Способ идентификации растительных объектов по космическим снимкам дистанционного зондирования Российский патент 2019 года по МПК G01C11/04 G06K9/46 G06K9/64 

Описание патента на изобретение RU2693880C1

Изобретение относится к способам тематической обработки данных дистанционного зондирования земной поверхности в оптическом и ближнем инфракрасном диапазоне длин волн и может быть использовано для решения задач многоцелевой тематической обработки космической информации с использованием системы наземного контроля (наземных наблюдений) растительности на тестовых полигонах (участках).

Из уровня техники известны способы тематической обработки данных, например способ распознавания образов природно-техногенных объектов и оценки параметров их состояния по гиперспектральным данным аэрокосмического зондирования (см. RU2422858, опубл. 27.06.2011) (1), включающий прием и регистрацию на магнитном носителе цифровых гиперспектральных данных аэрокосмического зондирования. Полученные данные обрабатывают путем проведения их географической привязки. Учитывают геометрические, радиометрические и спектральные искажения данных. Производят поиск конкретного спектрального канала максимальной различимости классов по гистограммам яркости наблюдаемых объектов. Находят максимальное число различимых классов в этом спектральном канале. Идентифицируют элементы разрешения, соответствующие среднему (эталонному) спектру. Причем идентифицируют элементы для каждого выделенного таким образом класса и введенной информационной меры изменчивости этого спектра. При идентификации учитывают возможную корреляцию каналов. Производят построение автоматизированного классификатора на основе выборочных данных. Автоматизировано относят все текущие элементы разрешения к тем или иным классам в соответствии с общим набором эталонных спектров и информационных мер изменчивости этих спектров. Восстанавливают параметры, характеризующие состояние объектов класса растительность для каждого элемента разрешения таких объектов.

Недостатком вышеуказанного аналога (1) является его недостаточная точность.

Наиболее близким аналогом заявленного изобретения является метод космической идентификации растительных объектов (см. JP2012196167, опубл. 18.10.2012) (2), в котором график интенсивности спектра пикселей изображения, в котором присутствует целевой вид растений, получен путем съемки изображений гиперспектра за один сезон, и множество (например, четырех) индексов получают путем арифметической обработки множества (например, пяти) значений каждый из которых указывает местный максимум или местный минимум, используя их, появляясь в определенной полосе длин волн, общей для каждого вида растений на графике. Сгенерирована БД из группы индексов их видов растений, кроме того, также создается группа индексов спецификации видов растений в другом сезоне неизвестного растения и создается его БД. Индексирующая группа спецификаций видов растений одного сезона неизвестного растения получена и сравнивается с группой индексов спецификации видов растений внутри БД. В соответствии с соответствующей индексной группой спецификации видов растений указаны виды растений, а когда нет определенной группы индексов спецификаций растительных видов, индексная группа спецификации видов растений в другом сезоне и БД в том же сезоне сравниваются с указанием растения виды.

Недостатком наиболее близкого аналога (2) является недостаточная достоверность идентификации растительных объектов.

Техническим результатом заявленного изобретения является повышение достоверности идентификации растительных объектов.

Заявленный технический результат достигается за счет создания способа идентификации растительных объектов по космическим снимкам дистанционного зондирования, включающего наземные наблюдения и измерения на выделенных участках на тестовых полигонах с произрастанием интересующих типов растительности, и одновременную космическую съёмку территории тестовых полигонов, с использованием бортовой съёмочной аппаратуры высокого разрешения в оптическом и ближнем инфракрасном диапазоне длин волн, формируют библиотеку эталонов – наборов признаков, описывающих определенный класс объектов, при формировании библиотеки эталонов каждому признаку в наборе соответствует весовой коэффициент, весовые коэффициенты для каждого признака меняются в зависимости от класса задач, для идентификации изображений используется методика «голосование по набору признаков» при этом строится решающая функция, которая по конкретному вектору признаков ставит в соответствие номер класса, которому он принадлежит, каждая дискретная составляющая пикселя изображения сравнивается с набором эталонных значений границ отрезков для всех индексных величин и делается заключение о выполнении/невыполнении условий по каждому признаку, пиксель считается принадлежащим искомому объекту, если количество признаков, по которым сделано заключение о выполнении требуемых условий, превышает минимальное заданное значение.

Заявленное изобретение проиллюстрировано следующими фигурами:

фиг.1 – фрагмент снимка с космического аппарата «Ресурс-П»;

фиг.2 – гистограммы спектральных характеристик объекта «Гречиха»;

фиг.3 – гистограммы распределения множества значений индексов NDVI и NGRDI;

фиг.4 – результаты тематической обработки информации о растительности участка территории Болховского района Орловской области.

Сущность заявленного способа идентификации растительных объектов по космическим снимкам дистанционного зондирования заключается в следующем. Характерным признаком растительности и ее состояния является спектральная отражательная способность, характеризующаяся большими различиями в отражении излучения разных длин волн. Знания о связи структуры и состояния растительности с ее отражательными способностями позволяют использовать космические снимки для идентификации типов растительности и оценки их состояния.

Наиболее известные зарубежные специализированные пакеты для тематической обработки данных дистанционного зондирования, в том числе для идентификации объектов, – ENVI, ERDAS Imagine (с расширениями). В состав пакетов входят программные средства идентификации объектов с использованием эталонов, которые представляют собой наборов признаков, описывающих определенный класс изображений объектов для данного вида съёмочной аппаратуры, а также стандартные процедуры статистической обработки данных, такие, как минимума дистанции, Махаланобиса, спектрального угла и др. Для представления дешифровочных признаков объектов используются нормализованные дифференцированные индексы (NDVI). Статистическая обработка анализируемой выборки и эталонных дешифровочных признаков стандартными методами проводится в предположении о нормальном распределении элементов множеств. Как следствие – множество с достаточной точностью можно охарактеризовать двумя величинами: математическим ожиданием и дисперсией.

Реальное распределение спектральных характеристик эталонов и исследуемых объектов может отличаться от нормального.

В предлагаемом способе обработки данных распределение спектральных характеристик дешифровочных признаков объекта идентификации представляется набором дискретных величин в виде нечетких множеств. Эталонным признаком для этого метода является некоторая функция от нечётких множеств значений спектральных характеристик изображений объекта в различных диапазонах спектра. Гистограммы спектральных значений пикселей изображений анализируемых и эталонных объектов могут отличаться от нормального закона распределения. Применение способа тематической обработки данных, отличающихся от нормального закона распределения спектральных характеристик изображений объектов, приводит к повышению достоверности идентификации объектов.

Сущность способа идентификации: на территории со схожими почвенно-климатическими условиями (размером до 1 тыс. километров) организуются наземные наблюдения и измерения на выделенных участках (тестовых полигонах) с произрастанием интересующих типов растительности (не менее трех раз за вегетационный период). Типами растительности могут являться, например, пшеница в различные вегетационные периоды, рожь, ячмень, горох и т.д. В этот же период производится космическая съёмка территории, включающей тестовые полигоны, с использованием бортовой съёмочной аппаратурой высокого разрешения в оптическом и ближнем инфракрасном диапазоне длин волн (например, приборами ГСА, КШМСА-ВР, Геотон-Л1 КА «Ресурс-П»).

По полученным снимкам тестовых полигонов с определенным типом растительности (с радиометрической коррекцией, без трансформирования, с коэффициентами RPC-полиномов) рассчитываются эталонные значения дешифровочных признаков. Значения эталонного признака представляет собой нечёткое множество. Для этого множества строится гистограмма, которая для дальнейшего использования аппроксимируется кусочно-линейной функцией. Строятся также функции значений нормализованных дифференцированных индексов (NDVI), которые приведены в различных справочниках, например, в ENVI help. Могут использоваться и разностные индексы, представляющие собой разности значений элементов пикселей в различных спектральных каналах. Индексы представляются нечёткими множествами.

Формируется библиотека эталонов – наборов признаков, описывающих определенный класс объектов. По результатам расчета и анализа эталонных значений дешифровочных признаков оптимизируется количество спектральных каналов для вычисления индексов (в целях сокращения вычислительных процедур). Каждому признаку в наборе соответствует весовой коэффициент. Весовые коэффициенты для каждого признака меняются в зависимости от класса задач. Для дешифрирования изображений используется методика «голосование по набору признаков», которая заключается в следующем. В процессе обработки изображений тестовых объектов для данного вида съёмочной аппаратуры определяются критерии (весовые коэффициенты каждого признака) голосования по набору признаков с учётом нечётких значений признаков. Для решения задачи классификации объектов строится решающая функция, которая по конкретному вектору признаков ставит в соответствие номер класса (типа объекта), которому он принадлежит. Результат проведения голосования представляет собой набор величин:

– нечёткое значение максимального значения функции голосования, то есть само значение и величина его вероятности;

– номер наименования объекта (при величине вероятности максимального значения функции голосования меньше определённого значения объект считается не идентифицированным).

Каждая дискретная составляющая пикселя изображения сравнивается с набором эталонных значений границ отрезков для всех индексных величин и делается заключение о выполнении (невыполнении) условий по каждому признаку. Пиксель считается принадлежащим искомому объекту, если количество признаков, по которым сделано заключение о выполнении требуемых условий, превышает минимальное заданное значение (например, 0,75). Исходные значения границ отрезков для индексных величин рассчитываются, используя неравенство Чебышева. В процессе решения конкретной задачи размеры отрезков индексных величин могут быть изменены для уменьшения вероятности принятия ошибочного решения о принадлежности пикселей, не входящих в изображения объектов (ошибки второго рода).

В качестве примера реализации заявленного способа можно привести следующее.

Апробация способа идентификации растительных объектов проводилась по материалам съёмки тестовых участков Орловской и Брянской областей. Анализ космической информации показывает, что при применении съёмочной аппаратуры высокого разрешения российской группировки КА для большинства природных объектов закон распределения случайных значений спектральных признаков существенно отличается от нормального закона (фиг. 1). Фрагмент космического изображения с КА Ресурс- П № 2; аппаратура Геотон Л1 июнь 2015 года. На изображении канала 0.72-0.80 красной точкой отмечен пункт наземного наблюдения. Верхнюю часть снимка занимает изображение объекта «Гречиха», а нижнюю часть снимка занимает объект «Травы».

Кроме того, для большинства объектов растительности имеются маскирующие объекты с похожими спектральными характеристиками. Применение стандартных методов статистической обработки таких данных может привести к недопустимым погрешностям получения оценок анализируемых параметров объектов идентификации.

Одним из возможных способов повышения достоверности таких оценок предлагается использование нечётких множеств в тематическом дешифрировании материалов космической съёмки высокого разрешения.

Сформируем нечёткое множество, состоящее из упорядоченных пар Yi={fi(x), p(fi(x)}, где fi(x) — значение характеристической функции (логической), p(fi(x) – степень истинности (вероятность) fi(x).

Для обработки данных множеств применим методику, названную «голосованием по набору признаков». Методика реализуется в два этапа. На первом этапе выделяется, оценивается и записывается в базу данных (БД) совокупность дешифровочных признаков, представленных в виде массивов нечётких множеств.

На втором этапе осуществляется анализ дешифровочных признаков в соответствии с методикой «голосование по набору признаков». Алгоритм анализа основан на оптимизации целевой функции разделения множества объектов на классы тестовых объектов.

Этап 1, в свою очередь, состоит из этапов 1.1 и 1.2. На этапе 1.1 формируются нечеткие множества значений спектральных характеристик объектов, а на этапе 1.2 – нечеткие множества, являющиеся функциями спектральных характеристик.

Для формирования набора дешифровочных признаков объектов должны быть проведены периодические (3 – 4 раза за вегетационный период) наземные наблюдения на тестовых полигонах. В результате должно быть определено географическое расположение и дано геоботаническое описание объектов в данный период вегетации. В этот же период должна быть проведена космическая съёмка объектов тестовых полигонов и оценены спектральные характеристики изображений этих объектов.

Этап 1.1.

Пусть имеются No объектов, которые подлежат идентификации (классификации) с использованием Nk спектральных каналов мультиспектральной или гиперспектральной космической информации (космического снимка). Значение Nk может быть меньше или равно общему числу всех каналов, предусмотренных для данного вида аппаратуры.

Рассмотрим прямоугольный фрагмент изображения объекта с номером n≤No на космическом снимке, состоящего их Ni строк и Nj столбцов в каждом спектральном канале. Обозначим через Рnijk спектральное значение пикселя (по возможности, после атмосферной коррекции) в i-ой строке (i≤Ni), j- столбце (j≤Nj) и k-ом спектральном канале (k≤Nk). Для каждого объекта с номером n получим Nk множеств случайных величин Ωnk (k≤Nk).

Для каждого множества Ωnk определяются минимальное и максимальное значения пикселей в каждом канале, которые обозначим Pminnk и Pmaxnk. Для каждого множества Ωnk построим гистограмму значений пикселей объекта. Последовательность значений пикселей, находящихся на отрезке [Pminnk, Pmaxnk], обозначим через Pntk (PminnkPntk≤ Pmaxnk), (1≤t≤( Pmaxnk.- Pminnk.+1). При построении гистограммы множества Ωnk получим количество реализаций NPntk спектра Рnijk для выбранного объекта. Вероятность реализации значений спектра Pntk можно определить как V(Pntk)=NPntk /( Ni*Nj). (1≤t≤( Pmaxnk.- Pminnk.+1); k≤Nk). Для выбранного объекта рассчитываем нечёткую переменную, характеризующую значение спектра Pntk для k-го канала. Совокупность Pntk для (1≤t≤( Pmaxnk.- Pminnk.+1); k≤Nk) можно записать в БД в виде нечёткого множества (Pntk, V(Pntk). Это нечёткое множество представляет собой набор значений, зависящих от спектральных характеристик объектов.

В табл. 1 представлен пример записи в БД спектральных характеристик объекта «Гречиха»

Табл. 1. Запись в БД о спектральных характеристиках объекта «Гречиха»

KDob – код объекта (6 - код гречихи). Col – код цвета, который будет назначен пикселю изображения, идентифицированного как гречиха. В строковом поле БД, который соответствует спектральному каналу № 33 КА Геотон-Л1, записаны 10 отрезков:

через _ записаны начало и конец отрезка;

после $ до ! записана вероятность попадания в данный отрезок (значение умноженное на 100, чтобы оперировать с целыми числами);

между последним ! и # находится величина математического ожидания случайной величины спектра в канале и далее находится величина среднеквадратического отклонения случайной величины спектра в канале.

Этап 1.2.

Формируется нечёткое множество, представляющее собой набор значений, зависящих от функций спектральных характеристик объектов.

Обозначим набором спектральных признаков объекта совокупность функций, аргументами которых являются Рnijk.. Число спектральных признаков обозначим через Npr. Значение спектрального признака c номером m объекта c номером n (PRm) в точке фрагмента изображения с номерами строки и столбца (i,j) имеет вид: PRnijm=fm(Pnij1,. Pnij2, PnijNk); (i≤Ni; j≤Nj; m≤Nm). Получилось множество реализаций спектральных признаков объекта. Вероятность реализации значений спектра PRntk можно определить как V(PRntk)=N PRntk /( Ni*Nj); (1≤t≤( PRmaxnk.- PRminnk.+1); k≤Nk). Для выбранного объекта нечёткую переменную, характеризующую значение реализаций спектральных признаков объекта PRntk для «k» канала, можно записать в виде (PRntk, V(PRntk). Множество реализаций значений спектрального признака c номером m объекта с номером n обозначим через Ωprnm..

Это нечёткое множество представляет собой набор значений, зависящих от функций спектральных характеристик объектов и записывается в БД. Результаты формирования нечетких множеств значений, зависящих от функций спектральных характеристик (NDVI и NGRDI) объекта «Гречиха», приведены на фиг. 2 в виде гистограмм. В табл. 2 представлен пример записи значений, зависящих от функций спектральных характеристик объекта «Гречиха». Структура записи аналогична табл. 1.

Табл. 2. Запись в БД значений, зависящих от функций спектральных характеристик объекта «Гречиха».

После завершения этапа 1 проводится анализ информации о дешифровочных характеристиках объектов и делается заключение о принадлежности рассматриваемых объектов к одному из имеющихся в БД объектов. Этап 2 состоит из этапов 2.1 и 2.2. На этапе 2.1 проводится анализ нечетких множеств значений спектральных характеристик объектов, а на этапе 2.2 – нечетких множеств, являющихся функциями спектральных характеристик.

Этап 2.1.

Пусть pixijk – значение пикселя в точке (i,j) изображения в k-ом спектральном канале. В каждой строке БД содержатся нечёткие значения спектральных характеристик разделённых на «n» отрезков для объекта с индексом m. Для каждого k-го канала определяется попадание pixijk в один из отрезков строки БД, т.е. определяется Vm(pixijk) - вероятность реализации pixijk в k-ом канале для объекта m. Признаком будет являться выполнение выражения (Vm(pixijk) > V1km),

где pixijk – значение пикселя в точке (i,j) изображения в k-ом спектральном канале, Vm(pixijk) – вероятность реализации вектора pixijk в k-ом спектральном канале, V1km некоторая константа, зависящая от номера канала и свойств объекта с индексом m, в канале k.

Если (Vm(pixijk) > V1km) истинно, то для объекта с индексом m признак выполнения условия засчитывается, в противном случае - не засчитывается.

Этап 2.2.

Алгоритм расчёта аналогичен алгоритму этапа 2.1. Основное отличие заключается в том, что вместо pixijk и Vm(pixijk) для каждого канала используется f(pixij1,.., pixijr) - функция некоторых каналов, например, NDVI. Для данного вида съёмочной аппаратуры определяются правила (критерии, весовые коэффициенты каждого признака) голосования по набору признаков с учётом нечётких значений признаков. Признак засчитывается в случае выполнения условия (Vm (f(pixij1,.., pixijr) > V2m), где V2m - некоторая константа, зависящая от функции спектральных характеристик и свойств объекта с индексом m.

Для каждого пикселя изображения проводится процесс голосования путём подсчёта количества засчитанных признаков. Пиксель считается принадлежащим искомому объекту, если количество признаков превышает минимальное заданное значение.

Результат проведения голосования представляет собой набор следующих величин:

нечёткое значение функции голосования и величина вероятности события;

код объекта и код цвета его легенды на карте.

При величине вероятности максимального значения функции голосования меньше определённого значения объект считается не определённым.

Результат обработки представляется в виде набора пикселей, которым присвоены условные цвета объектов.

На фиг.4 представлены результаты тематической обработки фрагмента космического снимка полей Орловской области (КА «Ресурс-П» № 2, прибор Геотон-Л1). На рисунке различными цветами отображены участки с произрастанием различной сельскохозяйственной растительности (горох, овёс, ячмень), вспаханные поля. Белым цветом изображены участки с не идентифицированной растительностью (из-за недостаточности наземных наблюдений для формирования эталонных признаков дешифрации).

Идентификация объектов по данным КА высокого разрешения вызывает необходимость разработки методов обработки информации об объектах со спектральными характеристиками, отличающимися от нормального закона.

Предложена методика тематической обработки данных космического наблюдения, включающая представление дешифровочных признаков нечеткими множествами с произвольным законом распределения спектральных характеристик и способ обработки таких данных - «голосование по набору признаков».

Методика позволяет повысить достоверность результатов тематического дешифрирования информации КА детального и высокого разрешения.

Такой результат достигается за счет представления распределения спектральных характеристик дешифровочных признаков объекта идентификации набором дискретных величин в виде нечетких множеств и применения способа статистической обработки данных, ориентированного на распределение спектральных характеристик объекта, отличающегося от аппроксимации его нормальным законом.

Похожие патенты RU2693880C1

название год авторы номер документа
СПОСОБ ОПРЕДЕЛЕНИЯ ДИГРЕССИИ НАДПОЧВЕННОГО ПОКРОВА В АРКТИЧЕСКОЙ ЗОНЕ 2015
  • Бондур Валерий Григорьевич
  • Воробьев Владимир Евгеньевич
  • Давыдов Вячеслав Федорович
  • Комаров Евгений Геннадьевич
RU2588179C1
СПОСОБ ИДЕНТИФИКАЦИИ ТИПОВ РАСТИТЕЛЬНОСТИ 1994
  • Давыдов В.Ф.
  • Григорьева О.Ю.
  • Щербаков А.А.
  • Васильев Н.И.
RU2115887C1
Способ выделения границ водных объектов и ареалов распространения воздушно-водной растительности по многоспектральным данным дистанционного зондирования Земли 2020
  • Бочаров Александр Вячеславович
  • Межеумов Игорь Николаевич
  • Тихомиров Олег Алексеевич
  • Хижняк Светлана Дмитриевна
  • Пахомов Павел Михайлович
RU2750853C1
МЕТОДИКА ДИСТАНЦИОННОЙ РЕКОГНОСЦИРОВОЧНОЙ ДИАГНОСТИКИ ОБЕСПЕЧЕНИЯ РАСТЕНИЙ АЗОТОМ (С ПОМОЩЬЮ МУЛЬТИСПЕКТРАЛЬНОЙ КАМЕРЫ И БЕСПИЛОТНЫХ ЛЕТАТЕЛЬНЫХ АППАРАТОВ) 2018
  • Абрамов Виктор Иванович
  • Андряков Дмитрий Александрович
  • Кладко Сергей Геннадьевич
  • Рубин Дмитрий Трофимович
  • Михайлов Дмитрий Михайлович
  • Труфанов Александр Владимирович
RU2693255C1
СПОСОБ МОНИТОРИНГА ЛЕСОВ 2012
  • Черемисин Максим Владимирович
  • Бурков Валерий Дмитриевич
  • Прокопчук Оксана Викторовна
RU2489845C1
СПОСОБ ЭКОЛОГИЧЕСКОГО МОНИТОРИНГА ЛЕСОВ 2009
  • Бондур Валерий Григорьевич
  • Воробьев Владимир Евгеньевич
  • Черепанова Елена Валентиновна
  • Давыдов Вячеслав Федорович
  • Комаров Евгений Геннадиевич
  • Фролова Вера Алексеевна
RU2406295C1
СПОСОБ ОТСЛЕЖИВАНИЯ ГРАНИЦЫ ЗОНЫ "ЛЕС-ТУНДРА" 2013
  • Бондур Валерий Григорьевич
  • Давыдов Вячеслав Федорович
  • Комаров Евгений Геннадиевич
  • Корольков Анатолий Владимирович
  • Замшин Виктор Викторович
RU2531765C1
СПОСОБ ДЕТЕКТИРОВАНИЯ АНОМАЛЬНОГО РАЗВИТИЯ АГРОФИТОЦЕНОЗОВ В ПРЕДЕЛАХ СЕЛЬСКОХОЗЯЙСТВЕННОГО ПОЛИГОНА 2019
  • Салмин Андрей Сергеевич
  • Ананьев Александр Андреевич
  • Железова Софья Владиславовна
RU2785225C2
СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ СОСТОЯНИЯ ПОЧВЕННО-РАСТИТЕЛЬНОГО ПОКРОВА ПО ДАННЫМ МНОГОСПЕКТРАЛЬНОГО АЭРОКОСМИЧЕСКОГО ЗОНДИРОВАНИЯ 2017
  • Григорьев Андрей Николаевич
  • Зайцев Владимир Валентинович
  • Рыжиков Дмитрий Михайлович
  • Чичкова Елена Федоровна
RU2657363C1
СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ СОСТОЯНИЯ ПОЧВЕННО-РАСТИТЕЛЬНОГО ПОКРОВА ПО ДАННЫМ МНОГОСПЕКТРАЛЬНОГО АЭРОКОСМИЧЕСКОГО ЗОНДИРОВАНИЯ 2009
  • Дмитриев Егор Владимирович
  • Козодеров Владимир Васильевич
RU2424540C2

Иллюстрации к изобретению RU 2 693 880 C1

Реферат патента 2019 года Способ идентификации растительных объектов по космическим снимкам дистанционного зондирования

Изобретение относится к области дистанционного зондирования Земли и касается способа идентификации растительных объектов по космическим снимкам дистанционного зондирования. Способ включает в себя наземные измерения на тестовых полигонах, одновременную космическую съемку тестовых полигонов и формирование библиотеки эталонов - наборов признаков, описывающих определенный класс объектов. Для идентификации изображений используется методика «голосование по набору признаков». При этом строится решающая функция, которая по конкретному вектору признаков ставит в соответствие номер класса, которому он принадлежит. Каждая дискретная составляющая пикселя изображения сравнивается с набором эталонных значений границ отрезков для всех индексных величин и делается заключение о выполнении или невыполнении условий по каждому признаку. Библиотеку эталонов формируют по снимкам тестовых полигонов с определенным типом растительности, по которым рассчитываются эталонные значения дешифровочных признаков, значения которых представляет собой нечеткое множество. При этом строятся функции значений нормализованных дифференцированных индексов NDVI, представленных нечеткими множествами. Технический результат заключается в повышении достоверности идентификации растительных объектов. 4 ил., 2 табл.

Формула изобретения RU 2 693 880 C1

Способ идентификации растительных объектов по космическим снимкам дистанционного зондирования, включающий наземные наблюдения и измерения на выделенных участках на тестовых полигонах с произрастанием интересующих типов растительности и одновременную космическую съемку территории тестовых полигонов с использованием бортовой съемочной аппаратуры высокого разрешения в оптическом и ближнем инфракрасном диапазоне длин волн и формирование библиотеки эталонов - наборов признаков, описывающих определенный класс объектов, при формировании библиотеки эталонов каждому признаку в наборе соответствует весовой коэффициент; весовые коэффициенты для каждого признака меняются в зависимости от класса задач; для идентификации изображений используется методика «голосование по набору признаков», при этом строится решающая функция, которая по конкретному вектору признаков ставит в соответствие номер класса, которому он принадлежит, каждая дискретная составляющая пикселя изображения сравнивается с набором эталонных значений границ отрезков для всех индексных величин и делается заключение о выполнении/невыполнении условий по каждому признаку; пиксель считается принадлежащим искомому объекту, если количество признаков, по которым сделано заключение о выполнении требуемых условий, превышает минимальное заданное значение, отличающийся тем, что библиотеку эталонов формируют по полученным снимкам тестовых полигонов с определенным типом растительности, по которым рассчитываются эталонные значения дешифровочных признаков, значения которых представляет собой нечеткое множество; строятся функции значений нормализованных дифференцированных индексов NDVI, представленных нечеткими множествами.

Документы, цитированные в отчете о поиске Патент 2019 года RU2693880C1

А
И
Стрыков "Особенности тематической обработки гиперспектральной информации с КА "Ресурс-П" в задачах мониторинга и распознавания объектов природной среды", РАКЕТНО-КОСМИЧЕСКОЕ ПРИБОРОСТРОЕНИЕ И ИНФОРМАЦИОННЫЕ СИСТЕМЫ, т
Очаг для массовой варки пищи, выпечки хлеба и кипячения воды 1921
  • Богач Б.И.
SU4A1
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Походная разборная печь для варки пищи и печения хлеба 1920
  • Богач Б.И.
SU11A1
А.Е
Лепский, А.Г
Броневич "Математические методы распознавания образов", Курс лекций, Издательство ТТИ ЮФУ, Таганрог 2009 г
JP 2012196167 A, 18.10.2012
US 2016125645 A1, 05.05.2016.

RU 2 693 880 C1

Авторы

Стрыков Александр Иванович

Морозов Николай Павлович

Даты

2019-07-05Публикация

2018-11-07Подача