НОСИТЕЛЬ ДЛЯ ДИАГНОСТИКИ, НАПРАВЛЕННОЙ ДОСТАВКИ И КОНТРОЛИРУЕМОГО ВЫСВОБОЖДЕНИЯ ЛЕКАРСТВЕННЫХ СРЕДСТВ Российский патент 2019 года по МПК A61K49/00 A61K47/02 A61K47/30 A61K9/50 B82Y5/00 

Описание патента на изобретение RU2693485C1

Изобретение относится к области медицинских исследований и служит для направленной доставки лекарственных средств, их контролируемого высвобождения, а также для диагностики онкологических заболеваний и визуализации места локализации опухоли, включая мониторинг динамики высвобождения лекарственных средств. Предлагаемое решение позволяет эффективно и направлено обеспечивать доставку лекарственных средств в место локализации опухолевого роста без его преждевременного разрушения и оказания токсического эффекта на здоровые части организма пациента, обеспечивает контролируемое высвобождение лекарственных средств под действием внешних стимулов, а также позволяет диагностировать и визуализировать места опухолевого роста, расположенные как на поверхности, так и в глубине тканей организма. Предлагаемый носитель представляет собой микрокапсулы, которые могут использоваться как в научных и прикладных исследованиях по разработке новых лекарственных средств, так и для лечения пациентов с помощью уже существующих лекарственных средств, обеспечивая более высокую эффективность и меньшую токсичность по сравнению с существующими подходами.

Известно решение [1] для направленной доставки лекарственных средств, в частности бор-содержащих фармацевтических субстанций и мониторинга процесса их высвобождения. При этом авторами известного изобретения используются липосомы, в которые вводят бор-содержащие фармацевтические субстанции, в качестве компонента, обеспечивающего терапевтическую эффективность, в липидную часть липосомы вводят люминесцентный краситель одного цвета, а в ее водную часть вводят краситель другого цвета. Для обеспечения большего времени цикруляции липосом и увеличения их сродства к опухолевым тканям поверхность липосом модифицируют полиэтиленгликолем. Контроль процесса доставки лекарственных препаратов и мониторинг их высвобождения происходит путем детекции флуоресцентного сигнала с помощью люминесцентного микроскопа и изменения взаимного расположения красителей, локализованных в липидной и водной частях липосом. К недостаткам известного изобретения можно отнести невозможность детектирования процесса доставки и высвобождения лекарственных препаратов в глубине исследуемого организма, недостаточной яркости флуоресцентных красителей, а также невозможности проводить контролируемое разрушение оболочки липосом для высвобождения лекарственных препаратов в нужном месте и в нужное время. Также к недостаткам стоит отнести то, что таргетная доставка лекарств осуществляется только за счет «пассивного» транспорта липосом, т.е. за счет переноса липосом с током биологических жидкостей или диффузией. Кроме того, недостатком можно считать выбор липосомы в качестве носителя, так как липиды их оболочки подвергаются окислению, а сама оболочка недостаточно прочна и может разрушиться до момента доставки лекарственного средства к месту расположения опухоли.

Частично этих недостатков лишено известное решение [2] для визуализации, направленной доставки и высвобождения активных соединений, выбранное в качестве прототипа. В данном решении используют липосомы, в оболочку которых включен сфингомиелин, содержащие магнитные наночастицы, метки для визуализации и/или детекции и лекарственное средство, которое может высвобождаться из липосом в результате внешнего воздействия. При этом в качестве метки для визуализации используются изотопы, контрастные агенты, флуорофоры или метки для позитронной эмиссионной томографии (ПЭТ). Высвобождение лекарственных средств из липосом происходит в следствие ее разрушения, которое происходит при конверсии сфингомиелина в керамид. Данная реакция осуществляется ферментом сфингомиелиназой, активность которого повышена в опухолевых клетках или может быть индуцирована внешним стимулом, например, облучением светом в УФ диапазоне длин волн, нагревом, окислительным стрессом или воздействием ионизирующего излучения. К недостаткам данного способа стоит отнести, во-первых, применение липосом, т.е. микрокапсул из фосфолипидов, в частности сфингомиелина, которые могут быть самопроизвольно разрушены в организме до их поступления в место локализации опухоли, а также тем, что способом не предусмотрена возможность определения эффективности высвобождения лекарственных средств из носителя.

Технический результат заключается в создании биологически совместимого носителя для высокочувствительной диагностики онкологических заболеваний, направленной доставки, управляемой магнитным полем, специфического накопления и контролируемого детектируемого высвобождения лекарственных средств, который позволяет повысить эффективность применения противоопухолевых средств и снизить их негативное воздействие на организм пациента.

Технический результат достигается тем, что известный носитель для диагностики, направленной доставки и контролируемого высвобождения лекарственных средств, представляющий собой микрокапсулу, содержащую лекарственные средства, метки для оптической и томографической визуализации и магнитные наночастицы, при этом на поверхности оболочки микрокапсулы иммобилизованы биологические распознающие молекулы, а сама оболочка выполнена с возможностью разрушения в ответ на внешнее воздействие, выполнен так, что оболочка микрокапсулы состоит из трех и более слоев полиэлектролитов, причем на поверхности внешнего слоя полиэлектролита ориентированным образом иммобилизованы однодоменные антитела, применяемые в качестве биологических распознающих молекул, при этом между слоями полиэлектролитов нанесены один и более слоев, включающих магнитные наночастицы, кроме того один и более слоев, включающих инфракрасные квантовые точки, без содержания тяжелых металлов, а также один и более слоев, включающих плазмонные наночастицы, а внутрь микрокапсулы помещены квантовые точки для позитронно-эмиссионной томографии и флуоресцентной детекции, также без содержания тяжелых металлов, при этом на поверхности квантовых точек для позитронно-эмиссионной томографии и флуоресцентной детекции иммобилизованы однодоменные антитела.

Использование микрокапсул с многослойной оболочкой из полиэлектролитов позволяет создавать носители вероятность самопроизвольного разрушения которых существенно ниже, чем у классических липосом, что актуально при необходимости использования высокой терапевтической дозы лекарственного средства, или при доставке нестабильных лекарственных средств, которые быстро инактивируются при контакте с биологическими тканями и жидкостями. Благодаря возможности создания микрокапсул контролируемого размера, содержащих в структуре оболочки магнитные ноночастицы, путем манипулирования внешним магнитным полем возможна активная (направленная) доставка носителя к месту локализации опухолевого роста. При этом специфическое накопление обеспечивается благодаря антителам, расположенным на поверхности микрокапсул. Однодоменные антитела обладают меньшим размером, по сравнению с иммуноглобулинами класса G, традиционно применяемыми в качестве биологических распознающих молекул, что позволяет добиться более высокой плотности их связывания с поверхностью носителя, а возможность их ориентированного связывания с поверхностью носителя, когда все антиген-связывающие участки однодоменных антител направлены от поверхности микрокапсулы, позволяет в несколько раз повысить эффективность связывания биомаркеров заболеваний. Включение в оболочку микрокапсул плазмонных наночастиц позволяет проводить тепловое разрушение оболочки микрокапсул в ответ на ее облучение лазерным светом требуемой длины волны, вызывающее локальный разогрев плазмонных наночастиц. Например, лазерным светом в ИК-диапазоне длин волн, в области «окон прозрачности» тканей, что актуально, когда микрокапсулы находятся в глубине организма. Кроме того, разрушение оболочки микрокапсул возможно и с помощью магнитных наночастиц, путем их разогрева переменным магнитным полем заданной частоты, причем использование двух различных внешних индукторов разрушения оболочки микрокапсул позволяет проводить как направленный транспорт носителей с использованием постоянного магнитного поля, так и высвобождение лекарственных средств с использованием лазерного излучения или переменного магнитного поля, что актуально при терапии крупных опухолей, для достижения равномерной концентрации лекарственных средств. Применение флуоресцентных радиоактивных квантовых точек, видимых методом позитронно-эмиссионной томографии (ПЭТ) позволяет, во-первых, существенно повысить чувствительность обнаружения опухоли, и, во-вторых, позволяет их использовать в качестве флуоресцентных зондов, когда возбуждение их флуоресценции происходит за счет Черенковского излучения. Использование в составе оболочки носителя инфракрасных квантовых точек (ИК-КТ), флуоресцирующих в ИК-диапазоне оптического спектра, позволяет контролировать процесс высвобождения лекарственных средств за счет мониторинга динамики разрушения оболочки микрокапсул, путем детектирования изменения флуоресцентного окрашивания микрокапсул от ИК-КТ и КТ, применяемых для ПЭТ. Это возможно благодаря тому, что КТ для ПЭТ конъюгированы с однодоменными антителами, которые имеют специфичность аналогичную антителам, находящимся на поверхности оболочке микрокапсулы, т.е. после разрушения оболочки микрокапсулы, КТ для ПЭТ локализуются рядом с местом изначальной доставки и локализации микрокапсул, а КТ из оболочки микрокапсулы - нет. Таким образом, определяя соотношение сигналов от двух различных типов квантовых точек можно судить о степени высвобождения лекарственного средства из микрокапсулы.

Возможен первый частный случай, в котором в качестве магнитных наночастиц используют ферромагнитные или супер-парамагнитные наночастицы размерами от 1 до 100 нанометров, или ансамбли таких наночастиц.

Возможен второй частный случай, в котором в качестве инфракрасных квантовых точек используют полупроводниковые нанокристаллы состава CuInS2/ZnS, Ag2S, флуоресцирующие в инфракрасной области оптического спектра.

Возможен третий частный случай, в котором в качестве плазмонных наночастиц применяют наночастицы золота, серебра, платины и других благородных металлов.

Возможен четвертый частный случай, в котором в качестве плазмонных наночастиц применяют плазмонные наночастицы в форме сфер, колец, торов, стержней, треугольников, или их комбинации.

Возможен пятый частный случай, в котором в качестве квантовых точек для позитронно-эмиссионной томографии и флуоресцентной детекции используют полупроводниковые нанокристаллы состава [64Cu]CuInS2/ZnS, флуоресцирующие в инфракрасной области оптического спектра.

Возможен шестой частный случай, в котором слои магнитных наночастиц, инфракрасных квантовых точек и плазмонных наночастиц разделены между собой слоями полиэлектролитов разных зарядов.

Возможен седьмой частный случай, в котором в качестве отрицательно заряженных полиэлектролитов используют поликислоты и/или соли этих поликислот.

Возможен восьмой частный случай, в котором в качестве положительно заряженных полиэлектролитов используют полиоснования и/или соли этих полиоснований.

Возможен девятый частный случай, в котором в качестве полиэлектролитов используются биодеградируемые полиэлектролиты.

Возможен деятый частный случай, в котором в качестве однодоменных антител применены однодоменные антитела специфичные к маркерам онкологических заболеваний.

Возможен частный случай, в котором в качестве однодоменных антител применены однодоменные антитела, связывающие белки HER2, CEA, EGFR, ЕрСАМ.

На фиг. 1 представлен конкретный пример носителя для диагностики, направленной доставки и контролируемого высвобождения лекарственных средств. Цифрами обозначены следующие элементы: оболочка микрокапсулы - 1; однодоменные антитела, иммобилизованные на внешнем слое оболочки - 2; лекарственные средства - 3; квантовые точки для позитронно-эмиссионной томографии и флуоресцентной детекции - 4; слои полиэлектролитов - 5; магнитные наночастицы - 6; плазмонные наночастицы - 7; инфракрасные квантовые точки - 8; внешний слой полиэлектролита - 9; однодоменные антитела, иммобилизованные на поверхности квантовых точек для позитронно-эмиссионной томографии и флуоресцентной детекции - 10.

Конкретный пример, поясняющий принцип действия и использования носителя для диагностики, направленной доставки и контролируемого высвобождения лекарственных средств показан на примере доставки фотосенсибилизатора фотодитиазина, детектирования раковых клеток опухоли молочной железы подсаженной мыши, а также визуализация процесса разрушения носителя. Для этого использовались микросферы, на поверхности которых были иммобилизованы однодоменные антитела специфичные к Her2, в качестве ИК-КТ использовались флуоресцентные полупроводниковые нанокристаллы типа ядро/оболочка состава CuInS2/ZnS, имеющие максимум флуоресценции на длине волны 810 нм. В качестве плазмонных наночастиц использовались наночастицы золота в форме сферы с диаметром 40 нм, в качестве магнитных наночастиц использовались наночастицы состава Fe3O4 среднего размера 10 нм, а в качестве квантовых точек для позитронно-эмиссионной томографии и флуоресцентной детекции были выбраны КТ типа ядро/оболочка состава [64Cu]CuInS2/ZnS, имеющие максимум флуоресценции на длине волны 710 нм, конъюгированные с однодоменными антителами к Her2. В качестве полиэлектролитов использовали поли(стирен сульфонат) и поли(аллиламин гидрохлорид). Слои ИК-КТ, магнитных наночастиц и плазмонных наночастиц разделены тремя чередующимися слоями полиэлектролитов разных зарядов. Носитель указанного состава в физиологическом растворе шприцом вводили в тело двух мышей в 2 см от места локализации опухоли. Через 10 минут после введения, локализация носителя около места введения была подверждена ПЭТ анализом. После этого постоянный магнит (0,7 Тл) был помещен в район локализации опухоли у мыши №1, в то время как мышь №2 использовалась в качестве отрицательного контроля и не подвергалась воздействию магнитного поля. Через 30 минут воздействия магнитного поля локализация носителя была определена ПЭТ анализом. У мыши №1 наблюдалась локализация носителя в области опухоли, в то время как у мыши №2 подавляющее количество носителя осталось в месте изначального введения. Индукция разрушения оболочки носителя и высвобождения фотосенсибилизатора проводилась путем облучения места локализации носителя лазерным облучением с длиной волны 1113 нм, в области полосы поглощения плазмонных наночастиц. Эффективность разрушения микрокапсул и высвобождения лекарственных средств определяется путем снятия спектров флуоресценции квантовых точек изначально локализованых в оболочке микрокапсулы (ИК-КТ, λmax, фл=810 нм) и КТ, которые применяются для ПЭТ (λmax, фл=710 нм), в момент времени до облучения микрокапсул лазерным облучением и через один час после облучения. В результате нами было детектировано более значительное убывание флуоресценции на 810 нм, чем на 710 нм, свидетельствующее о разрушении оболочки носителя и высвобождении лекарственного средства.

Таким образом, предложенный носитель для диагностики, направленной доставки и контролируемого высвобождения лекарственных средств, позволяет повысить эффективность существующих лекарственных средств за счет возможности контролирования режима их дозировки и направленной доставки к месту непосредственного действия, а также снизить негативное влияние лекарственных средств на здоровые части организма пациента. При этом применение высокоаффинных однодоменных антител и КТ, совместимых с ПЭТ-детекцией, позволяет использовать предлагаемый носитель в качестве эффективного средства для чувствительной диагностики и визуализации онкологических заболеваний.

Источники информации

1. Кичигин Александр Иванович, Каныгин Владимир Владимирович, Мухамадияров Ринат Авхадиевич, Таскаев Сергей Юрьевич. Способ доставки борсодержащих препаратов для бор-нейтронозахватной терапии. Патент Российской Федерации RU 2589822.

2. Claus-Christian, Penate Medina Tuula, Medina Oula Penate. Magnetoenzymatic carrier system for imaging and targeted delivery and release of active agents. Международный патент WO 2015169843 A1.

Похожие патенты RU2693485C1

название год авторы номер документа
НАБОР ДЛЯ ПРОВЕДЕНИЯ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ 2019
  • Соколов Павел Михайлович
  • Набиев Игорь Руфаилович
  • Нифонтова Галина Олеговна
RU2740552C1
СПОСОБ НАПРАВЛЕННОГО РАЗРУШЕНИЯ РАКОВЫХ КЛЕТОК 2016
  • Соколов Павел Михайлович
  • Суханова Алена Владимировна
  • Набиев Игорь Руфаилович
RU2638446C1
Комплекс для детекции и направленного разрушения клеток 2019
  • Набиев Игорь Руфаилович
  • Самохвалов Павел Сергеевич
RU2743993C1
Набор для дифференциальной диагностики заболеваний 2018
  • Набиев Игорь Руфаилович
  • Суханова Алена Владимировна
  • Ткачук Артем Петрович
  • Соколов Павел Михайлович
RU2701742C1
СПОСОБ БИОЛОГИЧЕСКОЙ ВИЗУАЛИЗАЦИИ 2016
  • Соколов Павел Михайлович
  • Суханова Алена Владимировна
  • Бозрова Светлана Викторовна
  • Набиев Игорь Руфаилович
RU2639125C1
ФЛУОРЕСЦЕНТНЫЙ ГИДРОГЕЛЬ ДЛЯ ДЕТЕКЦИИ БИОЛОГИЧЕСКИХ МОЛЕКУЛ 2023
  • Соколов Павел Михайлович
  • Герасимович Евгения Семёновна
  • Самохвалов Павел Сергеевич
  • Набиев Игорь Руфаилович
RU2814452C1
СПОСОБ ПОЛУЧЕНИЯ АНАЛИТИЧЕСКОЙ ТЕСТ-СИСТЕМЫ НА ОСНОВЕ СУСПЕНЗИОННЫХ МИКРОЧИПОВ ДЛЯ ДЕТЕКЦИИ МАРКЕРОВ ЗАБОЛЕВАНИЙ 2016
  • Суханова Алена Владимировна
  • Билан Регина Станиславовна
  • Терехин Владимир Владимирович
  • Набиев Игорь Руфаилович
RU2638787C1
СПОСОБ СОЗДАНИЯ НАНОРАЗМЕРНОЙ ДИАГНОСТИЧЕСКОЙ МЕТКИ НА ОСНОВЕ КОНЪЮГАТОВ НАНОЧАСТИЦ И ОДНОДОМЕННЫХ АНТИТЕЛ 2013
  • Набиев Игорь Руфаилович
  • Суханова Алена Владимировна
RU2560699C2
СПОСОБ СОЗДАНИЯ НАБОРОВ МИКРОСФЕР, ОПТИЧЕСКИ КОДИРОВАННЫХ ФЛУОРЕСЦЕНТНЫМИ НАНОКРИСТАЛЛАМИ И НЕСУЩИХ НА СВОЕЙ ПОВЕРХНОСТИ РАСПОЗНАЮЩИЕ БИОЛОГИЧЕСКИЕ МОЛЕКУЛЫ 2015
  • Билан Регина Станиславовна
  • Суханова Алена Владимировна
  • Набиев Игорь Руфаилович
RU2624853C2
Способ изготовления индикаторных микрокапсул с использованием магнитных и плазмонных наночастиц 2020
  • Дубовик Алексей Юрьевич
  • Куршанов Данил Александрович
  • Рогач Андрей
  • Арефина Ирина Александровна
RU2758098C1

Иллюстрации к изобретению RU 2 693 485 C1

Реферат патента 2019 года НОСИТЕЛЬ ДЛЯ ДИАГНОСТИКИ, НАПРАВЛЕННОЙ ДОСТАВКИ И КОНТРОЛИРУЕМОГО ВЫСВОБОЖДЕНИЯ ЛЕКАРСТВЕННЫХ СРЕДСТВ

Изобретение относится к области медицины, представляет собой носитель для диагностики, направленной доставки и контролируемого высвобождения лекарственных средств, представляющий собой микрокапсулу, содержащую лекарственные средства, отличающийся тем, что оболочка микрокапсулы состоит из трех и более слоев полиэлектролитов, причем на поверхности внешнего слоя полиэлектролита ориентированным образом иммобилизованы однодоменные антитела, применяемые в качестве биологических распознающих молекул, при этом между слоями полиэлектролитов нанесены один и более слоев, включающих магнитные наночастицы, кроме того один и более слоев, включающих инфракрасные квантовые точки, без содержания тяжелых металлов, а также один и более слоев, включающих плазмонные наночастицы, а внутрь микрокапсулы помещены квантовые точки для позитронно-эмиссионной томографии и флуоресцентной детекции, также без содержания тяжелых металлов, при этом на поверхности квантовых точек для позитронно-эмиссионной томографии и флуоресцентной детекции иммобилизованы однодоменные антитела. Изобретение обеспечивает создание биологически совместимого носителя для высокочувствительной диагностики онкологических заболеваний, направленной доставки, управляемой магнитным полем, специфического накопления и контролируемого детектируемого высвобождения лекарственных средств. 11 з.п. ф-лы, 1 ил., 1 пр.

Формула изобретения RU 2 693 485 C1

1. Носитель для диагностики, направленной доставки и контролируемого высвобождения лекарственных средств, представляющий собой микрокапсулу, содержащую лекарственные средства, метки для оптической и томографической визуализации и магнитные наночастицы, при этом на поверхности оболочки микрокапсулы иммобилизованы биологические распознающие молекулы, а сама оболочка выполнена с возможностью разрушения в ответ на внешнее воздействие, отличающийся тем, что оболочка микрокапсулы состоит из трех и более слоев полиэлектролитов, причем на поверхности внешнего слоя полиэлектролита ориентированным образом иммобилизованы однодоменные антитела, применяемые в качестве биологических распознающих молекул, при этом между слоями полиэлектролитов нанесены один и более слоев, включающих магнитные наночастицы, кроме того один и более слоев, включающих инфракрасные квантовые точки, без содержания тяжелых металлов, а также один и более слоев, включающих плазмонные наночастицы, а внутрь микрокапсулы помещены квантовые точки для позитронно-эмиссионной томографии и флуоресцентной детекции, также без содержания тяжелых металлов, при этом на поверхности квантовых точек для позитронно-эмиссионной томографии и флуоресцентной детекции иммобилизованы однодоменные антитела.

2. Носитель по п. 1, отличающийся тем, что в качестве магнитных наночастиц используют ферромагнитные или супер-парамагнитные наночастицы размерами от 1 до 100 нанометров или ансамбли таких наночастиц.

3. Носитель по п. 1, отличающийся тем, что в качестве инфракрасных квантовых точек используют полупроводниковые нанокристаллы состава CuInS2/ZnS, Ag2S, флуоресцирующие в инфракрасной области оптического спектра.

4. Носитель по п. 1, отличающийся тем, что в качестве плазмонных наночастиц применяют наночастицы золота, серебра, платины и других благородных металлов.

5. Носитель по пп. 1, 4 отличающийся тем, что в качестве плазмонных наночастиц применяют плазмонные наночастицы в форме сфер, колец, торов, стержней, треугольников или их комбинации.

6. Носитель по п. 1, отличающийся тем, что в качестве квантовых точек для позитронно-эмиссионной томографии и флуоресцентной детекции используют полупроводниковые нанокристаллы состава [64Cu]CuInS2/ZnS, флуоресцирующие в инфракрасной области оптического спектра.

7. Носитель по п. 1, отличающийся тем, что слои магнитных наночастиц, инфракрасных квантовых точек и плазмонных наночастиц разделены между собой слоями полиэлектролитов разных зарядов.

8. Носитель по пп. 1, 7, отличающийся тем, что в качестве отрицательно заряженных полиэлектролитов используют поликислоты и/или соли этих поликислот.

9. Носитель по пп. 1, 7, отличающийся тем, что в качестве положительно заряженных полиэлектролитов используют полиоснования и/или соли этих полиоснований.

10. Носитель по пп. 1, 7, отличающийся тем, что в качестве полиэлектролитов используются биодеградируемые полиэлектролиты.

11. Носитель по п. 1, отличающийся тем, что в качестве однодоменных антител применены однодоменные антитела специфичные к маркерам онкологических заболеваний.

12. Носитель по пп 1, 11, отличающийся тем, что в качестве однодоменных антител применены однодоменные антитела, связывающие белки HER2, СЕА, EGFR, ЕрСАМ.

Документы, цитированные в отчете о поиске Патент 2019 года RU2693485C1

WO 2015169843 A1, 12.11.2015
CARREGAL-ROMERO S
et al
Nanoparticle-functionalized microcapsules for in vitro delivery and sensing // Nanophotonics
Изложница с суживающимся книзу сечением и с вертикально перемещающимся днищем 1924
  • Волынский С.В.
SU2012A1
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Аппарат для передачи изображений на расстояние 1920
  • Адамиан И.А.
SU171A1
GAPONIK N
et al
Luminescent Polymer Microcapsules Addressable by a Magnetic Field // Langmuir
Способ приготовления мыла 1923
  • Петров Г.С.
  • Таланцев З.М.
SU2004A1
Прибор для промывания газов 1922
  • Блаженнов И.В.
SU20A1
Способ извлечения сульфо-нефтяных или т.п. кислот 1923
  • Петров Г.С.
SU1449A1
СТАРЧИКОВ С.С
Магнитные, структурные и электронные свойства наночастиц сульфидов и оксидов железа с различной кристаллической структурой // Дисс
канд
физ.-мат
наук
Устройство для закрепления лыж на раме мотоциклов и велосипедов взамен переднего колеса 1924
  • Шапошников Н.П.
SU2015A1

RU 2 693 485 C1

Авторы

Набиев Игорь Руфаилович

Суханова Алена Владимировна

Нифонтова Галина Олеговна

Даты

2019-07-03Публикация

2018-06-13Подача