ЭЛЕКТРОМАГНИТНЫЙ ФРИКЦИОННЫЙ МНОГОДИСКОВЫЙ ТОРМОЗ Российский патент 2019 года по МПК F16D55/36 

Описание патента на изобретение RU2693756C1

Изобретение относится к машиностроению, преимущественно к космической технике. Изобретение может применяться в составе устройства поглощения энергии в стыковочном механизме космического аппарата.

Известен электромагнитный фрикционный тормоз (аналог) авт. свид. SU 1346876, в котором задача снижения энергопотребления достигается путем использования двух обмоток электромагнита. Это связано с тем, что магнитная сила на якоре электромагнита падает пропорционально квадрату расстояния. Поэтому для начала движения якоря используется мощная пусковая обмотка, под воздействием которой якорь преодолевает силу действия пружин поджатия и перемещается, высвобождая фрикционные диски. Якорь в отведенном состоянии нажимает на шток микропереключателя, который подает сигнал на включение удерживающей обмотки меньшей мощности. Пусковая обмотка при этом отключается. Недостатком конструкции является наличие хоть и уменьшенного, по сравнению с необходимым для пуска, но постоянного энергопотребления при удержании расторможенного состояния вала тормоза, и сложность конструкции и настройки привода микропереключателя на ходе якоря менее 1 мм.

Известен электромагнитный фрикционный многодисковый тормоз (прототип) авт. свид. SU 1776894 А1, содержащий корпус, набор фрикционных дисков, нажимной диск, взаимодействующий с набором фрикционных дисков, якорь, связанный с нажимным диском. Особенностью этого устройства является наличие большого числа поверхностей трения, которые уменьшают требуемую силу давления якоря на фрикционные диски при реализации заданного тормозного момента. Недостатком является высокая сложность конструкции ввиду того, что этот тормоз предназначен для частого и длительного использования с высокой скоростью вращения дисков друг относительно друга, а поэтому для обеспечения заданного ресурса необходимо создавать зазор между фрикционными дисками при нахождении муфты в расторможенном состоянии.

Техническим результатом изобретения является упрощение конструкции электромагнитного фрикционного многодискового тормоза.

Технический результат достигается тем, что в электромагнитном фрикционном многодисковом тормозе, содержащем корпус, набор чередующихся фрикционных дисков, нажимной диск, взаимодействующий с набором фрикционных дисков, связанный с нажимным диском якорь, в отличие от известного нечетные диски взаимодействуют посредством шлицевых пазов с неподвижным корпусом, в него введен подрезной элемент регулировки вылета якоря, размещенный между якорем и нажимным диском, двухпозиционный электромагнитный привод, установленный соосно якорю и обхватывающий его, выполненный в виде подводящей обмотки электромагнита, связанного с ней магнитопровода, отводящей обмотки электромагнита и постоянного магнита, размещенного между обмотками, вал, связанный посредством шлицевых выступов с четными фрикционными дисками, опорные подшипники вала, размещенные в корпусе и зафиксированные крышкой, пружину, связанную с якорем.

Заявляемое техническое решение поясняется чертежом, представленным на фиг. 1 - электромагнитный фрикционный многодисковый тормоз с двухпозиционным электромагнитным приводом.

Электромагнитный фрикционный многодисковый тормоз содержит корпус 1, набор чередующихся фрикционных дисков 2, нажимной диск 3, подрезной элемент регулировки вылета якоря 4, якорь двухпозиционного электромагнитного привода 5, пружину 6, подводящую обмотку электромагнита 7 с магнитопроводом 8, отводящую обмотку электромагнита 9, постоянный магнит 10, вал 11, подщипники 12, зафиксированные крышкой 13.

Электромагнитный фрикционный многодисковый тормоз работает следующим образом. При подаче краткого командного импульса на отводящую обмотку 9, на якоре 5 создается магнитная сила, которая преодолевает силу поджатия пружины 6 и якорь 5 перемещается в осевом направлении, сжимая пружину 6. На нажимной диск 3 через элемент 4 перестает действовать сила от пружины 6. При этом в наборе чередующихся фрикционных дисков возникает возможность их относительного вращения. Вал 11 при этом получает возможность свободного вращения. После отключения питания с обмотки 9 якорь удерживается в отведенном состоянии постоянным магнитом 10, магнитной силы которого достаточно для противодействия силам, создаваемым пружиной 6 в течение сколь угодно длительного времени.

При подаче краткого командного импульса на подводящую обмотку 7, через магнитопровод 8 на якоре 5 создается магнитная сила, вместе с силой от пружины 6 достаточная для противодействия магнитной силе постоянного магнита 10. Якорь 5 перемещается в осевом направлении и оказывает давление на набор чередующихся фрикционных дисков 2. При этом набор дисков 2 обеспечивает заданный момент трения при относительном провороте дисков в наборе. Вал 11 при этом тормозится заданным моментом. После отключения питания с обмотки 3 якорь удерживается в подведенном состоянии пружиной 6, силы которой достаточно для противодействия силам, создаваемым постоянным магнитом 10 в течение сколь угодно длительного времени.

Актуальность создания изобретения обуславливается возможностью его использования в составе периферийного стыковочного механизма космического аппарата. Стыковочный механизм состоит из стыковочного кольца, защелок, шести устройств поглощения энергии (штанг стыковочного механизма) и тросовой системы стягивания. Взаимодействие стыковочных колец пассивного и активного космического аппарата приводит к изменению длины штока как минимум одной штанги стыковочного механизма. Линейное уменьшение длины штока штанги преобразуется при помощи шарико-винтовой пары во вращательной движение закрутки спиральных пружинных механизмов. Таким образом выполняется аккумулирование кинетической энергии сближения космических аппаратов. Для предотвращения возврата потенциальной энергии деформации пружинных механизмов в кинетическую блокируется возможность их раскрутки. Для этого может быть использован храповой механизм, ответная полумуфта которого замкнута на вал электромагнитной фрикционной муфты. Корпус муфты выполняется неподвижным относительно корпуса штанги. Блокировка раскрутки пружинных механизмов осуществляется при подаче питания на электромагнит муфты. Циклограмма работы стыковочного механизма требует длительного (более 10 минут) как блокирования возможности раскрутки пружинных механизмов, так и свободного их спуска. При этом раскрутка выполняется на малом ходе и с малой скоростью. Таким образом, недостатком использования управляемой фрикционной муфты является необходимость долговременной подачи значительного тока, необходимого для создания электромагнитом заданной силы давления на фрикционную поверхность дисков муфты, что приводит к значительному потреблению электроэнергии и интенсивному нагреву муфты.

В условиях безвоздушного пространства отток тепла от конструкции КА преимущественно осуществляется излучением, поэтому устройства с интенсивным тепловыделением должны быть оснащены элементами системы терморегуляции, которая переносит тепло на радиаторы излучателя. Это не всегда возможно (например, при размещении тепловыделяющих устройств за пределами герметичного объема). В случае отсутствия съема тепла устройство может нагреваться до критических для него температур быстрее, чем заданное время его непрерывной работы согласно циклограмме полета.

Система энергопитания космического корабля имеет крайне ограниченные по мощности и емкости источники питания, поэтому энергопотребление составляющих элементом должно быть минимизировано.

Поэтому блокировка раскрутки пружинных механизмов может быть реализована электромагнитным многодисковым фрикционным тормозом.

Похожие патенты RU2693756C1

название год авторы номер документа
ЭЛЕКТРОМАГНИТНЫЙ ФРИКЦИОННЫЙ МНОГОДИСКОВЫЙ ТОРМОЗ 2018
  • Рассказов Ярослав Владимирович
  • Чистоусов Павел Иванович
  • Карпенко Андрей Александрович
RU2695464C1
Электромагнитный фрикционный многодисковый тормоз 1990
  • Мелай Александр Меркурьевич
  • Токарев Александр Михайлович
  • Бессонов Анатолий Николаевич
  • Ямников Александр Сергеевич
  • Тулин Валерий Дмитриевич
SU1776894A1
Многодисковая электромагнитнаяМуфТА-ТОРМОз 1977
  • Сенаторов Виктор Алексеевич
  • Акопян Владимир Леонович
  • Гедмин Леонард Федорович
  • Пономарев Леонид Павлович
SU817363A1
ЭЛЕКТРОМАГНИТНЫЙ ФРИКЦИОННЫЙ МНОГОДИСКОВЫЙ 1973
  • Витель Л. П. Пономарев, М. Тенищев, В. Л. Акоп В. Федосеев В. Д. Назаревич
SU368430A1
АНДРОГИННЫЙ ПЕРИФЕРИЙНЫЙ АГРЕГАТ СТЫКОВКИ (АПАС) И ДЕМПФЕР АМОРТИЗАЦИОННО- ПРИВОДНОЙ СИСТЕМЫ ДЛЯ НЕГО 1998
  • Сыромятников В.С.
RU2131829C1
ЭЛЕКТРОДВИГАТЕЛЬ 2006
  • Петров Иннокентий Иванович
  • Петров Олег Иннокентьевич
  • Петров Сергей Иннокентьевич
RU2321142C1
СПОСОБ РАСКРУТКИ-ТОРМОЖЕНИЯ КОЛЕС ШАССИ 2015
  • Исмагилов Флюр Рашитович
  • Хайруллин Ирек Ханифович
  • Вавилов Вячеслав Евгеньевич
  • Бекузин Владимир Игоревич
  • Якупов Айнур Махмутович
RU2581996C1
Электромагнитное фрикционное нормально заторможенное устройство 1982
  • Сидоров Петр Григорьевич
  • Шаев Лев Михайлович
  • Фролов Анатолий Григорьевич
SU1032244A1
ТОРМОЗНОЙ УЗЕЛ 2009
  • Фазатдинов Ренад Ибрагимович
  • Абдрахманова Татьяна Борисовна
  • Семенов Василий Дмитриевич
  • Замулин Владимир Ильич
  • Хлыст Сергей Васильевич
  • Иванов Алексей Геннадьевич
  • Кириченко Михаил Николаевич
  • Пшеничников Павел Александрович
RU2416046C2
ЭЛЕКТРОПРИВОД ДЛЯ ПОВТОРНО-КРАТКОВРЕМЕННОГО РЕЖИМА РАБОТЫ 2002
  • Загрядцкий В.И.
  • Кобяков Е.Т.
RU2199176C1

Иллюстрации к изобретению RU 2 693 756 C1

Реферат патента 2019 года ЭЛЕКТРОМАГНИТНЫЙ ФРИКЦИОННЫЙ МНОГОДИСКОВЫЙ ТОРМОЗ

Изобретение относится к области машиностроения. Электромагнитный фрикционный многодисковый тормоз содержит корпус, набор чередующихся фрикционных дисков, нажимной диск, взаимодействующий с набором фрикционных дисков и связанный с нажимным диском якорь. Нечетные диски взаимодействуют посредством шлицевых пазов с неподвижным корпусом, в него введен подрезной элемент регулировки вылета якоря, размещенный между якорем и нажимным диском. Двухпозиционный электромагнитный привод установлен соосно якорю и обхватывает его, и выполнен в виде подводящей обмотки электромагнита связанного с ней магнитопровода, отводящей обмотки электромагнита и постоянного магнита, размещенного между обмотками. Вал связан посредством шлицевых выступов с четными фрикционными дисками. Опорные подшипники вала размещены в корпусе и зафиксированы крышкой. Пружина связана с якорем. Достигается упрощение конструкции электромагнитного фрикционного многодискового тормоза. 1 ил.

Формула изобретения RU 2 693 756 C1

Электромагнитный фрикционный многодисковый тормоз, содержащий корпус, набор чередующихся фрикционных дисков, нажимной диск, взаимодействующий с набором фрикционных дисков, связанный с нажимным диском якорь, отличающийся тем, что нечетные фрикционные диски взаимодействуют посредством шлицевых пазов с неподвижным корпусом, в него введен подрезной элемент регулировки вылета якоря, размещенный между якорем и нажимным диском, двухпозиционный электромагнитный привод, установленный соосно якорю и обхватывающий его, выполненный в виде подводящей обмотки электромагнита связанного с ней магнитопровода, отводящей обмотки электромагнита и постоянного магнита, размещенного между обмотками, вал, связанный посредством шлицевых выступов с четными фрикционными дисками, опорные подшипники вала, размещенные в корпусе и зафиксированные крышкой, пружина, связанная с якорем.

Документы, цитированные в отчете о поиске Патент 2019 года RU2693756C1

Электромагнитный фрикционный многодисковый тормоз 1990
  • Мелай Александр Меркурьевич
  • Токарев Александр Михайлович
  • Бессонов Анатолий Николаевич
  • Ямников Александр Сергеевич
  • Тулин Валерий Дмитриевич
SU1776894A1
Дисковый электромагнитный тормоз 1987
  • Глушков Виктор Георгиевич
  • Иванов Виктор Лукич
SU1504403A1
Способ приготовления мыла 1923
  • Петров Г.С.
  • Таланцев З.М.
SU2004A1
US 3752267 A, 14.08.1973.

RU 2 693 756 C1

Авторы

Рассказов Ярослав Владимирович

Чистоусов Павел Иванович

Карпенко Андрей Александрович

Даты

2019-07-04Публикация

2018-07-04Подача