Изобретение относится к технологиям изготовления информационно - измерительных приборов, и предназначено для создания фотодиэлектрического чувствительного элемента ультрафиолетового излучения. Изобретение может быть использовано для создания информационно-измерительных фотоприборов ультрафиолетового диапазона длин волн (λ=200-400 нм).
Среди способов детектирования и измерения ультрафиолетового излучения основное место занимают фоторезистивный и фотоэлектрический эффекты. Относительные недостатки таких способов связаны с высокой зависимостью выходных параметров от температуры, сложностью получения высокой чистоты i-области в pin-фотодиодах и высокой токсичностью производства материалов для фотоэлементов (кремния, полупроводников, содержащих кадмий, мышьяк, селен, теллур и т.д.).
В последние годы наметились пути преодоления этих недостатков, связанные с использованием новых ионно-плазменных технологий, в том числе магнетронного распыления, использования тонких пленок широкозонных полупроводников и принципиально новых способов получения фотоприемников.
Известен способ по патенту США №3844843, кл. Н01L15/02, 1975 изготовления тонкопленочных фотоэлектрических преобразователей «сэндвичевой» структуры, которые включают нанесение фоточувствительного слоя из органического вещества на подложку и размещение его между двумя электродами. Однако, авторам не удалось добиться высокой надежности монтажа контактов к структуре.
Известен способ по патенту РФ №1806424, кл. Н01L31/04 1993, изготовления твердотельного фотогальванического элемента для преобразования световой энергии в электрическую, включающий нанесение фоточувствительного слоя органического полупроводника на полупроводниковую подложку и размещение ее между электродами. Способ заключается в том, что на подложку из полупроводника n-типа (CdTe) наносят слой органического полупроводника поли-N-эпоксипропилкарбазола, а на него - металлический электрод. Однако известный способ дает невысокую чувствительность полученного элемента.
Известен способ изготовления фотодетектора с ограниченным диапазоном спектральной чувствительности на основе массива наностержней оксида цинка по патенту РФ № 2641504, H01L31/08, 2018, который является наиболее близким по назначению и технической сущности к заявляемому объекту. Сущность его основана на том, что на формируемый массив наностержней оксида цинка наносятся высокопроводящие эпоксидные контактные слои. Недостатками данного способа является то, что этот прибор проявляет чувствительность только к диапазону А (315-400 нм) ультрафиолетового излучения, а также образование нестехиометрического цинка в тонкой пленке, который является донорной примесью для оксида цинка, что отражается на чувствительности и адекватности показаний прибора.
Задачей изобретения является изготовление фотодиэлектрического чувствительного элемента для регистрации ультрафиолетового излучения, который позволяет повысить интегральную чувствительность при детектировании всего спектра ультрафиолетового диапазона (л=200-400 нм), упрощение технологии изготовления чувствительных элементов, исключение необходимости использования золота, индия, платины, палладия, графена в элементах конструкции фотодиэлектрического чувствительного элемента для регистрации ультрафиолетового излучения.
Технический результат – повышение интегральной чувствительности фотодиэлектрического чувствительного элемента в диапазоне длин волн λ=200-400 нм, за счет обеспечения достаточного потока ионов кислорода на подложку во время формирования пленки методом магнетронного распыления.
Технический результат достигается тем, что способ изготовления фотодиэлектрического чувствительного элемента для регистрации ультрафиолетового излучения, заключающийся в напылении тонкой пленки оксида цинка между двумя электродами, согласно изобретения, на подложки из стекла марки КУ-1 толщиной 1,5 мм, наносят тонкую пленку алюминия с подслоем хрома, общей толщиной 550 нм, затем методом контактной фотолитографии на поверхности пленки формируют встречно-штыревые электроды с расстоянием между электродами 5 мкм, на электроды, с помощью магнетронной распылительной системы с дополнительной магнитной системой с обратной полярностью магнитов, напыляют пленку оксида цинка толщиной 600 нм, после этого элемент отжигают в атмосфере при температуре 250℃, в течение 120 минут.
Сущность изобретения поясняется чертежами магнетронной распылительной системы.
На фиг. 1. показана магнетронная распылительная система, на фиг. 2 приведена схема регистрации изменения емкости чувствительного элемента под действием света.
1 - магнетрон, 2-магнитная система магнетрона, 3-корпус вакуумной камеры, 4-изоляторы, магнетрон 1, с помощью изоляторов 4, крепится к корпусу вакуумной камеры 3, 5-подложкодержатель, 6-подложка, 7-дополнительная магнитная система с обратной полярностью магнитов обеспечивает достаточный поток ионов кислорода на подложку 6, что препятствует образованию нестехиометричного Zn, который является донорной примесью, для оксида цинка.
На подложке 6 из стекла марки КУ1 8, расположена тонкая пленка оксида цинка 9, заполняющая зазор между встречно-штыревыми электродами 10, которые можно рассмотреть, как обкладки плоского конденсатора, к электродам 10 подключены проводящие выводы 11, которые соединены с измерителем иммитанса Е7-20 12, (напряжение измерительного сигнала 1В и частота 500кГц). При воздействии ультрафиолетового излучения на пленку оксида цинка 9, изменяется ее диэлектрическая проницаемость, вследствие чего изменяется и емкость чувствительного элемента, которая регистрируется измерителем 12 иммитанса Е7-20.
Осуществление изобретения достигается следующим образом:
1) Подложки 6 из стекла марки КУ-1 без собственного поглощения в интервале длин волн 200-400 нм толщиной 1,5 мм, промывают в парах ацетона в течение 15 минут.
2) На промытые подложки методом магнетронного распыления наносят тонкую пленку алюминия с подслоем хрома, суммарная толщина металлических пленок составляла 500-550 нм. Мишени распыляют при рабочем давлении аргона 1 Па, мощности магнетрона 0,8 кВт и нагреве подложки 150 ± 3 °C.
3) Методом контактной фотолитографии с использованием селективных травителей, на поверхности пленки формируют встречно-штыревые электроды 10. Расстояние между штырями встречно-штыревых электродов равно 5 мкм, количество штырей 29.
4) На встречно-штыревую структуру методом реактивного магнетронного распыления напыляют поликристаллическую пленку оксида цинка 9 толщиной 600 нм, при следующих технологических параметрах: рабочее давление 1 Па, мощность магнетрона 0,35 кВт, нагрев подложки 120±3℃, состав газовой смеси аргон 40% / кислород 60%. Особенностью магнетронной распылительной системы является наличие дополнительной магнитной системы 7 с обратной полярностью магнитов, расположенной за подложкой напротив магнетрона с мишенью.
5) С целью увеличения удельного сопротивления, пленки оксида цинка отжигают в атмосфере при температуре 250℃, в течение 120 минут.
название | год | авторы | номер документа |
---|---|---|---|
Газочувствительный элемент кондуктометрического сенсора для обнаружения диоксида азота и способ его получения | 2023 |
|
RU2819574C1 |
Способ получения многослойных нанокомпозитных пленок CuO/C с сенсорными свойствами в широком спектральном оптическом диапазоне | 2023 |
|
RU2810420C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ МАТРИЦЫ ХЕМОРЕЗИСТИВНЫХ СЕНСОРОВ | 2022 |
|
RU2784333C1 |
ПОЛУПРОВОДНИКОВЫЙ ДАТЧИК ГАЗОВ | 1997 |
|
RU2114422C1 |
ПОЛУПРОВОДНИКОВЫЙ МЕТАЛЛООКСИДНЫЙ ДАТЧИК ГАЗОВ | 2001 |
|
RU2206082C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ НИТРИДНОГО СВЕТОИЗЛУЧАЮЩЕГО ДИОДА | 2019 |
|
RU2721166C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ИНВЕРТОРА И ИНВЕРТОР | 2008 |
|
RU2433504C2 |
СПОСОБ ИЗГОТОВЛЕНИЯ ДЕТЕКТОРОВ ТЕРАГЕРЦОВОГО ДИАПАЗОНА | 2014 |
|
RU2545497C1 |
УЛЬТРАФИОЛЕТОВЫЙ ЛАЗЕР НА ОСНОВЕ ДВУМЕРНОГО ФОТОННОГО КРИСТАЛЛА | 2008 |
|
RU2378750C1 |
СПОСОБ ПОЛУЧЕНИЯ НАНОСТРУКТУР ПОЛУПРОВОДНИКА | 2008 |
|
RU2385835C1 |
Использование: для регистрации ультрафиолетового излучения. Сущность изобретения заключается в том, что способ изготовления фотодиэлектрического чувствительного элемента для регистрации ультрафиолетового излучения заключается в напылении тонкой пленки оксида цинка между двумя электродами, согласно изобретению на подложки из стекла марки КУ-1 толщиной 1,5 мм наносят тонкую пленку алюминия с подслоем хрома общей толщиной 550 нм, затем методом контактной фотолитографии на поверхности пленки формируют встречно-штыревые электроды с расстоянием между электродами 5 мкм, на электроды с помощью магнетронной распылительной системы с дополнительной магнитной системой с обратной полярностью магнитов напыляют пленку оксида цинка толщиной 600 нм, после этого элемент отжигают в атмосфере при температуре 250°C в течение 120 минут. Технический результат: обеспечение возможности повышения интегральной чувствительности фотодиэлектрического чувствительного элемента в диапазоне длин волн λ=200-400 нм. 2 ил.
Способ изготовления фотодиэлектрического чувствительного элемента для регистрации ультрафиолетового излучения, заключающийся в напылении тонкой пленки оксида цинка между двумя электродами, отличающийся тем, что на подложки из стекла марки КУ-1 толщиной 1,5 мм наносят тонкую пленку алюминия с подслоем хрома общей толщиной 550 нм, затем методом контактной фотолитографии на поверхности пленки формируют встречно-штыревые электроды с расстоянием между электродами 5 мкм, на электроды с помощью магнетронной распылительной системы с дополнительной магнитной системой с обратной полярностью магнитов напыляют пленку оксида цинка толщиной 600 нм, после этого элемент отжигают в атмосфере при температуре 250°C в течение 120 минут.
Фотоэлектрическое устройство для непрерывного контроля размеров движущихся изделий | 1960 |
|
SU140587A1 |
ПОЛУПРОВОДНИКОВЫЙ ДАТЧИК УЛЬТРАФИОЛЕТОВОГО ИЗЛУЧЕНИЯ НА ОСНОВЕ НИТРИДА АЛЮМИНИЯ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ | 2009 |
|
RU2392693C1 |
ПОЛУПРОВОДНИКОВЫЙ ДАТЧИК УЛЬТРАФИОЛЕТОВОГО ИЗЛУЧЕНИЯ | 2001 |
|
RU2178601C1 |
US 7470940 B2, 30.12.2008 | |||
US 5093576 A, 03.03.1992 | |||
СПОСОБ ИЗГОТОВЛЕНИЯ ФОТОДЕТЕКТОРА С ОГРАНИЧЕННЫМ ДИАПАЗОНОМ СПЕКТРАЛЬНОЙ ЧУВСТВИТЕЛЬНОСТИ НА ОСНОВЕ МАССИВА НАНОСТЕРЖНЕЙ ОКСИДА ЦИНКА | 2016 |
|
RU2641504C1 |
Авторы
Даты
2019-06-03—Публикация
2018-10-25—Подача