СПОСОБ ПОВЫШЕНИЯ ВЕРХНЕГО ПРЕДЕЛА ИЗМЕРЕНИЯ ДАВЛЕНИЯ ТЕРМОЭЛЕКТРОННОГО МАНОМЕТРА Российский патент 2019 года по МПК G01L21/30 G01L21/12 

Описание патента на изобретение RU2690049C1

Изобретение относится к технике измерения вакуума и может быть использовано при создании термоэлектронных манометров с прямонакальным катодом и пределами измерения от 105 Па до 10-8 Па.

Для измерения высокого и сверхвысокого вакуума широкое распространение получили термоэлектронные манометры с ионизационными манометрическими преобразователями с термокатодом [1, 2]. В них электроны, испускаемые нагретым до 2500 К прямонакальным катодом, ускоряются в направлении сетчатого анода, находящегося под положительным относительно катода потенциалом, и производят ионизацию молекул газа. Часть образующихся положительных ионов поступает в цепь коллектора, потенциал которого ниже потенциала катода. В рабочем диапазоне измеряемых давлений ток коллектора ионов пропорционален давлению газа. С помощью такого преобразователя обеспечивается измерение давления в диапазоне 1-10-8 Па. Например, отечественный ионизационный манометрический преобразователь ПМИ-2 измеряет давление в диапазоне 1-10-5 Па. Отечественный ионизационный манометрический преобразователь ПМИ-27 измеряет давление газа в диапазоне 1-10-8 Па. Современные манометрические преобразователи типа Баярда-Альперта корейской компании KVC измеряют давление в пределах 1-10-8 Па, манометрические преобразователи AIGX (модель AIGX-S-NW25) компании Edwards - 5 - 5⋅10-8 Па. [3].

Измерение давлений выше 1 Па ограничено тем, что ток ионов, поступающих на катод, становится соизмеримым с электронным, что приводит к появлению погрешности в поддержании постоянным электронного ионизирующего тока, возможностью возникновения газового разряда между катодом и ускоряющим электродом, окислением нагретого до температуры 2500 К катода и его разрушением. Как правило, в вакуумных системах при наличии ионизационного манометрического преобразователя обязательно присутствует низковакуумный манометрический преобразователь, поскольку откачка вакуумной системы обычно начинается с атмосферного давления и необходимо определять давление, при котором можно включить термоэлектронный манометр.

Для расширения диапазона измеряемых давлений в вакуумной системе используют либо два отдельных манометрических преобразователя (низковакуумный и высоковакуумный) со своими измерительными блоками, либо размещение в одном вакуумноплотном баллоне низковакуумного и высоковакуумного манометрических преобразователей. Так в широкодиапазонном вакуумметре фирмы Televac СС-10 в диапазоне давлений от 105 Па до 1 Па используется кристаллический кварцевый манометрический преобразователь, а в диапазоне 1 Па-10-7 Па используется двойной инверсно-магнетронный манометрический преобразователь с холодным катодом [4].

С такой же целью в манометрическом преобразователе WPC400 в одном баллоне размещены манометрический преобразователь Пирани и ионизационный манометрический преобразователь с холодным катодом [5].

В манометрическом преобразователе WPH-300 в одном баллоне размещены манометрический преобразователь Пирани и ионизационный манометрический преобразователь с горячим катодом (манометрический преобразователь типа Баярда-Альперта) [5]. Оба манометрических преобразователя действуют одновременно. Аналогичное решение использовано в манометрических преобразователях компании Agilent серий FRG-730 [6].

Наиболее близким к заявляемому техническому решению можно считать способ расширения диапазона измеряемого давления, основанный на размещении в одном баллоне ионизационного манометрического преобразователя типа Баярда-Альперта и теплового манометрического преобразователя (манометра Пирани) [5, 6].

В то же время многими фирмами выпускаются ионизационные манометрические преобразователи без встроенных в их баллон низковакуумных манометрических преобразователей, например, датчики AIGX (модель AIGX-S-NW25) компании Edwards с диапазоном измеряемых давлений 5 - 5⋅10-8 Па. Все отечественные ионизационные преобразователи с термокатодом (ПМИ-2, ПМИ-27, ПМИ-51, МИ-10-2) также не имеют встроенных в баллон низковакуумных манометрических преобразователей.

Технической задачей, на решение которой направлено предлагаемое изобретение, является расширение верхнего предела измерения давления термоэлектронного манометра в сторону больших давлений, вплоть до атмосферного, при помощи электродной системы ионизационного манометрического преобразователя.

Эта задача решается путем использования нити катода ионизационного манометрического преобразователя для реализации теплового манометрического преобразователя (манометра Пирани [1, 2]), в котором используется зависимость сопротивления нагретой нити накала катода от давления газа. С целью расширения верхнего предела измерения давления газа используется переключение ионизационного преобразователя из ионизационного режима в режим теплового манометрического преобразователя, который реализуется путем приложения к выводам катода ионизационного манометрического преобразователя напряжения в виде периодически следующих прямоугольных импульсов и определения интеграла тока накала по времени за время действия импульса напряжения, а в качестве меры давления используется информативный параметр X=(Ip-I0)/(Im-I0), где Ip - интеграл тока накала катода по времени за время действия импульса при текущем давлении, I0 - интеграл тока накала катода по времени за время действия импульса при давлении ниже 0,133 Па, Im - интеграл тока накала катода по времени за время действия импульса при атмосферном давлении, а значение параметра X переводится в величину давления с помощью математического выражения, соответствующего используемому типу ионизационного манометрического ионизационного преобразователя, по предварительно полученным значениям Im и I0, при этом на другие электроды ионизационного манометрического преобразователя напряжения не подаются.

Для построения градуировочной кривой теплового манометрического преобразователя производится измерение интегралов тока накала катода при атмосферном давлении и давлении ниже 0,133 Па. По этим параметрам с помощью соответствующего математического выражения для каждого типа ионизационного манометрического преобразователя воспроизводится граду-ировочная кривая теплового манометрического преобразователя в памяти измерительного блока вакуумметра.

Импульсный режим нагрева нити накала используется для снижения времени воздействия агрессивных газов на разогретую до температуры порядка 700 К нить накала. Интегрирование тока накала за время действия импульса обеспечивает снижение погрешности измерения давления при действии электрических помех.

Поскольку в различных экземплярах ионизационных манометрических преобразователей одного типа имеется разброс сопротивлений нити накала, то определяется относительное изменение сопротивления при данном давлении газа, что обеспечивается делением (IP-I0) на (Im-I0).

Преимуществом предлагаемого способа расширения диапазона измерения давления по сравнению с аналогами является возможность использования имеющихся ионизационных манометрических преобразователей с прямонакальным катодом для реализации широко диапазонного вакуумметра, которые значительно дешевле комбинированных манометрических преобразователей.

Литература

1. Востров Г.А., Розанов Л.Н. Вакуумметры. - Л.: Машиностроение, 1967.

2. Гуляев М.А., А.В. Ерюхин Измерение вакуума. - М: Издательство комитета стандартов 1967, 148 с.

3. www.edwardsvacuum.com

4. Ошибка! Недопустимый объект гиперссылки.w.televac.ru>catalog/cc_10_wide_wakuumetr.php

5. www.zencoplazma.ru

6. www.taco-line.ru

Похожие патенты RU2690049C1

название год авторы номер документа
ИОНИЗАЦИОННЫЙ МАНОМЕТР ОРБИТРОННОГО ТИПА 2016
  • Базылев Виктор Кузьмич
  • Жидков Александр Михайлович
  • Коротченко Владимир Александрович
  • Прадед Владимир Васильевич
  • Скворцов Вадим Эвальдович
RU2649066C1
ИОНИЗАЦИОННЫЙ МАНОМЕТРИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ 2016
  • Базылев Виктор Кузьмич
  • Коротченко Владимир Александрович
  • Жидков Александр Михайлович
  • Скворцов Вадим Эвальдович
RU2656091C1
Ионизационный манометрический преобразователь 1982
  • Дрель Николай Иойнович
  • Пенчко Евгений Ануфриевич
SU1012058A1
Способ измерения низких давлений газа 1952
  • Левин И.А.
SU96283A1
Ионизационный вакуумметр 1977
  • Берман Л.Г.
  • Биршерт А.А.
  • Гринченко В.Т.
  • Пенчко Е.А.
SU669833A1
КОМБИНИРОВАННЫЙ ИОНИЗАЦИОННЫЙ ВАКУУММЕТРИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ 2008
  • Дрейзин Валерий Элезарович
  • Овсянников Юрий Александрович
  • Поляков Валентин Геннадьевич
  • Поветкин Роман Алексеевич
  • Бабаскин Станислав Олегович
RU2389990C2
Ионизационный вакуумметр 1978
  • Биршерт Анатолий Андреевич
  • Григорьев Андрей Макарович
  • Творогов Игорь Викторович
  • Абрамович Семен Моисеевич
  • Берман Леонид Григорьевич
SU697850A1
Вакуумметр 1978
  • Таланчук Петр Михайлович
  • Царенко Алик Викторович
SU739353A1
Учебное устройство по физике 1986
  • Кочемировский Алексей Серафимович
  • Федорченко Валентина Ивановна
  • Абрамова Татьяна Витальевна
SU1417030A1
СПОСОБ КОНТРОЛЯ ПРОЦЕССА ИСПАРЕНИЯ МАТЕРИАЛАВ ВАКУУМЕ 1967
SU204484A1

Реферат патента 2019 года СПОСОБ ПОВЫШЕНИЯ ВЕРХНЕГО ПРЕДЕЛА ИЗМЕРЕНИЯ ДАВЛЕНИЯ ТЕРМОЭЛЕКТРОННОГО МАНОМЕТРА

Изобретение относится к технике измерения вакуума и может быть использовано при создании термоэлектронных манометров с пределами измерения от атмосферного давления до 10-8 Па с помощью ионизационного манометрического преобразователя. Предлагается способ повышения верхнего предела измерения давления термоэлектронного манометра с ионизационным манометрическим преобразователем с прямонакальным катодом. Согласно заявленному способу с целью расширения верхнего предела измерения давления газа до атмосферного используется переключение ионизационного манометрического преобразователя в режим теплового манометрического преобразователя (манометра Пирани), реализующийся путем приложения к нити накала катода напряжения в виде периодически следующих прямоугольных импульсов и определения интеграл тока нити накала по времени за время действия импульса напряжения. В качестве меры давления используется информативный параметр X=(Ip-I0)/(Im-I0), где Ip - интеграл тока накала катода по времени за время действия импульса при текущем давлении, I0 - интеграл тока накала катода по времени за время действия импульса при давлении ниже 0,133 Па, Im - интеграл тока накала катода по времени за время действия импульса при атмосферном давлении, а значение параметра X переводится в величину давления с градуировочной зависимости параметра Х от давления газа, полученной предварительно совместно со значениями Im и I0 для используемого типа ионизационного манометрического ионизационного преобразователя, при этом на другие электроды ионизационного манометрического преобразователя напряжения не подаются. Технический результат - повышение верхнего предела измерения давления газа до атмосферного. 2 з.п. ф-лы.

Формула изобретения RU 2 690 049 C1

1. Способ повышения верхнего предела измерения давления термоэлектронного манометра, заключающийся в использовании для давлений ниже 0,133 Па ионизационного режима работы ионизационного манометрического преобразователя, отличающийся тем, что с целью расширения верхнего предела измерения давления газа до атмосферного используется переключение ионизационного манометрического преобразователя в режим манометра Пирани, который реализуется путем приложения к выводам катода ионизационного манометрического преобразователя напряжения в виде периодически следующих прямоугольных импульсов и определения интеграла тока накала по времени за время действия импульса напряжения, а в качестве меры давления используется информативный параметр X=(Ip-I0)/(Im-I0), где Ip - интеграл тока накала катода по времени за время действия импульса при текущем давлении, I0 - интеграл тока накала катода по времени за время действия импульса при давлении ниже 0,133 Па, Im - интеграл тока накала катода по времени за время действия импульса при атмосферном давлении, а значение параметра X переводится в величину давления с помощью градуировочной зависимости параметра X от давления газа, полученной предварительно совместно со значениями Im и I0 для используемого типа ионизационного манометрического преобразователя, при этом на другие электроды ионизационного манометрического преобразователя напряжения не подаются.

1. Способ по п. 1, отличающийся тем, что величина амплитуды импульса напряжения выбирается из условия допустимой температуры нагрева нити накала (500-700 К) при атмосферном давлении воздуха, которая исключает снижение эмиссионной способности катода при переключении манометрического преобразователя в ионизационный режим, а длительность импульса напряжения выбирается достаточной (например, 2 с) для повышения температуры катода до установившегося значения, период следования импульсов выбирается большим времени остывания катода до температуры окружающей среды (например, 20 с).

2. Способ по п. 1, отличающийся тем, что для уменьшения погрешности измерения давления при первом использовании образца манометрического преобразователя определяются значения интеграла тока по времени за время действия импульса напряжения Iр при атмосферном давлении и I0 при давлении, меньшем 0,133 Па.

Документы, цитированные в отчете о поиске Патент 2019 года RU2690049C1

Ионизационный вакуумметр 1987
  • Пенчко Евгений Ануфриевич
  • Костин Лев Андреевич
SU1472777A1
ЭЛЕКТРОННЫЙ ИОНИЗАЦИОННЫЙ MAHOMETJP СО СКРЕЩЕННЫМИ ЭЛЕКТРИЧЕСКИМ И МАГНИТНЫМПОЛЯМИ 0
  • А. Е. Айзенцон, А. Б. Покрывайло, Э. П. Шеретоз, И. Н. Феоктистов
  • В. Ф. Самодуров
SU333430A1
КОМБИНИРОВАННЫЙ ИОНИЗАЦИОННЫЙ ВАКУУММЕТРИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ 2008
  • Дрейзин Валерий Элезарович
  • Овсянников Юрий Александрович
  • Поляков Валентин Геннадьевич
  • Поветкин Роман Алексеевич
  • Бабаскин Станислав Олегович
RU2389990C2
JP 9068473 A, 11.03.1997
CN 201215812 Y, 01.04.2009.

RU 2 690 049 C1

Авторы

Базылев Виктор Кузьмич

Коротченко Владимир Александрович

Жидков Александр Михайлович

Скворцов Вадим Эвальдович

Даты

2019-05-30Публикация

2018-01-25Подача