СПОСОБ ИЗМЕРЕНИЯ УРОВНЯ ЖИДКОСТИ Российский патент 2019 года по МПК G01F23/296 

Описание патента на изобретение RU2692409C1

Предлагаемое изобретение относится к измерительной технике и может быть использовано для измерения уровней жидких сред в закрытых резервуарах в коммунальном хозяйстве, нефтяной промышленности и на транспорте.

Способ измерения уровня с помощью ультразвука относится к акустическим методам. Уровень раздела сред вычисляется по измеренному значению времени распространения ультразвукового импульса от источника до границы раздела сред и обратно, и скорости ультразвука по следующей формуле:

Lx=,

где C - скорость ультразвуковой волны, Т–время распространения ультразвуковой волны в прямом и обратном направлениях.

Основным недостатком данного способа измерения является зависимость скорости ультразвуковой волны от параметров среды, таких как температура, давление, плотность, наличие примесей и т.д.

Уменьшение влияния температурной зависимости скорости возможно путем измерения температуры среды распространения волны и последующей коррекции значения скорости ультразвука. Однако такой способ усложняет конструкцию измерителя, не позволяет учесть температуру во всем диапазоне распространения ультразвуковой волны, поскольку измеряется локальная температура в месте расположения датчика (датчиков) температуры, и учитывает только один фактор, влияющий на скорость ультразвука.

Также известен способ измерения уровня с коррекцией скорости ультразвука с помощью реперного отражателя, описанный в патенте РФ на полезную модель «Электронно-акустическое устройство измерения уровня жидкости» [1]. Сигнал, отраженный от репера, находящегося на известном (эталонном) расстоянии, используется для вычисления скорости распространения ультразвука в среде. Недостатком данного способа является то, что скорость ультразвука измеряется только на определенном расстоянии от измерителя, и чем дальше будет находиться граница раздела сред от реперного отражателя, тем выше будет погрешность вычисления уровня. Кроме того, при изменении температуры также меняется расстояние до реперного отражателя из-за влияния коэффициента температурного расширения материала на геометрические размеры репера.

Наиболее близким к заявленному техническому решению является способ, описанный в патенте РФ на изобретение «Способ измерения уровня жидкости» [2], в котором уровень раздела сред вычисляется из отношения величин времени распространения ультразвуковой волны отраженной от границы раздела сред и времени распространения переотраженной ультразвуковой волны (фиг. 1). Данный способ значительно уменьшает составляющую погрешности, обусловленную зависимостью скорости распространения ультразвука от параметров среды.

В данном способе реперным (эталонным) отражателем служит конструктивный параметр резервуара – глубина горловины резервуара (L0). При этом время, за которое ультразвук проходит реперное расстояние вычисляется из разности двух времен: первое T1– время прохождения сигнала от излучателя и обратно к приемнику через отражение от границы раздела сред, за второе измеренное время Т2 ультразвуковой сигнал движется от ультразвукового излучателя, отражается от границы раздела сред, далее отражается от верхней стенки резервуара, снова попадает на границу раздела сред и, переотразившись от неё, приходит к приемнику (в качестве излучателя и приемника служит один и тот же ультразвуковой преобразователь). На фиг. 1 изображены пути распространения отраженной (L0+Lx+Lx+L0) и переотраженной (L0+Lx+L1+ Lx+ L2) волн.

Время распространения отраженной и переотраженной ультразвуковой волны (T1 и T2 соответственно) определяются из выражений:

, (1)

(2)

где – эталонное расстояние, – измеряемая величина, – скорость распространения ультразвуковой волны.

Путем совместного решения уравнений (1) и (2) в УОИ ведется вычисление измеряемого уровня по формуле

. (3)

Данная формула не учитывает углы наклона векторов распространения отраженного и переотраженного ультразвукового импульса из-за наличия смещения расположения датчика от точки формирования отраженного и переотраженного сигналов на значение радиуса горловины R , что приводит к появлению методической составляющей погрешности измерения.

В качестве подтверждения этого представлена ниже таблица, в которой показана разность расстояний, пройденных переотраженной волной, разность уровней, вычисленных с учетом смещения точек генерации и отражения ультразвуковой волны и без него.

Таблица 1 построена с учетом следующих значений: расстояние L0 = 1м, диаметр горловины резервуара R = 0.25м; Lх = 1…5м; T1 и T2 – время распространения отраженного и переотраженного сигнала соответственно; S1 и S2 – расстояние, пройденное переотраженным сигналом, вычисленное без учета и с учетом смещения точек генерации и отражения ультразвуковой волны соответственно; Lх1 и Lх2 – расстояние до границы раздела сред, вычисленное без- и с- учетом смещения соответственно.

Таблица 1.

T1, мс T2, мс S1, м S2, м Lх1, м Lх2, м 12,085 18,267 6 6,046 1,047 1 12,145 18,387 6,040 6,086 1,057 1,010 12,205 18,506 6,080 6,126 1,067 1,020 12,266 18,626 6,12 6,165 1,077 1,030 12,326 18,746 6,16 6,205 1,087 1,040 12,387 18,866 6,2 6,245 1,097 1,050 12,447 18,985 6,24 6,284 1,107 1,060 35,891 65,775 21,76 21,772 4,975 4,940 35,952 65,896 21,8 21,812 4,985 4,950 36,012 66,017 21,84 21,851 4,995 4,960 36,073 66,138 21,88 21,892 5,005 4,970 36,133 66,258 21,92 21,932 5,015 4,980 36,193 66,379 21,96 21,971 5,025 4,990 36,254 66,5 22 22,011 5,035 5

Если принять условно расстояние L0 = 1м, диаметр горловины резервуара R = 0.25м., то получатся следующие значения методической составляющей погрешности измерения:

- при Lx min = 1м путь, который пройдет вторая (переотраженная) ультразвуковая волна, будет равен 6,046м, вместо 6м в идеальном случае (при параллельном направлении падающего и отраженного ультразвукового импульса);

- при Lx max = 5м, длина пути второго импульса будет равна 22,011м вместо 22м в идеальном случае.

Определим относительную методическую погрешность способа вычисления уровня без учета смещения расположения датчика (точки генерации) от точки формирования отраженного и переотраженного сигналов распространения волны при Lx min = 1м:

При Lx max = 5м:

Из данных вычислений можно сделать вывод, что при алгоритме вычисления уровня погрешность измерения будет уменьшаться с увеличением расстояния от пьезоэлектрического преобразователя до границы раздела сред.

Для уменьшения этой методической составляющей погрешности измерения целесообразно располагать датчик как можно ближе к краю горловины резервуара, тем самым уменьшая расстояние R, чтобы уменьшить угол между направлением сигнала от пьезоэлектрического преобразователя к границе раздела сред и от границы раздела сред к верхней стенке резервуара. Однако, как показали экспериментальные исследования, при этом, из-за смещения электроакустического преобразователя относительно центра горловины резервуара, существенно ухудшаются условия определения времени прихода отраженного и переотраженного эхосигналов.

Для коррекции данной методическая погрешности измерения необходимо ввести поправки в результат измерения, что осуществлено при реализации способа [2] в уровнемере на основе микропроцессора, в который заложена таблица корректирующих поправок, учитывающих смещение точек генерации и отражения ультразвуковой волны.

Таким образом, недостатком известного способа измерения уровня разделения сред является необходимость введения поправки в результат измерения и индивидуальная подстройка уровнемера под конструктивные параметры резервуара, что усложняет реализацию и использование уровнемера.

Для исключения указанной методической погрешности предлагается способ измерения, учитывающий угол наклона векторов распространения из-за смещения точек генерации и отражения ультразвуковой волны в соответствие с уравнениями, описывающими время распространения отраженной T1 и переотраженной T2 волн:

(4)

(5)

Разрешая данные уравнения относительно скорости распространения ультразвуковой волны С, получаем следующее выражение:

,

(6)

Откуда вычисляется измеряемый уровень разделения сред Lx.

Реализация вычислительных операций возможна цифровыми средствами в соответствии со структурной схемой уровнемера, реализующая данный способ измерения, представленный на фиг. 1, где обозначено: верхняя стенка резервуара 1, колодец резервуара с крышкой 2, обратимый электроакустический преобразователь (излучатель-приемник) 3 и, последовательно соединенные, генератор пачки зондирующих импульсов 4, коммутатор режима работы электроакустического преобразователя 5, усилитель 6, блок фильтрации и дешифрации отраженных сигналов 7, блок измерения 8, устройство управления 9, синхронизующее работу всех блоков уровнемера, устройство обработки информации 10, индикатор 11. В запоминающее устройство измерителя вносится таблица отношений времен T2/T1 и соответствующего уровня. Вычисление уровня Lx производится методом перебора по формуле 6 с заданным шагом, определяющим точность вычисления. Результат измерения передается на индикатор 11. Работа всех устройств и блоков уровнемера синхронизируется устройством управления 9.

Техническим результатом предлагаемого изобретения является повышение точности измерения, устранения погрешности при изменяющихся параметрах газовой среды над жидкостью: температуры, давления, состава и т.д., обеспечение измерения уровня по всей высоте резервуара.

Это достигается тем, что в способе измерения уровня жидкости, заключающемся в излучении зондирующего акустического импульса и приема отраженного сигнала от раздела сред, согласно предлагаемому изобретению измеряется время распространения акустической волны, излучаемой обратимым ультразвуковым преобразователем (излучателем-приемником), который устанавливают на заданном (эталонном) L0 расстоянии от верхней границы диапазона измерения уровня жидкости до границы раздела сред и обратно (основного отраженного сигнала T1), и время распространения акустической волны по пути: излучатель, раздел сред, верхнее перекрытие резервуара обратно до раздела сред и до ультразвукового преобразователя (переотраженного сигнала) T2, вычисляют измеряемый уровень жидкости Lx из формулы:

,

где R- расстояние от точки установки датчика до стенки колодца резервуара.

Из данного уравнения следует, что вычисление уровня разделения сред не зависит от скорости распространения ультразвука.

Реализация предлагаемого способа измерения возможна устройством, представленным на фиг.1.

Предлагаемый способ измерения уровня жидкости реализуется следующим образом. Возбуждение электроакустического преобразователя 3 в режиме излучения и формирование зондирующего импульса осуществляется с помощью генератора пачек зондирующих импульсов 4, параметры которого – число импульсов в пачке и частота их следования устанавливаются предварительно. Режим работы «излучение - прием» осуществляется с помощью коммутатора 5.

Из всего многообразия путей распространения излучаемого и отраженных акустических колебаний используемыми в данном способе являются два, обозначенные на фиг.1 как L1 и L2.

Принятые электроакустическим преобразователем 3 отраженный сигнал через время Т1 и переотраженный через время T2 усиливаются усилителем 6 и подаются на блок фильтрации и дешифрации отраженного сигнала 7, где осуществляется анализ сигнала по частоте (периоду) и числу импульсов в пачке с одинаковым периодом.

По выделенным импульсам, ограничивающим временные интервалы Т1 и T2, блок измерения 8 определяет интервалы Т1 и T2, а блок 10 по алгоритму, представленному на фиг.2, обрабатывает полученную информацию с цель определения измеряемого уровня.

Источники информации

1. Свидетельство на полезную модель RU № 53001. Электронно - акустическое устройство измерения уровня жидкости., Борминский С.А., Скворцов Б.И. – опубликовано: 27.04.2006, Бюл. №12

2. Патент на изобретение RU №2364841 «Способ измерения уровня жидкости», Ашанин В.Н., Мельников А.А., Кисилев А.Н., Пивоваров В.А., Соколов В.А.–опубликовано 20.08.2009, Бюл. №23.

Похожие патенты RU2692409C1

название год авторы номер документа
СПОСОБ ИЗМЕРЕНИЯ УРОВНЯ ЖИДКОСТИ 2008
  • Ашанин Василий Николаевич
  • Мельников Анатолий Аркадьевич
  • Киселёв Александр Николаевич
  • Пивоваров Петр Васильевич
  • Соколов Владимир Александрович
RU2364841C1
СПОСОБ ИЗМЕРЕНИЯ УРОВНЯ ЖИДКИХ СРЕД 1998
  • Жуков Борис Владимирович
  • Воронин Альберт Алексеевич
  • Андриенко Юрий Александрович
  • Черепков Алексей Иванович
  • Спалек Юрий Михайлович
RU2143668C1
СПОСОБ ИЗМЕРЕНИЯ УРОВНЯ ЖИДКИХ СРЕД В РЕЗЕРВУАРАХ 1996
  • Артемьев Э.А.
RU2138786C1
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ УРОВНЯ ЖИДКИХ СРЕД 1998
  • Жуков Борис Владимирович
  • Воронин Альберт Алексеевич
  • Андриенко Юрий Александрович
  • Черепков Алексей Иванович
  • Спалек Юрий Михайлович
RU2146358C1
СПОСОБ КОМПЕНСАЦИИ ПОГРЕШНОСТИ ИЗМЕРЕНИЯ УЛЬТРАЗВУКОВОГО УРОВНЕМЕРА 2007
  • Солдатов Алексей Иванович
  • Цехановский Сергей Александрович
RU2358243C1
УЛЬТРАЗВУКОВОЙ УРОВНЕМЕР 2010
  • Гусейнов Керим Басирович
  • Абдурахманов Гасан Шабанович
  • Агаларов Агалар Шахэмирович
  • Курбанов Омар Курбанович
  • Халилов Шамиль Арсланович
RU2419074C1
СПОСОБ ИЗМЕРЕНИЯ УРОВНЯ ЖИДКОЙ СРЕДЫ В РЕЗЕРВУАРЕ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 1996
  • Костин А.Г.
  • Куликов В.Н.
RU2096744C1
СПОСОБ КОМПЕНСАЦИИ ПОГРЕШНОСТИ ИЗМЕРЕНИЯ УЛЬТРАЗВУКОВОГО УРОВНЕМЕРА 2008
  • Солдатов Алексей Иванович
RU2380659C1
УЛЬТРАЗВУКОВОЙ УРОВНЕМЕР 1992
  • Коровин В.А.
RU2032154C1
УЛЬТРАЗВУКОВОЙ СПОСОБ ИЗМЕРЕНИЯ УРОВНЯ СРЕД В РЕЗЕРВУАРЕ С ПЛОСКИМИ ПАРАЛЛЕЛЬНЫМИ СТЕНКАМИ 2003
  • Андреев М.Я.
  • Рубанов И.Л.
RU2245522C1

Иллюстрации к изобретению RU 2 692 409 C1

Реферат патента 2019 года СПОСОБ ИЗМЕРЕНИЯ УРОВНЯ ЖИДКОСТИ

Изобретение относится к измерительной технике и может быть использовано для измерения уровня жидкостей в закрытых резервуарах. Техническим результатом является повышение точности измерения уровня. В способе измерения уровня жидкости, заключающемся в излучении зондирующего акустического импульса и приеме отраженного сигнала от раздела сред, измеряется время распространения акустической волны, излучаемой обратимым ультразвуковым преобразователем (излучателем-приемником), который устанавливают на заданном (эталонном) L0 расстоянии от верхней границы диапазона измерения уровня жидкости, до границы раздела сред и обратно (основного отраженного сигнала T1), и время распространения акустической волны по пути: излучатель, раздел сред, верхнее перекрытие резервуара, обратно до раздела сред и до ультразвукового преобразователя (переотраженного сигнала T2), вычисляют измеряемый уровень жидкости Lx из формулы

,

где R - расстояние от точки установки датчика до стенки колодца резервуара. 2 ил.

Формула изобретения RU 2 692 409 C1

Способ измерения уровня жидкости, заключающийся в излучении зондирующего акустического импульса и приеме отраженного сигнала от раздела сред, согласно предлагаемому изобретению измеряется время распространения акустической волны, излучаемой обратимым ультразвуковым преобразователем (излучателем-приемником), который устанавливают на заданном (эталонном) L0 расстоянии от верхней границы диапазона измерения уровня жидкости, до границы раздела сред и обратно (основного отраженного сигнала T1), и время распространения акустической волны по пути: излучатель, раздел сред, верхнее перекрытие резервуара, обратно до раздела сред и до ультразвукового преобразователя (переотраженного сигнала T2), вычисляют измеряемый уровень жидкости Lx из формулы

,

где R - расстояние от точки установки датчика до стенки колодца резервуара.

Документы, цитированные в отчете о поиске Патент 2019 года RU2692409C1

УЛЬТРАЗВУКОВОЙ СПОСОБ ИЗМЕРЕНИЯ УРОВНЯ СРЕД В РЕЗЕРВУАРЕ С ПЛОСКИМИ ПАРАЛЛЕЛЬНЫМИ СТЕНКАМИ 2003
  • Андреев М.Я.
  • Рубанов И.Л.
RU2245522C1
Ультразвуковой измеритель линейных величин 1984
  • Куликов Владимир Николаевич
  • Малов Александр Николаевич
  • Кононов Валентин Александрович
SU1180691A1
Устройство для измерения уровня веществ в емкостях 1990
  • Сериков Яков Александрович
  • Шутенко Леонид Николаевич
  • Золотов Михаил Сергеевич
  • Серикова Ирина Павловна
SU1796915A1
СПОСОБ АВТОМАТИЧЕСКОГО ОТБОРА ТРИТИЯ ИЗ АТМОСФЕРНОГО ВОДЯНОГО ПАРА 2007
  • Барон Ив
  • Маро Дени
RU2442129C2
US 9534944 B2, 03.01.2017.

RU 2 692 409 C1

Авторы

Ашанин Василий Николаевич

Мельников Анатолий Аркадьевич

Цуриков Сергей Александрович

Даты

2019-06-24Публикация

2018-11-29Подача