоскоростной струи. При контакте с латексом в реакционной зоне струя густой суспензии диоксида кремния, текущая со скоростью от 15 до 80 м/с, захватывает латекс, текущий со скоростью от 0,4 до 5 м/с. В примерах в соответствии с вариантами осуществления изобретения ударное воздействие суспензии диоксида кремния на латекс приводит к тщательному смешению частиц диоксида кремния с каучуковыми частицами латекса, и каучук коагулирует, превращая густую суспензию диоксида кремния и латекс в эластомерный композит, содержащий частицы диоксида кремния и от 40 до 95% масс. воды, захваченных внутри твердой или полутвердой, содержащей диоксид кремния, непрерывной каучуковой фазы. Выполняют корректировки расхода густой суспензии диоксида кремния (от 40 до 80 кг/ч) или расхода латекса (от 25 до 300 кг латекса/ч), или обоих, чтобы изменить соотношения диоксида кремния к латексу (например, от 15 до 180 масс.ч. диоксида кремния на 100 масс.ч. каучука) в конечном продукте и получить желаемую постоянную производительность (от 30 до 200 кг/ч в пересчете на сухой материал). Конкретные соотношения содержания диоксида кремния к содержанию каучуку (масс.ч. на 100 масс.ч. каучука) после обезвоживания и сушки перечислены ниже в примерах.

[0114] Способ B: Обезвоживание

[0115] Материал, выгруженный из реакционной зоны, извлекают и помещают между двумя алюминиевыми пластинами внутри поддона-ловушки. «Сэндвичевую структуру» затем вставляют между двумя плитами гидравлического пресса. Под давлением 2500 фунт/кв.дм (17,24 МПа), оказываемым на алюминиевые пластины, отжимают воду, захваченную внутри каучукового продукта. При необходимости отжатый материал складывают несколько раз в более мелкие куски и процесс отжима повторяют с использованием гидравлического пресса до тех пор, пока содержание воды в каучуковом продукте не будет ниже 40% масс.

[0116] Способ B: Сушка и охлаждение. Обезвоженный продукт помещают в смеситель Брабендера (300 см3) для сушки и пластикации, чтобы получить пластицированный, обезвоженный эластомерный композит. Обезвоженный в достаточной степени материал загружают в смеситель, покрывая роторы. Начальную температуру смесителя устанавливают на 100°C, а окружная скорость ротора, как правило, составляет 60 об/мин. Воду, оставшуюся в обезвоженном продукте, превращают в пар и упаривают из смесителя во время процесса перемешивания. Как только материал в смесителе увеличиться в объеме в результате упаривания, при необходимости удаляют любой перетекающий через край материал. Любой или оба из силанового связующего агента (силан NXT, полученный от компании Momentive Performance Materials, Inc., Waterford, NY; 8% масс. силана в пересчете на массу диоксида кремния) и/или антиоксиданта (6-PPD, N-(1,3-диметилбутил)-N'-фенил-p-фенилен-диамин, Flexsys, St. Louis, MO) необязательно добавляют в смеситель, когда температура смесителя находится выше 140°C. Когда температура смесителя достигает 160°C, материал внутри смесителя выдерживают при температуре от 160 до 170°C за счет изменения окружной скорости ротора в течение 2 мин перед тем, как выгрузить материал. Пластицированный, обезвоженный эластомерный композит затем обрабатывают на открытых вальцах. Влагосодержание материла, отобранного из мельницы, как правило, ниже 2% масс.

[0117] Приготовление каучуковых компаундов

[0118] Высушенный эластомерный композит, полученный с помощью способа B, компаундируют в соответствии с рецептурой в таблице A и методикой, изложенной в таблице B. В случае кремнийоксидных эластомерных композитов, в которых или силан или антиоксидант добавлены во время сушки, композиция конечного компаунда является такой, как указано в таблице A. Количество силанового связующего агента и/или антиоксиданта, добавляемых при компаундировании, корректируют соответствующим образом.

Таблица A

Ингредиент масс.ч. на 100 масс.ч. каучука НК в композите 100 Диоксид кремния в композите Как указано 6PPD* (антиоксидант) 2,0 Силан (силан NXT**) 0,08 x (масс.ч. диоксида кремния на 100 масс.ч. каучука) ZnO 4 Стеариновая кислота 2 DPG*** 1,5 Cure Rite® BBTS**** 1,5 Сера 1,5

* N-(1,3-диметилбутил)-N'-фенил-п-фенилендиамин (Flexsys, St. Louis, MO)

** Основной активный компонент: S-(3-(триэтоксисилил)-пропил)октантиоат (Momentive, Friendly, WV)

*** Дифенилгуанидин (Akrochem, Akron, OH)

**** N-трет-Бутилбензотиазол-2-сульфенамид (Emerald Performance Materials, Cuyahoga Falls, OH)

НК (NR)=натуральный каучук

Таблица B

Время (мин) Операция Стадия 1 Смеситель Брабендера (300 см3), коэффициент заполнения 65%, 60 об/мин, 100°C 0 Добавить композит каучук-(диоксид кремния) 1 Добавить силановый связующий агент, при необходимости Выдержать 2 мин, начиная при 150°C 2 Перемешать с ускорением и добавить 6PPD, перемешивать еще 1 мин при 150°C 3 Перемешать с ускорением Выгрузить, 160°C Пропустить через вальцовую мельницу 6 раз Стадия 2 Смеситель Брабендера (300 см3), коэффициент заполнения 63%, 60 об/мин, 100°C 0 Добавить компаунд стадии 1 1 Добавить оксид цинка и стеариновую кислоту 2 Перемешать с ускорением 4 Выгрузить, 150°C Пропустить через вальцовую мельницу 6 раз Стадия 3 Смеситель Брабендера (300 см3), коэффициент заполнения 63%, 60 об/мин, 100°C 0 Добавить компаунд стадии 2, серу и ускорители 0.5 Перемешать с ускорением 1 Выгрузить Вальцовая мельница в течение одной минуты с соответствующим набором вальцов. Снять и провести 6 конечных вальцеваний. Раскатать в лист требуемой толщины.

[0119] Вулканизацию проводят в нагретом прессе, установленном при 150°C, в течение времени, определяемом с помощью обычного резинового реометра (то есть, T90+10% от T90, где T90 представляет собой время для достижения 90%-ной вулканизации).

[0120] Свойства компаундов каучук/(диоксид кремния)

[0121] Механические свойства при растяжении вулканизированных образцов (T300 и T100, относительное удлинение при разрыве, прочность при растяжении) измеряют в соответствии со стандартом ASTM D-412. Значение tan delta при 60° определяют с использованием развертки динамической деформации при кручении между 0,01% и 60% при 10 Гц и при 60°C. Tan δмакс получают в виде максимального значения tan δ 60 в пределах такого интервала деформаций.

[0122] Пример 1

[0123] Густую суспензию диоксида кремния с 27,8% масс. диоксида кремния Zeosil® 1165 готовят, как описано выше в разделе, относящемся к методу испытания для определения дзета-потенциала густой суспензии. Затем суспензию разбавляют или деионизированной водой, или надосадочной жидкостью, полученной от ультрацентрифугирования 27,8%-ной (масс.) суспензии, чтобы получить серию густых суспензий диоксида кремния с разными концентрациями диоксида кремния. Измеряют дзета-потенциал разных суспензий диоксида кремния, чтобы выявить соотношение между концентрацией диоксида кремния в суспензии и дзета-потенциалом суспензии. Дзета-потенциал густой суспензии диоксида кремния, как показано в таблице 1, судя по всему, зависит от концентрации диоксида кремния, когда густая суспензия диоксида кремния приготовлена с использованием деионизированной воды. Однако, как показано в таблице 2, когда густую суспензию разбавляют надосадочной жидкостью, полученной при ультрацентрифугировании 27,8%-ной (масс.) суспензии, дзета-потенциал остается примерно одинаковым при разных концентрациях диоксида кремния.

Таблица 1

Дзета-потенциал густой суспензии диоксида кремния, приготовленной с использованием деионизированной воды

Концентрация диоксида кремния в суспензии (масс./масс.) 6% 10% 15% 20% 22% 25% Дзета-потенциал (мВ) -46,4 -42,7 -39,6 -36,2 -34,7 -32,3 pH 5,19 5,04 4,92 4,86 4,83 4,77

Таблица 2

Дзета-потенциал густой суспензии диоксида кремния, полученной разбавлением 27,8%-ной (масс.) суспензии диоксида кремния с использованием надосадочной жидкости 27,8%-ной (масс.) суспензии диоксида кремния

Концентрация диоксида кремния в суспензии (масс./масс.) 6% 22% Дзета-потенциал (мВ) -31,5 -31,4 pH 4,86 4,79

[0124] Эти результаты показывают, что повышение значения дзета-потенциала, когда такие густые суспензии диоксида кремния разбавляют деионизированной водой, обусловлено главным образом уменьшением ионной силы суспензии. Ионы в суспензии диоксида кремния, как полагают, берут начало от остаточных солей, присутствующих в диоксиде кремния из процесса производства частиц диоксида кремния. Высокое значение дзета-потенциала густых суспензий диоксида кремния (все свыше 30 мВ) указывает на то, что диоксид кремния в густой суспензии имеет высокую электростатическую стабильность.

[0125] Пример 2

[0126] Влияние добавления соли или кислоты в различных концентрациях к густым суспензиям диоксида кремния на дзета-потенциал таких суспензий представлено в таблице 3. Густые суспензии готовят в деионизированной воде описанным выше методом испытания для определения дзета-потенциала густой суспензии. Данные, обобщенные в таблице 3, иллюстрируют зависимость дзета-потенциала густых суспензий диоксида кремния и дестабилизированных густых суспензий диоксида кремния от концентрации диоксида кремния, концентрации соли и концентрации кислоты. Добавление соли или кислоты к густой суспензии диоксида кремния понижает значение дзета-потенциала, а, следовательно, и стабильность густой суспензии диоксида кремния. Как показано в таблице 3, дзета-потенциал зависит преимущественно от концентрации соли или кислоты в густой суспензии или дестабилизированной густой суспензии, но не от концентрации диоксида кремния.

Таблица 3

Дзета-потенциал густой суспензии и дестабилизированной суспензии диоксида кремния при различных концентрациях густой суспензии, концентрациях соли и концентрациях кислоты

Концентрация диоксида кремния в суспензии
(% масс.)
[CaCl2] (мМ) [Уксусная кислота] (мМ) [Муравьиная кислота] (мМ) Дзета (мВ) pH
22,0 0 0 0 -34,4 4,80 6,0 0 0 0 -45,0 НО 22,0 10,6 0 0 -24,2 4,49 22,0 29,7 0 0 -17,0 4,27 22,0 51,1 0 0 -14,6 4,17 22,0 105 0 0 -9,2 НО 22,0 155 0 0 -6,4 НО 6,0 4,6 0 0 -29,9 НО 6,0 10,4 0 0 -23,4 НО 6,0 27,6 0 0 -18,5 НО 6,0 46,4 0 0 -15,4 НО 6,0 140 0 0 -7,7 НО 22,0 0 98 0 -23,6 3,72 22,0 0 192 0 -21,4 3,65 22,0 0 564 0 -17,1 3,26 22,0 0 1857 0 -12,7 НО 6,0 0 27 0 -33,6 3,84 6,0 0 45 0 -29,9 3,68 6,0 0 174 0 -22,1 3,38 6,0 0 431 0 -18,9 3,61 22,0 0 0 118 -15,3 3,17 22,0 0 0 197 -14,2 2,96 22,0 0 0 731 -10,7 2,46 22,0 0 0 1963 -6,5 2,04 6,0 0 0 36 -17,7 3,07 6,0 0 0 42 -17,4 3,04 6,0 0 0 168 -14,6 2,62 6,0 0 0 456 -11,4 2,29 22,0 10,7 0 130 -12,9 3,04 22,0 26,6 0 248 -9,0 2,78 22,0 101 0 978 -3,1 2,10 6,0 4,7 0 36 -15,9 3,12 6,0 46,4 0 224 -10,1 2,41

НО=не определено

[0127] Результаты, представленные в таблице 3, иллюстрируют зависимость дзета-потенциала густых суспензий диоксида кремния и дестабилизированных густых суспензий диоксида кремния от концентрации уксусной кислоты и концентрации диоксида кремния. Эти данные показывают, что величины дзета-потенциала больше зависят от концентрации кислоты, чем от концентрации диоксида кремния. Аналогичное соотношение между дзета-потенциалом и концентрацией кислоты и концентрацией диоксида кремния наблюдают в случае муравьиной кислоты. При данной концентрации муравьиная кислота понижает значение дзета-потенциала больше, чем уксусная кислота. Как показано в таблице 3, для понижения значения дзета-потенциала эффективна комбинация муравьиной кислоты и хлорида кальция. Результаты в таблице 3 показывают, что стабильность частиц диоксида кремния в густой суспензии может быть эффективно уменьшена за счет добавления дестабилизирующих агентов, таких как кислота или соль, или комбинация кислоты и соли. Аналогичные результаты наблюдают в случае нитрата кальция и ацетата кальция.

[0128] Пример 3

[0129] В этом примере показано важное значение дестабилизации дисперсии частиц диоксида кремния до введения в контакт дисперсии диоксида кремния с эластомерным латексом. Говоря точнее, проведено четыре опыта с использованием устройства для смешения (c) на фигуре 1, оборудованного тремя впускными отверстиями (3, 11, 14) для введения до трех текучих сред в ограниченную реакционную зону (13) так, чтобы одна текучая среда оказывала ударное воздействие на другие текучие среды под углом 90 градусов в виде высокоскоростной струи при скорости от 15 до 80 м/с (см. фигуру 1(c)). В трех из четырех опытов диоксид кремния измельчают, как описано выше в способе B, и необязательно добавляют уксусную кислоту, как описано ниже в примерах от 3-A до 3-D. Давление густой суспензии или дестабилизированной густой суспензии затем повышают до 100-150 фунт/кв.дм (0,69-1,03 МПа) и подают в ограниченную реакционную зону через впускное отверстие (3) при объемном расходе 60 литров в час (л/ч) с тем, чтобы густую суспензию или дестабилизированную густую суспензию вводить в реакционную зону в виде высокоскоростной струи при 80 м/с. Одновременно концентрат натурального каучукового латекса (латекс 60CX12021, содержание сухого каучука 31% масс., от компании Chemionics Corporation, Tallmadge, Ohio, разбавлен деионизированной водой) вводят во второе впускное отверстие (11) с помощью перистальтического насоса при объемном расходе 106 л/ч и при скорости 1,8 м/с. Эти расходы подбирают и потоки регулируют так, чтобы получать готовый эластомерный композит, содержащий 50 масс.ч. диоксида кремния на 100 масс.ч. каучука (частей на сто массовых частей сухого каучука). Густую суспензию диоксида кремния или дестабилизированную густую суспензию диоксида кремния и латекс смешивают путем объединения низкоскоростного потока латекса и высокоскоростной струи густой суспензии или дестабилизированной густой суспензии диоксида кремния посредством захвата потока латекса в струю густой суспензии диоксида кремния или дестабилизированной густой суспензии диоксида кремния в точке соударения. Производительность (по сухому материалу) устанавливают на 50 кг/ч. Конкретные фактические соотношения диоксида кремния к каучуку в каучуковых композитах, произведенных с помощью данного способа, приведены ниже в примерах. Оценку с помощью ТГА проводят после сушки в соответствии с методом способа В.

[0130] Пример 3-A

[0131] Первая текучая среда: Готовят 25%-ную (масс.) дестабилизированную водную дисперсию диоксида кремния с 6,2% масс. (или 1,18 M) уксусной кислоты, как описано выше в способе B. Дзета-потенциал дестабилизированной суспензии равен -14 мВ, указывая на то, что густая суспензия существенно дестабилизирована кислотой. Дестабилизированную густую суспензию диоксида кремния непрерывно подают насосом под давлением в первое впускное отверстие (3).

[0131] Вторая текучая среда: Эластомерный латекс направляют в реакционную зону через второе впускное отверстие (11).

[0132] Первая текучая среда оказывает ударное воздействие на вторую текучую среду в реакционной зоне.

[0134] Результаты: Инверсия жидкой в твердую фазу происходит в реакционной зоне, когда дестабилизированную густую суспензию диоксида кремния и латекс тщательно смешивают путем увлечения низкоскоростного потока латекса высокоскоростной струей дестабилизированной густой суспензии диоксида кремния. В процессе увлечения диоксид кремния равномерно распределяется в латексе и смесь коагулирует в твердую фазу, которая включает от 70 до 85% масс. воды. В результате поток твердой, содержащей диоксид кремния, непрерывной каучуковой фазы в форме червя или в канатовидной форме получают у выпускного отверстия реакционной зоны (15). Композит является эластичным и может быть растянут до 130% от его первоначальной длины без разрушения. Оценка с помощью ТГА высушенного продукта показывает, что эластомерный композит содержит 58 масс.ч. диоксида кремния на 100 масс.ч. каучука.

[0135] Пример 3-B

[0136] Первая текучая среда: Готовят 25%-ную дестабилизированную водную дисперсию диоксида кремния с 6,2% масс. уксусной кислоты в соответствии с описанным выше способом B. Дзета-потенциал густой суспензии равен -14 мВ, указывая на то, густая суспензия существенно дестабилизирована кислотой. Дестабилизированную густую суспензию диоксида кремния непрерывно подают насосом под давлением в первое впускное отверстие (3).

[0137] Вторая текучая среда: Эластомерный латекс поставляют в реакционную зону через второе впускное отверстие (11).

[0138] Третья текучая среда: Деионизированную воду также впрыскивают в реакционную зону через третье впускное отверстие (14) при объемном расходе 60 л/ч и со скоростью 1,0 м/с.

[0139] Три текучих среды встречаются и оказывают ударное воздействие друг на друга в реакционной зоне.

[0140] Результаты: Инверсия жидкой в твердую фазу происходит в реакционной зоне и твердую или полутвердую содержащую диоксид кремния непрерывную каучуковую фазу в форме каната или червеобразной форме получают из выпускного отверстия реакционной зоны. Значительное количество мутной жидкости, содержащей диоксид кремния и/или латекс, вытекает из выхода (7) вместе с твердой или полутвердой, содержащей диоксид кремния, непрерывной каучуковой фазой. Содержащая диоксид кремния, непрерывная каучуковая фаза включает приблизительно от 70 до 75% масс. воды в пересчете на массу композита. Оценка с помощью ТГА высушенного продукта показывает, что эластомерный композит содержит 44 масс.ч. диоксида кремния на 100 масс.ч. каучука. Таким образом, добавление воды через третье впускное отверстие оказывает негативное воздействие на процесс, приводя к продукту с более низким содержанием диоксида кремния (44 масс.ч. на 100 масс.ч. каучука по сравнению с 58 масс.ч. на 100 масс.ч. каучука в примере 3-A) и к значительному количеству отходов производства.

[0141] Пример 3-C

[0142] Первая текучая среда: Готовят 10%-ный (масс.) водный раствор уксусной кислоты без диоксида кремния. Непрерывную подачу кислотной текучей среды нагнетают с использованием перистальтического насоса при объемном расходе 60 л/ч через третье впускное отверстие (14) в реакционную зону со скоростью 1,0 м/с в момент входа в реакционную зону.

[0143] Вторая текучая среда: Эластомерный латекс подают в реакционную зону через второе впускное отверстие (11) с помощью перистальтического насоса со скоростью 1,8 м/с и при объемном расходе 106 л/ч.

[0144] Две текучие среды встречаются и оказывают ударное воздействие друг на друга в реакционной зоне.

[0145] Результаты: Получают твердую червеобразную липкую каучуковую фазу. Оценка с помощью ТГА высушенного продукта показывает, что каучуковая фаза не содержит диоксид кремния.

[0146] Пример 3-D:

[0147] Первая текучая среда: Готовят 25%-ную водную дисперсию диоксида кремния без уксусной кислоты в соответствии с описанным выше способом B. Густую суспензию диоксида кремния непрерывно подают насосом под давлением в первое впускное отверстие (3) при объемном расходе 60 л/ч и со скоростью 80 м/с в точке входа в реакционную зону. Дзета-потенциал суспензии равен -32 мВ, указывая на то, что в густой суспензии диоксид кремния диспергирован стабильно. Таким образом, в этом примере 3-D, густая суспензия диоксида кремния не была дестабилизирована за счет добавления кислоты до ударного воздействия на латексную текучую среду.

[0148] Вторая текучая среда: Эластомерный латекс подают в реакционную зону через второе впускное отверстие (11) с помощью перистальтического насоса со скоростью 1,8 м/с и с объемным расходом 106 л/ч.

[0149] Третья текучая среда: После начального периода подачи непрерывного потока первой и второй текучих сред 10%-ный (масс.) водный раствор уксусной кислоты впрыскивают через третье впускное отверстие (14) в реакционную зону при объемном расходе, который увеличивают от 0 до 60 л/ч, и со скоростью, которую повышают от 0 до 1,0 м/с. Все три текучие среды оказывают ударное воздействие друг на друга и смешиваются в реакционной зоне.

[0150] Результаты: Изначально, до впрыскивания кислоты, никакой содержащей диоксид кремния, непрерывной каучуковой фазы не образуется, и из выхода реакционной зоны (15) вытекает только мутная жидкость. При впрыскивании кислоты в реакционную зону (13) червеобразная, полутвердая, содержащая диоксид кремния, непрерывная каучуковая фаза начинает образовываться, когда поток уксусной кислоты через третье впускное отверстие увеличивают от 0 до 60 л/ч. Материалы, вытекающие из выхода, все еще содержат значительной количество мутной жидкости, указывая на большие отходы. Оценка с помощью ТГА высушенного продукта показывает, что содержащая диоксид кремния, непрерывная каучуковая фаза, полученная в таком опыте, содержит только 25 масс.ч. диоксида кремния на 100 масс.ч. каучука. Исходя из выбранных условий производства и количества используемого диоксида кремния, если бы диоксид кремния был в значительной степени включен в содержащую диоксид кремния каучуковую фазу, как примере 3-A, диоксид кремния давал бы содержащую диоксид кремния каучуковую фазу, включающую свыше 50 масс.ч. диоксида кремния на 100 масс.ч. каучука.

[0151] Эти опыты показывают, что густая суспензия диоксида кремния должна быть дестабилизирована до первоначального взаимодействия с эластомерным латексом, чтобы получить желаемую содержащую диоксид кремния непрерывную каучуковую фазу. Пример 3-A обеспечивает то, что считают эффективным захватом диоксида кремния внутрь твердой, содержащей диоксид кремния, непрерывной каучуковой фазы, тогда как пример 3-D иллюстрирует сравнительный способ, в котором используют изначально стабильную густую суспензию диоксида кремния и который демонстрирует меньше чем половину эффективности примера 3-A, в котором используют изначально дестабилизированную густую суспензию диоксида кремния. Наличие мутной жидкости, выходящей в точки выхода из реакционной зоны, указывает на недостаточное смешение диоксида кремния с латексом и более низкую долю диоксида кремния, захваченного внутрь непрерывной каучуковой фазы. Существует теория, что в сравнительных способах 3B и 3D имеет место недостаточная дестабилизация текучих сред во время смешения. Результаты также показывают, что плохой захват диоксида кремния происходит тогда, когда добавляют еще одну текучую среду одновременно при смешении первой и второй текучих сред вместе, и такие технологические условия создают нежелательное количество отходов.

[0152] Пример 4

[0153] Иллюстративный способ A-1. Когда указано в приведенных ниже примерах, способ проводят с использованием иллюстративного способа A-1. В способе А-1 сухой осажденный диоксид кремния и воду (водопроводная вода, профильтрованная для удаления материала в форме микрочастиц) дозируют, объединяют и затем измельчают в роторно-статорной мельнице с получением густой суспензии диоксида кремния, и густую суспензию диоксида кремния дополнительно измельчают в питающей емкости с использованием мешалки и другой роторно-статорной мельницы. Густую суспензию диоксида кремния затем переносят в сборную емкость, оборудованную двумя мешалками. Такой же способ, который используют для получения суспензии диоксида кремния, используют для приготовления густой суспензии углеродной сажи из сухой углеродной сажи (углеродная сажа сорта N-134, полученная от компании Cabot Corporation). Густую суспензию углеродной сажи добавляют на верх густой суспензии диоксида кремния в сборной емкости. Суспензию (диоксид кремния)-(углеродная сажа) снова рециркулируют из сборной емкости через гомогенизатор и назад в сборную емкость. Раствор кислоты (муравьиная кислота или уксусная кислота технического сорта, полученные от компании Kong Long Huat Chemicals, Malaysia) затем подают насосом в сборную емкость. Густую суспензию в сборной емкости поддерживают в диспергированной форме за счет перемешивания и необязательно с помощью рециркуляционной петли. Через соответствующий период густую суспензию диоксида кремния подают в ограниченную реакционную зону (13), такую как реакционная зона, показанная на фигуре 1a, с помощью гомогенизатора. Концентрация диоксида кремния и углеродной сажи в густой суспензии и концентрация кислоты указаны в ниже в конкретных примерах.

[0154] Латекс прокачивают с помощью перистальтического насоса (при давлении меньше чем приблизительно 40 фунт/кв.дм (0,28 МПа) через второе впускное отверстие (11) в реакционную зону (13). Расход латекса регулируют приблизительно между 300 и 1600 (кг латекса)/ч для получения желаемых производительности и уровней загрузки диоксида кремния в конечном продукте. Гомогенизированную густую суспензию, содержащую кислоту или соль, или комбинацию кислоты и соли, подают насосом под давлением от гомогенизатора к насадке (внутренний диаметр (ВД) 0,060-0,130 дюйм (0,15-0,33 см)) (3a), представленной первым входным отверстием (3), показанным на фигуре 1(a), так что густую суспензию вводят в реакционную зону в виде высокоскоростной струи. При контакте с латексом в реакционной зоне струя густой суспензии диоксида кремния, протекающая при скорости от 25 до 120 м/с, увлекает латекс, протекающий при скорости от 1 до 11 м/с. В примерах в соответствии с вариантами осуществления изобретения ударное действие густой суспензии диоксида кремния на латекс вызывает тщательное перемешивание частиц диоксида кремния с каучуковыми частицами латекса, и каучук коагулирует, преобразуя густую суспензию диоксида кремния и латекс в материал, состоящий из твердой или полутвердой, содержащей (диоксид кремния)-(углеродную сажу), непрерывной каучуковой фазы, содержащей от 40 до 95% масс. воды в пересчете на общую массу материала, захваченную внутрь материала. Выполняют корректировки расхода густой суспензии диоксида кремния (500-1800 кг/ч) или расхода латекса (300-1800 кг/ч), или обоих, чтобы модифицировать соотношения диоксида кремния к каучуку (например, 15-180 масс.ч. диоксида кремния на 100 масс.ч. каучука) в конечном продукте, и чтобы обеспечить желаемую производительность. Производительность (по сухому материалу) составляет 200-800 кг/ч. Конкретное содержание диоксида кремния (по данным ТГА) в каучуке после обезвоживания и сушки материала перечислены ниже в примерах.

[0155] Способ A-1: Обезвоживание. Материал выгружают из реакционной зоны при атмосферном давлении при расходе от 200 до 800 кг/ч (сухая масса) в экструдер-водоотделитель (The French Oil Machinery Company, Piqua, OH). Экструдер (ВД 8,5 дюйма (21,59 см)) оборудован матричным диском с различными конфигурациями головок матричных отверстий и работает при обычной окружной скорости ротора от 90 до 123 об/мин, давлении матричного диска 400-1300 фунт/кв.дм (2,76-8,96 МПа) и мощности от 80 до 125 кВт. В экструдере содержащий (диоксид кремния)-(углеродную сажу) каучук сдавливают, а воду, отжатую из содержащего диоксида кремния каучука, выталкивают через цилиндр с прорезями экструдера. Обезвоженный продукт, обычно содержащий 15-60% масс. воды, получают при выпускном отверстии экструдера.

[0142] Способ A-1: Сушка и охлаждение. Обезвоженный продукт выпускают в компаундер непрерывного действия (смеситель непрерывного действия - Farrel Continuous Mixer (FCM), Farrel Corporation, Ansonia, CT; с роторами #7 и 15), где его сушат, пластицируют и смешивают с 1-2 масс.ч. антиоксиданта на 100 масс.ч. каучука (например, 6PPD от компании Flexsys, St. Louis, MO) и необязательно с силановым связующим агентом (например, с силаном NXT, полученным от компании Momentive Performance Materials, Inc., Waterford, NY; 8% масс. силана в пересчете на массу диоксида кремния). Температуру водяной рубашки смесителя FCM устанавливают при 100°C, а температура FCM отверстия для выпуска продукции составляет от 140 до 180°C. Влагосодержание пластицированного, обезвоженного эластомерного композита, выходящего из FCM, составляет приблизительно от 1 до 5% масс. Продукт дополнительно пластицируют и охлаждают на открытых вальцах. Каучуковый лист эластомерного композита сразу же срезают с открытых вальцов, сворачивают в рулон и охлаждают на воздухе.

[0157] Приготовление каучуковых компаундов

[0158] Высушенный эластомерный композит, полученный с помощью способа А-1, компаундируют в соответствии с рецептурой в таблице С и методикой, изложенной в таблице D. В случае эластомерных композитов, в которых или силан или антиоксидант добавлены при проведении сушки, композиция конечного компаунда является такой, как указано в таблице С. Количество силанового связующего агента и/или антиоксиданта, добавляемых при компаундировании, корректируют соответствующим образом.

Таблица С

Ингредиент масс.ч. на 100 масс.ч. каучука НК в композите 100 Углеродная сажа в композите Как указано Диоксид кремния в композите Как указано 6PPD* (антиоксидант) 2,0 Силан (силан NXT**) 0,08 x (масс.ч. диоксида кремния на 100 масс.ч. каучука) ZnO 4 Стеариновая кислота 2 DPG*** 1,5 Cure Rite® BBTS**** 1,5 Сера 1,5

* N-(1,3-диметилбутил)-N'-фенил-п-фенилендиамин (Flexsys, St. Louis, MO)

** Основной активный компонент: S-(3-(триэтоксисилил)пропил)-октантиоат (Momentive, Friendly, WV)

*** Дифенилгуанидин (Akrochem, Akron, OH)

**** N-трет-Бутилбензотиазол-2-сульфенамид (Emerald Performance Materials, Cuyahoga Falls, OH)

НК (NR)=натуральный каучук

Таблица В

Время (мин) Операция Стадия 1 Смеситель Брабендера (300 см3), коэффициент заполнения 65%, 60 об/мин, 100°C 0 Добавить композит каучук-(диоксид кремния)-(углеродная сажа) 1 Добавить силановый связующий агент, при необходимости Выдержать 2 мин, начиная при 150°C 2 Перемешать с ускорением и добавить 6PPD, перемешивать еще 1 мин при 150°C 3 Перемешать с ускорением Выгрузить, 160°C Пропустить через вальцовую мельницу 6 раз Стадия 2 Смеситель Брабендера (300 см3), коэффициент заполнения 63%, 60 об/мин, 100°C 0 Добавить компаунд стадии 1 1 Добавить оксид цинка и стеариновую кислоту 2 Перемешать с ускорением 4 Выгрузить, 150°C Пропустить через вальцовую мельницу 6 раз Стадия 3 Смеситель Брабендера (300 см3), коэффициент заполнения 63%, 60 об/мин, 100°C 0 Добавить компаунд стадии 2, серу и ускорители 0.5 Перемешать с ускорением 1 Выгрузить Вальцовая мельница в течение одной минуты с соответствующим набором вальцов. Снять и провести 6 конечных вальцеваний. Раскатать в лист требуемой толщины.

[0159] Вулканизацию проводят в нагретом прессе, установленном при 150°C, в течение времени, определяемом с помощью обычного реометра для каучука (то есть, T90+10% от T90, где T90 представляет собой время для достижения 90%-ной вулканизации).

[0160] Свойства компаундов каучук/(диоксид кремния)-(углеродная сажа)

[0161] Свойства при растяжении вулканизированных образцов (T300 и T100, относительное удлинение при разрыве, прочность при растяжении) измеряют в соответствии со стандартом ASTM D-412. Значение tan delta при 60° определяют с использованием развертки динамической деформации при кручении между 0,01% и 60% при 10 Гц и при 60°C. Tan δмакс получают в виде максимального значения tan δ 60 в пределах такого интервала деформаций.

[0162] В этих примерах способ в соответствии с разными вариантами осуществления изобретения проводят в устройстве, показанном на фигуре 1 (или (a) или (b)) при разных условиях, которые представлены в таблице 4, используя описанный выше способ A-1. Рабочие условия выбирают так, чтобы получать твердую или полутвердую содержащую диоксид кремния непрерывную каучуковую фазу с соотношениями (диоксида кремния)-(углеродной сажи) к каучуку, представленными в таблице 4.

Таблица 4

Пр. Концентрация диоксида кремнияa в суспензии
(% масс.)
Концентрация углеродной сажиa в суспензии
(% масс.)
Тип латекса Содержание каучука в латексе (ССК)
(% масс.)
NH3 в латексе (%масс.) Тип соли Концентрация соли в суспензии
(% масс.)
Дзета-потенциал (по оценке)b (мВ)
4-1 15 1,5 Сок 32,8 0,66 Н/П 0,00 -11,3 4-2 12,3 2,7 Сок 32,8 0,66 Н/П 0,00 -15,0 4-3 12,3 2,7 Сок 32,8 0,66 Н/П 0,00 -15,0 4-4 12,3 2,7 Сок 32,8 0,66 Н/П 0,00 -15,0 4-5 12,3 2,7 Сок 32,8 0,66 Н/П 0,00 -15,0 4-6 12,3 2,7 Сок 32,8 0,66 Н/П 0,00 -15,0 4-7 12,3 2,7 Сок 32,8 0,66 Н/П 0,00 -15,0 4-8 12,3 2,7 Сок 32,8 0,66 Н/П 0,00 -15,0 4-9 12,3 2,7 Сок 32,8 0,66 Н/П 0,00 -15,0

Н/П - не предусмотрено, НО - не определено

a. Во всех примерах используют осажденный диоксид кремния ZEOSIL® Z1165 MP. Во всех примерах используют углеродную сажу N134 от компании Cabot Corporation.

b. Величины дзета-потенциала оценивают путем интерполяции экспериментально определенных кривых зависимости дзета-потенциала от концентрации соли или кислоты в густых суспензиях диоксида кремния одного и того же сорта.

Таблица 4 (продолжение)

Пример Тип кислоты Кислота в суспензии (% масс.) Мольное отношение кислота:NH3 Скорость во впускной насадкеc (м/с) Фактическая загрузка диоксида кремния
(масс.ч. на 100 масс.ч. каучука)
Фактическая загрузка углеродной сажи
(масс.ч. на 100 масс.ч. каучука)
Расход суспензииd (л/ч) Расход латексаd (л/ч) Относительный расход суспензии к латексу
(об./об)
4-1 Муравьиная 2,00 1,59 41 44 6 800 626 1,278 4-2 Уксусная 5,07 4,64 42 44 15 800 411 1,947 4-3 Уксусная 5,07 4,64 42 44 15 800 411 1,947 4-4 Уксусная 5,07 3,77 42 34,2 13,5 800 506 1,582 4-5 Уксусная 5,07 3,77 65 30,4 10,6 800 506 1,582 4-6 Уксусная 5,07 4,64 65 37 14,6 800 411 1,947 4-7 Уксусная 5,07 4,64 42 29,5 9,1 800 411 1,947 4-8 Уксусная 5,07 4,64 42 44,2 13,8 800 411 1,947 4-9 Уксусная 5,07 4,64 42 43,6 13,6 800 411 1,947

c. Скорость во впускной насадке представляет собой скорость густой суспензии (диоксида кремния)-(углеродной сажи), когда она проходит через насадку (3a) у первого впускного отверстия (3) в реакционную зону (13) перед введением в контакт с латексом.

d. Расходы густой суспензии и латекса представляют собой объемные расходы в л/ч густой суспензии (диоксида кремния)-(углеродной сажи) и латексной текучей среды, соответственно, когда их высвобождают в реакционную зону.

[0163] Во всех примерах выше в таблице 4 выбранные рабочие условия приводят к твердой, содержащей диоксид кремния и углеродную сажу, непрерывной каучуковой фазе приблизительно цилиндрической формы. Продукт содержит незначительное количество воды, является эластичным и сжимаемым, выталкивает воду и удерживает содержание твердых веществ при сжатии вручную. Твердый материал может быть растянут, например, материал может быть растянут или удлинен до 130-150% от его начальной длины без разрушения. Некоторые свойства каучука полученных композитов показаны ниже в таблице 5. Частицы диоксида кремния и углеродной сажи, как отмечено, равномерно распределены по всей непрерывной каучуковой фазе и такой продукт по существу исключает свободные частицы диоксида кремния и более крупные зерна диоксида кремния как на наружной, так и на внутренней поверхностях. Чтобы получить содержащую диоксид кремния и углеродную сажу, непрерывную каучуковую фазу, не только диоксид кремния необходимо дестабилизировать (например, за счет предварительной обработки кислотами и/или солями), а объемные расходы дестабилизированной густой суспензии диоксида кремния относительно латекса должны быть скорректированы не только для достижения желаемого отношения диоксида кремния к каучуку (масс.ч. на 100 масс.ч. каучука) в эластомерном композите, но также для оптимизации степени дестабилизации густой суспензии относительно скорости смешения суспензии и латекса и скорости коагуляции каучуковых частиц латекса. За счет таких регулировок, когда суспензия диоксида кремния захватывает латекс, равномерно распределяя частицы диоксида кремния (и частицы углеродной сажи) в латексе, каучук в латексе превращается в твердую или полутвердую непрерывную фазу всего за долю секунды после объединения текучих сред в ограниченном объеме реакционной зоны. Таким образом, рассматриваемый способ формирует уникальные эластомерные композиты, содержащие диоксид кремния и углеродную сажу, посредством стадии столкновения непрерывных потоков, проводимой за счет достаточной скорости, выбранных концентраций твердых веществ и объемов текучей среды и скорректированных расходов текучих сред так, чтобы равномерно и тщательно распределять тонкоизмельченный диоксид кремния внутри латекса, и одновременно, пока такое распределение происходит, вызвать инверсию каучука из жидкой в твердую фазу.

Таблица 5

Номер примера T300/T100 Tan delta при 60°C Прочность при растяжении (МПа) Удлинение при разрыве (%)
* Прочность при растяжении (МПа)
4-1 5,19 0,089 32,20 535 4-2 4,98 0,113 29,31 463 4-3 4,99 0,106 29,74 455 4-4 5,78 0,084 34,72 529 4-5 5,60 0,093 31,37 468 4-6 5,35 0,110 31,86 504 4-7 4,86 0,127 29,64 448 4-8 4,85 0,123 29,45 446 4-9 4,48 0,118 29,61 457

[0164] Эластомерный композит, полученный в этих примерах, имеет приемлемые свойства каучука и особенно показывает предпочтительные свойства T300/T100 в случае композитов, имеющих диоксид кремния и углеродную сажу, диспергированные в композите. Как показано в этих примерах, изделие из твердой, содержащей диоксид кремния и углеродную сажу, каучуковой фазы может содержать, по меньшей мере, 40 масс.ч. диоксида кремния на 100 масс.ч. каучука, диспергированного в натуральном каучуке, и, по меньшей мере, 40% масс. водной текучей среды, и может иметь размер по длине (L), где изделие из твердой, содержащей диоксид кремния и углеродную сажу, непрерывной каучуковой фазы может быть растянуто, по меньшей мере, до 130-150% от (L) без разрушения

[0165] Настоящее изобретение включает приведенные ниже аспекты/варианты осуществления/характерные признаки в любом порядке и/или в любой комбинации:

1. Способ производства кремнийоксидного эластомерного композита, включающий:

(a) обеспечение непрерывного потока под давлением, по меньшей мере, одной первой текучей среды, содержащей диспергированные частицы и содержащей дестабилизированную дисперсию диоксида кремния, и непрерывного потока, по меньшей мере, второй текучей среды, содержащей эластомерный латекс;

(b) обеспечение объемного расхода первой текучей среды относительно объемного расхода второй текучей среды для получения содержания диоксида кремния приблизительно от 15 до 180 масс.ч. на 100 масс.ч. каучука в кремнийоксидном эластомерном композите;

(c) объединение потока первой текучей среды и потока второй текучей среды за счет достаточно сильной ударной нагрузки, чтобы распределить диоксид кремния внутри эластомерного латекса с получением потока твердой, содержащей диоксид кремния, непрерывной каучуковой фазы или полутвердой, содержащей диоксид кремния, непрерывной каучуковой фазы,

где указанную, по меньшей мере, одну первую текучую среду предоставляют в виде:

i) двух потоков, содержащих дисперсию, содержащую углеродную сажу, и дестабилизированную дисперсию, содержащую диоксид кремния; или

ii) одного потока, содержащего дисперсию, содержащую углеродную сажу, и дестабилизированную дисперсию, содержащую диоксид кремния; или

iii) одного потока дестабилизированной дисперсии, содержащей диоксид кремния и углеродную сажу.

2. Способ по любому предыдущему или последующему варианту осуществления/характерному признаку/аспекту, в котором указанная, по меньшей мере, одна первая текучая среда представляет собой дестабилизированную дисперсию, содержащую диоксид кремния и углеродную сажу, и указанный способ дополнительно включает объединение сухой углеродной сажи, сухого диоксида кремния и водной среды с получением указанной дестабилизированной дисперсии, содержащей, по меньшей мере, 45% масс. диоксида кремния в пересчете на все частицы и углеродную сажу.

3. Способ по любому предыдущему или последующему варианту осуществления/характерному признаку/аспекту дополнительно включающий проведение, по меньшей мере, одной стадии механической обработки одной или нескольких указанной(ых) дисперсии(й).

4. Способ по любому предыдущему или последующему варианту осуществления/характерному признаку/аспекту, в котором указанная стадия механической обработки включает измельчение, перемалывание, перетирание, ударное измельчение или обработку текучей среды с высоким усилием сдвига, или любую их комбинацию.

5. Способ по любому предыдущему или последующему варианту осуществления/характерному признаку/аспекту, в котором указанная стадия механической обработки включает измельчение указанной(ых) дисперсии(й) один или несколько раз.

6. Способ по любому предыдущему или последующему варианту осуществления/характерному признаку/аспекту, в котором указанная стадия механической обработки уменьшает агломерацию частиц и/или регулирует распределение частиц по размерам.

7. Способ производства кремнийоксидного эластомерного композита, включающий:

(a) обеспечение непрерывного потока под давлением, по меньшей мере, первой текучей среды, содержащей дестабилизированную дисперсию диоксида кремния, и непрерывного потока, по меньшей мере, второй текучей среды, содержащей эластомерный латекс;

(b) обеспечение объемного расхода первой текучей среды относительно объемного расхода второй текучей среды для получения содержания диоксида кремния приблизительно от 15 до 180 масс.ч. на 100 масс.ч. каучука в кремнийоксидном эластомерном композите;

(c) обеспечение непрерывного потока флюидизированной углеродной сажи в сухой форме,

(d) объединение потока первой текучей среды и потока второй текучей среды и указанной углеродной сажи за счет достаточно сильной ударной нагрузки, чтобы распределить диоксид кремния и углеродную сажу внутри эластомерного латекса с получением потока твердой, содержащей диоксид кремния и углеродную сажу, непрерывной каучуковой фазы или полутвердой, содержащей диоксид кремния и углеродную сажу, непрерывной каучуковой фазы,

где указанный поток углеродной сажи объединяют с указанной первой текучей средой перед стадией d, или объединяют с указанной второй текучей средой перед стадией d, или добавляют на стадии d.

8. Способ по любому предыдущему или последующему варианту осуществления/характерному признаку/аспекту, в котором углеродная сажа присутствует в указанном кремнийоксидном эластомерном композите в количестве приблизительно от 10 до 50% масс. из расчета на все микрочастицы, присутствующие в указанном кремнийоксидном эластомерном композите.

9. Способ по любому предыдущему или последующему варианту осуществления/характерному признаку/аспекту, в котором указанный поток указанной твердой или полутвердой, содержащей диоксид кремния, непрерывной каучуковой фазы образуется за две секунды или меньше после объединения указанных потока первой текучей среды и потока второй текучей среды.

10. Способ по любому предыдущему или последующему варианту осуществления/характерному признаку/аспекту, в котором указанный поток указанной твердой или полутвердой, содержащей диоксид кремния, непрерывной каучуковой фазы образуется приблизительно за 50-1500 миллисекунд после объединения указанных потока первой текучей среды и потока второй текучей среды.

11. Способ по любому предыдущему или последующему варианту осуществления/характерному признаку/аспекту, в котором указанная первая текучая среда на стадии (a) дополнительно содержит, по меньшей мере, одну соль.

12. Способ по любому предыдущему или последующему варианту осуществления/характерному признаку/аспекту, в котором указанная первая текучая среда на стадии (a) дополнительно содержит, по меньшей мере, одну кислоту.

13. Способ по любому предыдущему или последующему варианту осуществления/характерному признаку/аспекту, в котором указанная твердая или полутвердая, содержащая диоксид кремния, непрерывная каучуковая фаза содержит приблизительно от 40 до 95% масс. воды или водной текучей среды.

14. Способ по любому предыдущему или последующему варианту осуществления/характерному признаку/аспекту, в котором указанное объединение протекает в реакционной зоне, имеющей объем приблизительно от 10 до 500 см3.

15. Способ по любому предыдущему или последующему варианту осуществления/характерному признаку/аспекту, в котором относительные объемные расходы находятся при соотношении объемных расходов первой текучей среды ко второй текучей среды от 0,4:1 до 3,2:1.

16. Способ по любому предыдущему или последующему варианту осуществления/характерному признаку/аспекту, в котором относительные объемные расходы находятся при соотношении объемных расходов первой текучей среды ко второй текучей среды от 0,2:1 до 2,8:1.

17. Способ по любому предыдущему или последующему варианту осуществления/характерному признаку/аспекту, в котором относительные объемные расходы находятся при соотношении объемных расходов первой текучей среды ко второй текучей среды от 0,4:1 до 3,2:1, и указанная дестабилизированная дисперсия диоксида кремния включает, по меньшей мере, одну соль.

18. Способ по любому предыдущему или последующему варианту осуществления/характерному признаку/аспекту, в котором относительные объемные расходы находятся при соотношении объемных расходов первой текучей среды ко второй текучей среды от 0,2:1 до 2,8:1, и указанная дестабилизированная дисперсия диоксида кремния включает, по меньшей мере, одну кислоту.

19. Способ по любому предыдущему или последующему варианту осуществления/характерному признаку/аспекту, в котором указанный эластомерный латекс содержит основание, указанная дестабилизированная дисперсия диоксида кремния содержит, по меньшей мере, одну кислоту и мольное отношение ионов водорода в указанной кислоте в указанной первой текучей среды к указанному основанию в указанной второй текучей среды составляет от 1 до 4,5.

20. Способ по любому предыдущему или последующему варианту осуществления/характерному признаку/аспекту, в котором указанная дестабилизированная дисперсия диоксида кремния содержит, по меньшей мере, одну кислоту, и в котором указанный эластомерный латекс, присутствующий в указанной второй текучей среды, имеет концентрацию аммиака приблизительно от 0,3 до 0,7% масс. в пересчете на массу эластомерного латекса, и мольное отношение ионов водорода в указанной кислоте в указанной первой текучей среды к аммиаку в указанной второй текучей среды составляет, по меньшей мере, 1:1.

21. Способ по любому предыдущему или последующему варианту осуществления/характерному признаку/аспекту, в котором указанное содержание диоксида кремния в указанном кремнийоксидном эластомерном композите составляет приблизительно от 26 до 80 масс.ч. на 100 масс.ч. каучука.

22. Способ по любому предыдущему или последующему варианту осуществления/характерному признаку/аспекту, в котором указанное содержание диоксида кремния в указанном кремнийоксидном эластомерном композите составляет приблизительно от 40 до 115 масс.ч. на 100 масс.ч. каучука.

23. Способ по любому предыдущему или последующему варианту осуществления/характерному признаку/аспекту, в котором указанная дестабилизированная дисперсия диоксида кремния содержит приблизительно от 6 до 35% масс. диоксида кремния.

24. Способ по любому предыдущему или последующему варианту осуществления/характерному признаку/аспекту, в котором указанная дестабилизированная дисперсия диоксида кремния содержит приблизительно от 10 до 28% масс. диоксида кремния.

25. Способ по любому предыдущему или последующему варианту осуществления/характерному признаку/аспекту, дополнительно включающий выделение указанной твердой или полутвердой, содержащей диоксид кремния, непрерывной каучуковой фазы при давлении окружающей среды.

26. Способ по любому предыдущему или последующему варианту осуществления/характерному признаку/аспекту, в котором указанная первая текучая среда, содержащая указанную дестабилизированную дисперсию диоксида кремния, имеет значение дзета-потенциала меньше чем 30 мВ.

27. Способ по любому предыдущему или последующему варианту осуществления/характерному признаку/аспекту, в котором указанная дестабилизированная дисперсия диоксида кремния включает, по меньшей мере, одну соль, где концентрация ионов соли в указанной дестабилизированной дисперсии составляет приблизительно от 10 до 160 мМ.

28. Способ по любому предыдущему или последующему варианту осуществления/характерному признаку/аспекту, в котором указанная дестабилизированная дисперсия диоксида кремния включает, по меньшей мере, одну соль, где указанная соль присутствует в указанной дестабилизированной дисперсии в количестве приблизительно от 0,2 до 2% масс. из расчета на массу указанной дестабилизированной дисперсии.

29. Способ по любому предыдущему или последующему варианту осуществления/характерному признаку/аспекту, в котором указанная дестабилизированная дисперсия диоксида кремния включает, по меньшей мере, одну кислоту, где указанная кислота присутствует в указанной дестабилизированной дисперсии в количестве приблизительно от 0,8 до 7,5% масс. из расчета на массу указанной дестабилизированной дисперсии.

30. Способ по любому предыдущему или последующему варианту осуществления/характерному признаку/аспекту, в котором указанная дестабилизированная дисперсия диоксида кремния включает, по меньшей мере, одну кислоту, где концентрация кислоты в указанной дестабилизированной дисперсии составляет приблизительно от 200 до 1000 мМ.

31. Способ по любому предыдущему или последующему варианту осуществления/характерному признаку/аспекту, в котором стадию (c) проводят с помощью непрерывного потока первой текучей среды при скорости A и непрерывного потока второй текучей среды при скорости B, и скорость A, по меньшей мере, в 2 раза выше, чем скорость B.

32. Способ по любому предыдущему или последующему варианту осуществления/характерному признаку/аспекту, в котором стадию (c) проводят в полуограниченной реакционной зоне, и первая текучая среда имеет скорость, достаточную, чтобы вызвать кавитацию в реакционной зоне при объединении со второй текучей средой.

33. Способ по любому предыдущему или последующему варианту осуществления/характерному признаку/аспекту, в котором вторая текучая среда имеет скорость, достаточную для создания турбулентного потока.

34. Способ по любому предыдущему или последующему варианту осуществления/характерному признаку/аспекту, в котором указанная дисперсия диоксида кремния содержит поверхностно-модифицированный диоксид кремния, имеющий фрагменты гидрофобной поверхности.

35. Способ по любому предыдущему или последующему варианту осуществления/характерному признаку/аспекту, в котором указанная первая текучая среда содержит водную текучую среду.

36. Способ по любому предыдущему или последующему варианту осуществления/характерному признаку/аспекту, в котором указанная первая текучая среда содержит водную текучую среду и приблизительно от 6 до 31% масс. диоксида кремния и, по меньшей мере, 3% масс. углеродной сажи.

37. Способ по любому предыдущему или последующему варианту осуществления/характерному признаку/аспекту, в котором указанная первая текучая среда содержит водную текучую среду, дополнительно содержащую, по меньшей мере, одну соль и, по меньшей мере, одну кислоту.

38. Способ по любому предыдущему или последующему варианту осуществления/характерному признаку/аспекту, и указанный способ дополнительно включает дестабилизацию дисперсии диоксида кремния за счет понижения pH дисперсии диоксида кремния с тем, чтобы получить дестабилизированную дисперсию диоксида кремния, предусмотренную на стадии (a).

39. Способ по любому предыдущему или последующему варианту осуществления/характерному признаку/аспекту, и указанный способ дополнительно включает дестабилизацию дисперсии диоксида кремния за счет понижения pH дисперсии диоксида кремния до значения pH от 2 до 4 с тем, чтобы получить дестабилизированную дисперсию диоксида кремния, предусмотренную на стадии (a).

40. Способ по любому предыдущему или последующему варианту осуществления/характерному признаку/аспекту, в котором указанный диоксид кремния имеет гидрофильную поверхность.

41. Способ по любому предыдущему или последующему варианту осуществления/характерному признаку/аспекту, в котором указанный диоксид кремния представляет собой высокодиспергируемый диоксид кремния (ВДДК) (HDS).

42. Способ по любому предыдущему или последующему варианту осуществления/характерному признаку/аспекту, в котором указанная кислота включает уксусную кислоту, муравьиную кислоту, лимонную кислоту, фосфорную кислоту или серную кислоту, или любые их комбинации.

43. Способ по любому предыдущему или последующему варианту осуществления/характерному признаку/аспекту, в котором указанная кислота имеет молекулярную массу или среднюю молекулярную массу ниже 200.

44. Способ по любому предыдущему или последующему варианту осуществления/характерному признаку/аспекту, в котором указанная соль содержит, по меньшей мере, одну соль металла группы 1, 2 или 13.

45. Способ по любому предыдущему или последующему варианту осуществления/характерному признаку/аспекту, в котором указанная соль включает кальциевую соль, магниевую соль или алюминиевую соль, или их комбинацию.

46. Способ по любому предыдущему или последующему варианту осуществления/характерному признаку/аспекту, и указанный способ дополнительно включает проведение механической обработки диоксида кремния для уменьшения агломерации частиц и/или для регулирования распределения частиц по размерам.

47. Способ по любому предыдущему или последующему варианту осуществления/характерному признаку/аспекту, в котором диоксид кремния представляет собой осажденный диоксид кремния, или коллоидальный диоксид кремния, или коллоидный диоксид кремния, или любые их комбинации.

48. Способ по любому предыдущему или последующему варианту осуществления/характерному признаку/аспекту, в котором указанный диоксид кремния имеет площадь поверхности по БЭТ приблизительно от 20 до 450 м2/г.

49. Способ по любому предыдущему или последующему варианту осуществления/характерному признаку/аспекту, в котором указанный эластомерный латекс представляет собой латекс натурального каучука.

50. Способ по любому предыдущему или последующему варианту осуществления/характерному признаку/аспекту, в котором указанный латекс натурального каучука находится в форме млечного сока, латексного концентрата, очищенного латекса, химически модифицированного латекса, ферментативно модифицированного латекса, или любых их комбинаций.

51. Способ по любому предыдущему или последующему варианту осуществления/характерному признаку/аспекту, в котором указанный латекс натурального каучука находится в форме латекса эпоксидированного натурального каучука.

52. Способ по любому предыдущему или последующему варианту осуществления/характерному признаку/аспекту, в котором указанный латекс натурального каучука находится в форме латексного концентрата.

53. Способ по любому предыдущему или последующему варианту осуществления/характерному признаку/аспекту, дополнительно включающий смешение кремнийоксидного эластомерного композита с дополнительным эластомером с получением эластомерной композитной смеси.

54. Способ получения каучукового компаунда, включающий:

(a) проведение способа по любому предыдущему или последующему варианту осуществления/характерному признаку/аспекту и

(b) смешение кремнийоксидного эластомерного композита с другими компонентами с получением каучукового компаунда, в котором указанные другие компоненты включают, по меньшей мере, один антиоксидант, серу, полимер, отличный от эластомерного латекса, катализатор, масло для наполнения, смолу, связующий агент, дополнительный(е) эластомерный(е) композит(ы), или армирующий наполнитель, или любые их комбинации.

55. Способ получения каучукового изделия, выбираемого из шин, формованных деталей, опор, прокладочных материалов, конвейерных лент, уплотняющих материалов или облицовок, включающий:

(a) проведение способа по любому предыдущему или последующему варианту осуществления/характерному признаку/аспекту,

(b) компаундирование кремнийоксидного эластомерного композита с другими компонентами с получением компаунда, и

(c) вулканизацию компаунда с получением указанного каучукового изделия.

56. Способ по любому предыдущему или последующему варианту осуществления/характерному признаку/аспекту, дополнительно включающий проведение одной или нескольких стадий последующей обработки после выделения кремнийоксидного эластомерного композита.

57. Способ по любому предыдущему или последующему варианту осуществления/характерному признаку/аспекту, в котором стадии последующей обработки включают, по меньшей мере, стадию:

(a) обезвоживания кремнийоксидного эластомерного композита с получением обезвоженной смеси;

(b) смешения или компаундирования обезвоженной смеси с получением компаундированного кремнийоксидного эластомерного композита;

(c) перемалывания компаундированного кремнийоксидного эластомерного композита с получением молотого кремнийоксидного эластомерного композита;

(d) гранулирования или перемешивания молотого кремнийоксидного эластомерного композита;

(e) укладывания в кипы кремнийоксидного эластомерного композита после гранулирования или перемешивания с получением кипованного кремнийоксидного эластомерного композита;

(f) экструдирования кремнийоксидного эластомерного композита;

(g) каландрования кремнийоксидного эластомерного композита; и/или

(h) необязательно разделения на части кипованного кремнийоксидного эластомерного композита и смешения с другими компонентами.

58. Способ по любому предыдущему или последующему варианту осуществления/характерному признаку/аспекту, в котором стадии последующей обработки включают, по меньшей мере, вальцевание кремнийоксидного эластомерного композита.

59. Способ по любому предыдущему или последующему варианту осуществления/характерному признаку/аспекту, в котором стадии последующей обработки включают сдавливание твердой или полутвердой, содержащей диоксид кремния, непрерывной каучуковой фазы для удаления приблизительно от 1 до 15% масс. водной текучей среды, находящейся в ней.

60. Способ по любому предыдущему или последующему варианту осуществления/характерному признаку/аспекту, в котором эластомерный латекс вводят в контакт, по меньшей мере, с одним дестабилизирующим агентом, пока дестабилизированную дисперсию диоксида кремния объединяют с эластомерным латексом.

61. Способ по любому предыдущему или последующему варианту осуществления/характерному признаку/аспекту, дополнительно включающий введение потока твердой или полутвердой, содержащей диоксид кремния, непрерывной каучуковой фазы в контакт, по меньшей мере, с одним дестабилизирующим агентом.

62. Способ по любому предыдущему или последующему варианту осуществления/характерному признаку/аспекту, дополнительно включающий стадию проведения одного или нескольких следующих действий с твердой или полутвердой, содержащей диоксид кремния, непрерывной каучуковой фазой:

(a) перенесение твердой или полутвердой, содержащей диоксид кремния, непрерывной каучуковой фазы в емкость или контейнер для выдерживания;

(b) нагревание твердой или полутвердой, содержащей диоксид кремния, непрерывной каучуковой фазы для уменьшения содержания воды;

(c) воздействие кислотной ванны на твердую или полутвердую, содержащую диоксид кремния, непрерывную каучуковую фазу;

(d) механическая обработка твердой или полутвердой, содержащей диоксид кремния, непрерывной каучуковой фазы для уменьшения содержания воды.

63. Способ по любому предыдущему или последующему варианту осуществления/характерному признаку/аспекту, в котором указанный кремнийоксидный эластомерный композит представляет собой полутвердую содержащую диоксид кремния непрерывную каучуковую фазу, и указанный способ дополнительно включает превращение указанной полутвердой, содержащей диоксид кремния, непрерывной каучуковой фазы в твердую, содержащую диоксид кремния, непрерывную каучуковую фазу.

64. Способ по любому предыдущему или последующему варианту осуществления/характерному признаку/аспекту, в котором указанную полутвердую, содержащую диоксид кремния, непрерывную каучуковую фазу превращают в указанную твердую, содержащую диоксид кремния, непрерывную каучуковую фазу путем обработки водной текучей средой, содержащей, по меньшей мере, одну кислоту, или, по меньшей мере, одну соль, или комбинацию, по меньшей мере, одной кислоты и, по меньшей мере, одной соли.

65. Способ по любому предыдущему или последующему варианту осуществления/характерному признаку/аспекту, в котором указанная вторая текучая среда содержит смесь двух или нескольких различных эластомерных латексов.

66. Способ по любому предыдущему или последующему варианту осуществления/характерному признаку/аспекту, в котором указанный способ дополнительно включает обеспечение одной или нескольких дополнительных текучих сред и объединение одной или нескольких дополнительных текучих сред с указанными потоком первой текучей среды и потоком второй текучей среды, где указанные одна или несколько дополнительных текучих сред содержат одну или несколько текучих сред эластомерного латекса, и указанные дополнительные текучие среды являются такими же как или отличаются от указанного эластомерного латекса, присутствующего в указанном потоке второй текучей среды.

67. Способ по любому предыдущему или последующему варианту осуществления/характерному признаку/аспекту, в котором указанное содержание диоксида кремния в указанном кремнийоксидном эластомерном композите составляет приблизительно от 26 до 180 масс.ч. на 100 масс.ч. каучука.

68. Изделие из твердой, содержащей диоксид кремния и углеродную сажу, каучуковой фазы, содержащее, по меньшей мере, 25 масс.ч. диоксида кремния на 100 масс.ч. каучука, диспергированного в натуральном каучуке и, по меньшей мере, 40% масс. водной текучей среды, и имеющее размер по длине (L), где изделие из твердой, содержащей диоксид кремния, непрерывной каучуковой фазы может быть растянуто, по меньшей мере, до 130% от (L) без разрушения.

69. Изделие из твердой или полутвердой, содержащей диоксид кремния и углеродную сажу, непрерывной каучуковой фазы по любому предыдущему или последующему варианту осуществления/характерному признаку/аспекту, дополнительно содержащему, по меньшей мере, 10 масс.ч. на 100 масс.ч. каучука углеродной сажи, диспергированной в указанном натуральном каучуке.

[0166] Настоящее изобретение может включать комбинацию любых из этих различных характерных признаков или вариантов осуществления, которые выше и/или ниже представлены в любых формулировках и/или пунктах. Любая комбинация раскрытых признаков в данном описании считается частью настоящего изобретения и никакого ограничения не подразумевается относительно комбинируемых признаков.

[0167] Заявители специально включили в данное описание полное содержание всех цитируемых ссылок. Кроме того, когда количество, концентрация, или другое значение, или параметр приведены в виде интервала, предпочтительного интервала или перечня верхних предпочтительных значений и нижних предпочтительных значений, это следует понимать, как однозначное раскрытие всех интервалов, образованных из любой пары любой верхней границы интервала или предпочтительного значения и любой нижней границы интервала или предпочтительного значения, независимо от того, раскрыты или нет такие интервалы отдельно. Когда в данном документе приведен интервал численных значений, если не указано иное, интервал, как считают, включает их крайние точки и все целые числа и дробные числа в пределах интервала. Не предполагается, что объем изобретения ограничен конкретными значениями, перечисленными при определении интервала.

[0168] Другие варианты осуществления настоящего изобретения будут очевидны для специалистов в данной области техники из рассмотрения настоящего описания и при реализации настоящего изобретения, раскрытого в данном документе. Имеется в виду, что настоящее описание и примеры следует рассматривать как иллюстративные только с учетом истинного объема и сути изобретения, на которые указывают приведенная ниже формула изобретения и ее эквиваленты.

Похожие патенты RU2689750C1

название год авторы номер документа
СПОСОБЫ ПОЛУЧЕНИЯ ЭЛАСТОМЕРНОГО КОМПОЗИТА, АРМИРОВАННОГО ДИОКСИДОМ КРЕМНИЯ, И ПРОДУКТЫ, СОДЕРЖАЩИЕ ЭЛАСТОМЕРНЫЙ КОМПОЗИТ 2016
  • Сюн Цзиньчэн
  • Грин Мартин К.
  • Уилльямс Уилльям Р.
  • Фомичев Дмитрий
  • Адлер Джеральд Д.
  • Макдональд Дуэйн Г.
  • Грош Рон
RU2685310C1
СПОСОБЫ ПОЛУЧЕНИЯ ЭЛАСТОМЕРНОГО КОМПОЗИТА, АРМИРОВАННОГО ДИОКСИДОМ КРЕМНИЯ, И ПРОДУКТЫ, СОДЕРЖАЩИЕ ЭЛАСТОМЕРНЫЙ КОМПОЗИТ 2016
  • Сюн, Цзиньчэн
  • Грин, Мартин К.
  • Уилльямс, Уилльям Р.
  • Фомичев, Дмитрий
  • Адлер, Джеральд Д.
  • Макдональд, Дуэйн Г.
  • Грош, Рон
  • Моррис, Майкл Д.
RU2703619C2
ЭЛАСТОМЕРНЫЙ КОМПОЗИТ, АРМИРОВАННЫЙ ДИОКСИДОМ КРЕМНИЯ, И ПРОДУКТЫ, СОДЕРЖАЩИЕ ЭЛАСТОМЕРНЫЙ КОМПОЗИТ 2016
  • Сюн Цзиньчэн
  • Грин Мартин К.
  • Уилльямс Уилльям Р.
  • Фомичев Дмитрий
  • Адлер Джеральд Д.
  • Макдональд Дуэйн Г.
  • Грош Рон
RU2690260C1
ЭЛАСТОМЕРНЫЙ КОМПОЗИТ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2009
  • Ван Мэн-Цзяо
  • Ван Тин
  • Моррис Майкл Д.
  • Чжан Сюань
  • Грин Мартин К.
  • Тирумала Виджай Р.
RU2482137C2
ЭЛАСТОМЕРНАЯ СМЕСЬ С ОЧЕНЬ ХОРОШЕЙ ДИСПЕРСИЕЙ НАПОЛНИТЕЛЯ В ЭЛАСТОМЕРНОЙ МАТРИЦЕ 2011
  • Томассон Дамьен
RU2606421C2
ЭЛАСТОМЕРНАЯ КОМПОЗИЦИЯ, ИМЕЮЩАЯ ОЧЕНЬ ХОРОШУЮ ДИСПЕРСИЮ НАПОЛНИТЕЛЯ В ЭЛАСТОМЕРНОЙ МАТРИЦЕ 2012
  • Севиньон Марк
  • Белен Сесиль
RU2612743C2
ЭЛАСТОМЕРНАЯ КОМПОЗИЦИЯ, ПРОЯВЛЯЮЩАЯ ХОРОШЕЕ ДИСПЕРГИРОВАНИЕ НАПОЛНИТЕЛЯ В ЭЛАСТОМЕРНОЙ МАТРИЦЕ 2011
  • Томассон Дамьен
  • Севиньон Марк
RU2609471C2
ЭЛАСТОМЕРНЫЕ КОМПОЗИТЫ, СОДЕРЖАЩИЕ МОДИФИЦИРОВАННЫЕ НАПОЛНИТЕЛИ И ФУНКЦИОНАЛИЗИРОВАННЫЕ ЭЛАСТОМЕРЫ 2012
  • Белмонт Джеймс А.
  • Тирумала Виджай Р.
  • Чжан Пин
RU2598464C2
СПОСОБЫ ПРИГОТОВЛЕНИЯ КОМПОЗИТА, СОДЕРЖАЩЕГО ЭЛАСТОМЕР И НАПОЛНИТЕЛЬ 2020
  • Куцовский, Яков Е.
  • Грин, Мартин К.
  • Чжан, Пин
  • Доши, Дхавал А.
  • Ли, Цзяси
  • Моррис, Майкл Д.
  • Халт, Брайан Н.
  • Дикинсон, Ральф Э.
  • Юровская, Ирина С.
  • Румпф, Фредерик Х.
  • Чаудхари, Сатиан
  • Али, Хассан М.
  • Никова, Ани Т.
  • Сюн, Цзиньчэн
RU2824975C2
АРМИРОВАННЫЕ ЭЛАСТОМЕРЫ 2010
  • Робиссон Агат
  • Гангули Парта
RU2520794C2

Иллюстрации к изобретению RU 2 689 750 C1

Реферат патента 2019 года СПОСОБ ПОЛУЧЕНИЯ ЭЛАСТОМЕРНОГО КОМПОЗИТА, АРМИРОВАННОГО ДИОКСИДОМ КРЕМНИЯ И УГЛЕРОДНОЙ САЖЕЙ, И ПРОДУКТЫ, СОДЕРЖАЩИЕ ЭЛАСТОМЕРНЫЙ КОМПОЗИТ

Изобретение относится к способу получения эластомерного композита, армированного диоксидом кремния. Способ включает обеспечение непрерывного потока под давлением первой текучей среды, содержащей диспергированные частицы и дестабилизированную дисперсию диоксида кремния, имеющую значение дзета-потенциала менее, чем 30 мВ, и непрерывного потока второй текучей среды, содержащей эластомерный латекс. Изобретение позволяет улучшить качество эластомерного композита. 5 н. и 63 з.п. ф-лы, 7 ил., 5 табл.

Формула изобретения RU 2 689 750 C1

1. Способ производства кремнийоксидного эластомерного композита, включающий:

(a) обеспечение непрерывного потока под давлением по меньшей мере одной первой текучей среды, содержащей диспергированные частицы и содержащей дестабилизированную дисперсию диоксида кремния, имеющую значение дзета-потенциала менее чем 30 мВ, и непрерывного потока по меньшей мере второй текучей среды, содержащей эластомерный латекс;

(b) обеспечение объемного расхода первой текучей среды относительно объемного расхода второй текучей среды для получения содержания диоксида кремния приблизительно от 15 до 180 мас.ч. на 100 мас.ч. каучука в кремнийоксидном эластомерном композите;

(c) объединение потока первой текучей среды и потока второй текучей среды с ударной нагрузкой, обладающей энергией, достаточной для распределения диоксида кремния внутри эластомерного латекса с получением потока твердой, содержащей диоксид кремния, непрерывной каучуковой фазы или полутвердой, содержащей диоксид кремния, непрерывной каучуковой фазы, представляющих собой кремнийоксидный эластомерный композит,

где указанную по меньшей мере одну первую текучую среду предоставляют в виде:

i) двух потоков, содержащих дисперсию, содержащую углеродную сажу, и дестабилизированную дисперсию, содержащую диоксид кремния; или

ii) одного потока, содержащего дисперсию, содержащую углеродную сажу, и дестабилизированную дисперсию, содержащую диоксид кремния; или

iii) одного потока дестабилизированной дисперсии, содержащей диоксид кремния и углеродную сажу.

2. Способ по п. 1, в котором указанная по меньшей мере одна первая текучая среда представляет собой дестабилизированную дисперсию, содержащую диоксид кремния и углеродную сажу, и указанный способ дополнительно включает объединение сухой углеродной сажи, сухого диоксида кремния и водной среды с получением указанной дестабилизированной дисперсии, содержащей по меньшей мере 45 мас.% диоксида кремния в пересчете на все частицы и углеродную сажу.

3. Способ по п. 1, дополнительно включающий проведение по меньшей мере одной стадии механической обработки одной или нескольких указанной(ых) дисперсии(й).

4. Способ по п. 3, в котором указанная стадия механической обработки включает измельчение, перемалывание, перетирание, ударное измельчение или обработку текучей среды с высоким усилием сдвига или любую их комбинацию.

5. Способ по п. 4, в котором указанная стадия механической обработки включает измельчение указанной(ых) дисперсии(й) один или несколько раз.

6. Способ по п. 3, в котором указанная стадия механической обработки уменьшает агломерацию частиц и/или регулирует распределение частиц по размерам.

7. Способ производства кремнийоксидного эластомерного композита, включающий:

(a) обеспечение непрерывного потока под давлением по меньшей мере первой текучей среды, содержащей дестабилизированную дисперсию диоксида кремния, и непрерывного потока по меньшей мере второй текучей среды, содержащей эластомерный латекс;

(b) обеспечение объемного расхода первой текучей среды относительно объемного расхода второй текучей среды для получения содержания диоксида кремния приблизительно от 15 до 180 мас.ч. на 100 мас.ч. каучука в кремнийоксидном эластомерном композите;

(c) обеспечение непрерывного потока флюидизированной углеродной сажи в сухой форме;

(d) объединение потока первой текучей среды и потока второй текучей среды и указанной углеродной сажи при ударной нагрузке, обладающей энергией, достаточной для распределения диоксида кремния и углеродной сажи внутри эластомерного латекса с получением потока твердой, содержащей диоксид кремния и углеродную сажу, непрерывной каучуковой фазы или полутвердой, содержащей диоксид кремния и углеродную сажу, непрерывной каучуковой фазы,

где указанный поток углеродной сажи объединяют с указанной первой текучей средой перед стадией (d), или объединяют с указанной второй текучей средой перед стадией (d), или добавляют на стадии (d).

8. Способ по п. 1, в котором углеродная сажа присутствует в указанном кремнийоксидном эластомерном композите в количестве приблизительно от 10 до 50 мас.% из расчета на все микрочастицы, присутствующие в указанном кремнийоксидном эластомерном композите.

9. Способ по п. 1, в котором указанный поток указанной твердой или полутвердой, содержащей диоксид кремния, непрерывной каучуковой фазы образуется за две секунды или меньше после объединения указанных потока первой текучей среды и потока второй текучей среды.

10. Способ по п. 1, в котором указанный поток указанной твердой или полутвердой, содержащей диоксид кремния, непрерывной каучуковой фазы образуется приблизительно за 50-1500 мс после объединения указанных потока первой текучей среды и потока второй текучей среды.

11. Способ по п. 1, в котором указанная текучая среда на стадии (a) дополнительно содержит по меньшей мере одну соль.

12. Способ по п. 1, в котором указанная текучая среда на стадии (a) дополнительно содержит по меньшей мере одну кислоту.

13. Способ по п. 1, в котором указанная твердая или полутвердая, содержащая диоксид кремния, непрерывная каучуковая фаза содержит приблизительно от 40 до 95 мас.% воды или водной текучей среды.

14. Способ по п. 1, в котором указанное объединение протекает в реакционной зоне, имеющей объем приблизительно от 10 до 500 см3.

15. Способ по п. 1, в котором относительные объемные расходы находятся при соотношении объемных расходов первой текучей среды и второй текучей среды от 0,4:1 до 3,2:1.

16. Способ по п. 1, в котором относительные объемные расходы находятся при соотношении объемных расходов первой текучей среды и второй текучей среды от 0,2:1 до 2,8:1.

17. Способ по п. 1, в котором относительные объемные расходы находятся при соотношении объемных расходов первой текучей среды и второй текучей среды от 0,4:1 до 3,2:1 и указанная дестабилизированная дисперсия диоксида кремния включает по меньшей мере одну соль.

18. Способ по п. 1, в котором относительные объемные расходы находятся при соотношении объемных расходов первой текучей среды и второй текучей среды от 0,2:1 до 2,8:1 и указанная дестабилизированная дисперсия диоксида кремния включает по меньшей мере одну кислоту.

19. Способ по п. 1, в котором указанный эластомерный латекс содержит основание, указанная дестабилизированная дисперсия диоксида кремния содержит по меньшей мере одну кислоту и мольное отношение ионов водорода в указанной кислоте в указанной первой текучей среде к указанному основанию в указанной второй текучей среде составляет от 1 до 4,5.

20. Способ по п. 1, в котором указанная дестабилизированная дисперсия диоксида кремния содержит по меньшей мере одну кислоту и в котором указанный эластомерный латекс, присутствующий в указанной второй текучей среде, имеет концентрацию аммиака приблизительно от 0,3 до 0,7 мас.% в пересчете на массу эластомерного латекса и мольное соотношение ионов водорода в указанной кислоте в указанной первой текучей среде и аммиака в указанной второй текучей среде составляет по меньшей мере 1:1.

21. Способ по п. 1, в котором указанное содержание диоксида кремния в указанном кремнийоксидном эластомерном композите составляет приблизительно от 26 до 80 мас.ч. на 100 мас.ч. каучука.

22. Способ по п. 1, в котором указанное содержание диоксида кремния в указанном кремнийоксидном эластомерном композите составляет приблизительно от 40 до 115 мас.ч. на 100 мас.ч. каучука.

23. Способ по п. 1, в котором указанная дестабилизированная дисперсия диоксида кремния содержит приблизительно от 6 до 35 мас.% диоксида кремния.

24. Способ по п. 1, в котором указанная дестабилизированная дисперсия диоксида кремния содержит приблизительно от 10 до 28 мас.% диоксида кремния.

25. Способ по п. 1, дополнительно включающий выделение указанной твердой или полутвердой, содержащей диоксид кремния, непрерывной каучуковой фазы при давлении окружающей среды.

26. Способ по п. 1, в котором указанная дестабилизированная дисперсия диоксида кремния включает по меньшей мере одну соль, где концентрация ионов соли в указанной дестабилизированной дисперсии составляет приблизительно от 10 до 160 мМ.

27. Способ по п. 1, в котором указанная дестабилизированная дисперсия диоксида кремния включает по меньшей мере одну соль, где указанная соль присутствует в указанной дестабилизированной дисперсии в количестве приблизительно от 0,2 до 2 мас.% из расчета на массу указанной дестабилизированной дисперсии.

28. Способ по п. 1, в котором указанная дестабилизированная дисперсия диоксида кремния включает по меньшей мере одну кислоту, где указанная кислота присутствует в указанной дестабилизированной дисперсии в количестве приблизительно от 0,8 до 7,5 мас.% из расчета на массу указанной дестабилизированной дисперсии.

29. Способ по п. 1, в котором указанная дестабилизированная дисперсия диоксида кремния включает по меньшей мере одну кислоту, где концентрация кислоты в указанной дестабилизированной дисперсии составляет приблизительно от 200 до 1000 мМ.

30. Способ по п. 1, в котором стадию (c) проводят с помощью непрерывного потока первой текучей среды при скорости A и непрерывного потока второй текучей среды при скорости B и скорость A по меньшей мере в 2 раза выше, чем скорость B.

31. Способ по п. 1, в котором стадию (c) проводят в полуограниченной реакционной зоне и первая текучая среда имеет скорость, достаточную, чтобы вызвать кавитацию в реакционной зоне при объединении со второй текучей средой.

32. Способ по п. 31, в котором вторая текучая среда имеет скорость, достаточную для создания турбулентного потока.

33. Способ по п. 1, в котором указанная дисперсия диоксида кремния содержит поверхностно-модифицированный диоксид кремния, имеющий фрагменты гидрофобной поверхности.

34. Способ по п. 1, в котором указанная первая текучая среда содержит водную текучую среду.

35. Способ по п. 1, в котором указанная первая текучая среда содержит водную текучую среду и приблизительно от 6 до 31 мас.% диоксида кремния и по меньшей мере 3 мас.% углеродной сажи.

36. Способ по п. 1, в котором указанная первая текучая среда содержит водную текучую среду, дополнительно содержащую по меньшей мере одну соль и по меньшей мере одну кислоту.

37. Способ по п. 1, дополнительно включающий дестабилизацию дисперсии диоксида кремния за счет понижения pH дисперсии диоксида кремния с тем, чтобы получить дестабилизированную дисперсию диоксида кремния, предусмотренную на стадии (a).

38. Способ по п. 1, дополнительно включающий дестабилизацию дисперсии диоксида кремния за счет понижения pH дисперсии диоксида кремния до значения pH от 2 до 4 с тем, чтобы получить дестабилизированную дисперсию диоксида кремния, предусмотренную на стадии (a).

39. Способ по п. 1, в котором указанный диоксид кремния имеет гидрофильную поверхность.

40. Способ по п. 1, в котором указанный диоксид кремния представляет собой высокодиспергируемый диоксид кремния (ВДДК) (HDS).

41. Способ по п. 12, в котором указанная кислота включает уксусную кислоту, муравьиную кислоту, лимонную кислоту, фосфорную кислоту или серную кислоту или любые их комбинации.

42. Способ по п. 12, в котором указанная кислота имеет молекулярную массу или среднюю молекулярную массу ниже 200.

43. Способ по п. 11, котором указанная соль содержит по меньшей мере одну соль металла группы 1, 2 или 13.

44. Способ по п. 11, в котором указанная соль содержит кальциевую соль, магниевую соль или алюминиевую соль или их комбинацию.

45. Способ по п. 1, дополнительно включающий проведение механической обработки диоксида кремния для уменьшения агломерации частиц и/или для регулирования распределения частиц по размерам.

46. Способ по п. 1, в котором диоксид кремния представляет собой осажденный диоксид кремния, или коллоидальный диоксид кремния, или коллоидный диоксид кремния, или любые их комбинации.

47. Способ по п. 1, в котором указанный диоксид кремния имеет площадь поверхности по БЭТ приблизительно от 20 до 450 м2/г.

48. Способ по п. 1, в котором указанный эластомерный латекс представляет собой латекс натурального каучука.

49. Способ по п. 48, в котором указанный латекс натурального каучука находится в форме млечного сока, латексного концентрата, очищенного латекса, химически модифицированного латекса, ферментативно модифицированного латекса или в любых их комбинациях.

50. Способ по п. 48, в котором указанный латекс натурального каучука находится в форме латекса эпоксидированного натурального каучука.

51. Способ по п. 48, в котором указанный латекс натурального каучука находится в форме латексного концентрата.

52. Способ по п. 1, дополнительно включающий смешение кремнийоксидного эластомерного композита с дополнительным эластомером с получением эластомерной композитной смеси.

53. Способ получения каучукового компаунда, включающий:

(a) проведение способа по п. 1 и

(b) смешение кремнийоксидного эластомерного композита с другими компонентами с получением каучукового компаунда, причем указанные другие компоненты включают по меньшей мере один антиоксидант, серу, полимер, отличный от эластомерного латекса, катализатор, масло для наполнения, смолу, связующий агент, дополнительный(е) эластомерный(е) композит(ы) или армирующий наполнитель или любые их комбинации.

54. Способ получения каучукового изделия, выбираемого из шин, формованных изделий, крепежных элементов, прокладочных материалов, конвейерных лент, уплотняющих материалов или облицовок, включающий:

(a) проведение способа по п. 1,

(b) компаундирование кремнийоксидного эластомерного композита с другими компонентами с получением компаунда и

(c) вулканизацию компаунда с получением указанного каучукового изделия.

55. Способ по п. 1, дополнительно включающий проведение одной или нескольких стадий последующей обработки после выделения кремнийоксидного эластомерного композита.

56. Способ по п. 55, в котором стадии последующей обработки включают по меньшей мере стадию:

(a) обезвоживания кремнийоксидного эластомерного композита с получением обезвоженной смеси;

(b) смешения или компаундирования обезвоженной смеси с получением компаундированного кремнийоксидного эластомерного композита;

(c) перемалывания компаундированного кремнийоксидного эластомерного композита с получением молотого кремнийоксидного эластомерного композита;

(d) гранулирования или перемешивания молотого кремнийоксидного эластомерного композита;

(e) укладывания в кипы кремнийоксидного эластомерного композита после гранулирования или перемешивания с получением кипованного кремнийоксидного эластомерного композита;

(f) экструдирования кремнийоксидного эластомерного композита;

(g) каландрования кремнийоксидного эластомерного композита и/или

(h) необязательно разделения на части кипованного кремнийоксидного эластомерного композита и смешения с другими компонентами.

57. Способ по п. 55, в котором стадии последующей обработки включают по меньшей мере вальцевание кремнийоксидного эластомерного композита.

58. Способ по п. 55, в котором стадии последующей обработки включают сдавливание твердой или полутвердой, содержащей диоксид кремния, непрерывной каучуковой фазы для удаления приблизительно от 1 до 15 мас.% водной текучей среды, находящейся в ней.

59. Способ по п. 1, в котором эластомерный латекс вводят в контакт по меньшей мере с одним дестабилизирующим агентом, пока дестабилизированную дисперсию диоксида кремния объединяют с эластомерным латексом.

60. Способ по п. 1, дополнительно включающий введение потока твердой или полутвердой, содержащей диоксид кремния, непрерывной каучуковой фазы в контакт по меньшей мере с одним дестабилизирующим агентом.

61. Способ по п. 1, дополнительно включающий стадию проведения одного или нескольких следующих действий с твердой или полутвердой, содержащей диоксид кремния, непрерывной каучуковой фазой:

(a) перенесение твердой или полутвердой, содержащей диоксид кремния, непрерывной каучуковой фазы в емкость или контейнер для выдерживания;

(b) нагревание твердой или полутвердой, содержащей диоксид кремния, непрерывной каучуковой фазы для уменьшения содержания воды;

(c) воздействие кислотной ванны на твердую или полутвердую, содержащую диоксид кремния, непрерывную каучуковую фазу;

(d) механическая обработка твердой или полутвердой, содержащей диоксид кремния, непрерывной каучуковой фазы для уменьшения содержания воды.

62. Способ по п. 1, в котором указанный кремнийоксидный эластомерный композит представляет собой полутвердую, содержащую диоксид кремния, непрерывную каучуковую фазу, и указанный способ дополнительно включает превращение указанной полутвердой, содержащей диоксид кремния, непрерывной каучуковой фазы в твердую, содержащую диоксид кремния, непрерывную каучуковую фазу.

63. Способ по п. 62, в котором указанную полутвердую, содержащую диоксид кремния, непрерывную каучуковую фазу превращают в указанную твердую, содержащую диоксид кремния, непрерывную каучуковую фазу путем обработки водной текучей средой, содержащей по меньшей мере одну кислоту, или по меньшей мере одну соль, или комбинацию по меньшей мере одной кислоты и по меньшей мере одной соли.

64. Способ по п. 1, в котором указанная вторая текучая среда содержит смесь двух или нескольких различных эластомерных латексов.

65. Способ по п. 1, в котором указанный способ дополнительно включает обеспечение одной или нескольких дополнительных текучих сред и объединение одной или нескольких дополнительных текучих сред с указанными потоком первой текучей среды и потоком второй текучей среды, где указанные одна или несколько дополнительных текучих сред содержат одну или несколько текучих сред эластомерного латекса и указанные дополнительные текучие среды являются такими же как или отличаются от указанного эластомерного латекса, присутствующего в указанном потоке второй текучей среды.

66. Способ по п. 1, в котором указанное содержание диоксида кремния в указанном кремнийоксидном эластомерном композите составляет приблизительно от 26 до 180 мас.ч. на 100 мас.ч. каучука.

67. Изделие из твердой, содержащей диоксид кремния и углеродную сажу, непрерывной каучуковой фазы, содержащее по меньшей мере 25 мас.ч. диоксида кремния на 100 мас.ч. каучука, диспергированного в натуральном каучуке, и по меньшей мере 40 мас.% водной текучей среды и имеющее размер по длине (L), где изделие из твердой, содержащей диоксид кремния, непрерывной каучуковой фазы выполнено с возможностью растягивания по меньшей мере до 130% от (L) без разрушения.

68. Изделие из твердой или полутвердой, содержащей диоксид кремния и углеродную сажу, непрерывной каучуковой фазы по п. 67, дополнительно включающее по меньшей мере 10 мас.ч. на 100 мас.ч. каучука углеродной сажи, диспергированной в указанном натуральном каучуке.

Документы, цитированные в отчете о поиске Патент 2019 года RU2689750C1

US 6048923 A, 11.04.2000
Устройство для закрепления лыж на раме мотоциклов и велосипедов взамен переднего колеса 1924
  • Шапошников Н.П.
SU2015A1
Устройство для закрепления лыж на раме мотоциклов и велосипедов взамен переднего колеса 1924
  • Шапошников Н.П.
SU2015A1
Изложница с суживающимся книзу сечением и с вертикально перемещающимся днищем 1924
  • Волынский С.В.
SU2012A1
US 3700620 A, 24.10.1972
Способ получения резиновой смеси 1972
  • Герхард Берг
  • Карл-Гейнц Нордзик
  • Гюнтер Маас
  • Вильгельм Шэнцер
SU464117A3
ЖИДКОФАЗНЫЙ СПОСОБ ПРИГОТОВЛЕНИЯ КАУЧУКОВЫХ МАТОЧНЫХ СМЕСЕЙ, СОДЕРЖАЩИХ БЕЛУЮ САЖУ 2009
  • Рахматуллин Артур Игоревич
  • Елисеева Ирина Владиславовна
  • Нагорняк Айрат Филиппович
  • Пронькина Анна Викторовна
  • Мащенко Владимир Игоревич
  • Казаков Юрий Михайлович
  • Максимов Денис Александрович
  • Гафаров Азат Магдеевич
  • Галибеев Сергей Сергеевич
RU2405003C2

RU 2 689 750 C1

Авторы

Сюн Цзиньчэн

Грин Мартин К.

Уилльямс Уилльям Р.

Фомичев Дмитрий

Адлер Джеральд Д.

Макдональд Дуэйн Г.

Грош Рон

Моррис Майкл Д.

Даты

2019-05-28Публикация

2016-07-13Подача