Изобретение относится к способам для определения параметров высокоскоростного движения метательных тел, например, измерения перегрузок, скорости соударения и т.д., и может быть использовано для исследований параметров динамического деформирования металлических материалов в авиационной и космической технике.
Известен ряд устройств, позволяющих решать подобные задачи.
В устройстве [1] используется пьезоэлектрический преобразователь, установленный на подвижном теле, передающую антенну и телеметрическую систему приема и регистрации выходного сигнала, на подвижном теле устанавливается датчик перегрузок или давлений генерирующего типа, который дополнительно содержит катушку, электрически соединенную, например, с пьезоэлементом и размещенную на поверхности подвижного тела. Устройство [1] работает следующим образом. Если на подвижное тело в месте расположения датчика действует давление, то на нем возникает соответствующей величины заряд, который вызывает ток в катушке, электрически с ним соединенной. Этот ток сопровождается электромагнитными излучениями катушки, по интенсивности которых и характеру изменения судят о параметрах давления, действующего на датчик. Электромагнитные излучения воспринимаются антенной и после преобразований могут быть зарегистрированы.
Известен способ [2] контроля дробления материалов, включающий регистрацию электромагнитного излучения, возникающего при динамическом разрушении материалов. Электромагнитное излучение, генерируемое дробимой массой, вызывает появление электрических сигналов в рамочных антеннах, настроенных на различные частоты. Путем сопоставления получаемых в процессе работы спектров сигналов с эталонными, выявляют отклонение в спектральных характеристиках сигналов, по которым судят об отклонениях в процессе измельчения материала.
В работе [3] представлены результаты экспериментальных исследований электромагнитных явлений, сопровождающих быстропротекающее деформирование различных материалов. Показано, что быстропротекающее деформирование различных веществ как ударное, так и квазистатическое сопровождается электромагнитным излучением, генерируемым самим деформируемым веществом. Отмечено, что временные параметры регистрируемого сигнала электромагнитного излучения коррелируются с временными параметрами механического процесса деформирования. В схему экспериментальной установки [3] входят: мишень, пневматическая метательная установка, антенна для регистрации электромагнитного излучения.
Общим недостатком технических решений [1-3] является необходимость включения в состав устройств антенны, регистрирующей электромагнитное излучение, которое является вторичным физическим полем. Таким образом, рассмотренные технические решения представляют собой непрямые способы измерения, которые характеризуются большими инструментальными и статистическими погрешностями измерения.
Наиболее близким к заявляемому изобретению является устройство [4], которое работает следующим образом. В результате ударного взаимодействия ударника с мишенью, в последней возникает пространственное перераспределение зарядов (т.е. электродвижущая сила), которое далее регистрируется предлагаемым устройством, схема которого представлена на фиг. 1. Исследуемый образец 1 имеет электрическое коаксиальное соединение 2 с устройством измерения 3. В качестве устройства измерения 3 может быть использован осциллограф, вольтметр или подобное устройство. В состав коаксиального соединения 2 включен конденсатор 4.
Т.о. сама мишень или объект исследования является первичным физическим преобразователем ударного воздействия в полезный сигнал.
Способ и устройство [4] могут быть использованы в качестве прототипа. Недостатком устройства [4] является тот факт, что коаксиальное соединение вместе с конденсатором формируют интегрирующую цепочку, таким образом, полезный сигнал подвергается аппаратному интегрированию. Временные параметры механического процесса деформирования искажаются.
Задачей предлагаемого изобретения является повышение точности способа определения параметров динамического деформирования металлических материалов, что позволит определить, например, скорость метаемого тела (ударника) в момент его контакта с поверхностью мишени, т.е. скорость ударника.
В предлагаемом способе полезный сигнал регистрируется аналогично как в способе [4], отличительным признаком способа является то, что функция, аппроксимирующая полученный сигнал, аппаратно или программно дифференцируется, и определяется локальный максимум полученной производной функции. В случае высокоскоростного соударения ударника и мишени время этого максимума определяет время остановки ударника при проникании в мишень, при этом скорость деформации численно равна значению производной, взятой с обратным знаком, при стремлении аргумента к нулю.
Для определения работоспособности способа были проведены экспериментальные и теоретические исследования, результаты которых представлены на графике на фиг. 2. В частности на графике приведены: экспериментальная зависимость полезного сигнала (кривая а), его аппроксимация вида axb-exp(c⋅x) (кривая b), производная аппроксимационной функции, взятая с обратным знаком (кривая с), а также теоретически полученная скорость материала мишени (кривая d) при контакте с высокоскоростным ударником и его дальнейшем проникании в мишень до остановки.
Литература
1. SU №794547, 1981 г.
2. SU №1208496, 1989 г.
3. Бивин Ю.К., Викторов В.В., Кулинич Ю.В., Чурсин Л.С. Электромагнитное излучение при динамическом деформировании различных материалов. Механика твердого тела, №1, 1982. Издательство «Наука». С. 183-186.
4. RU №2559118, 2015 г.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ДИНАМИЧЕСКОГО ДЕФОРМИРОВАНИЯ МЕТАЛЛИЧЕСКИХ МАТЕРИАЛОВ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2014 |
|
RU2559118C1 |
Способ регистрации параметров разрушения материалов | 2016 |
|
RU2617566C1 |
УСТРОЙСТВО И СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ПРОНИКАНИЯ МЕТАЕМОГО ТЕЛА В ПРЕГРАДУ | 2004 |
|
RU2263297C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОЧНОСТНЫХ СВОЙСТВ МАТЕРИАЛОВ ПРИ ДИНАМИЧЕСКОМ НАГРУЖЕНИИ | 2014 |
|
RU2553425C1 |
ПРОНИКАЮЩИЙ В ПРЕГРАДУ ЗОНД | 2022 |
|
RU2775320C1 |
Способ определения динамического коэффициента Пуассона | 2023 |
|
RU2820039C1 |
УСТРОЙСТВО ДЛЯ РЕГИСТРАЦИИ ПРОФИЛЕЙ СКОРОСТИ СВОБОДНОЙ ПОВЕРХНОСТИ ОБРАЗЦОВ ПРИ ПОВЫШЕННЫХ ТЕМПЕРАТУРАХ | 2012 |
|
RU2497096C2 |
УСТРОЙСТВО КОНТАКТНОЙ СВЯЗИ, УСТАНОВКА И СПОСОБ ПРОВЕДЕНИЯ ИСПЫТАНИЙ С НЕПРЕРЫВНОЙ РЕГИСТРАЦИЕЙ ПАРАМЕТРОВ КОНЕЧНОЙ БАЛЛИСТИКИ МЕТАЕМЫХ ТЕЛ | 2005 |
|
RU2297619C1 |
УСТРОЙСТВО И СПОСОБ ПРОВОДНОЙ ЭЛЕКТРИЧЕСКОЙ СВЯЗИ ДЛЯ РЕГИСТРАЦИИ ПАРАМЕТРОВ ФУНКЦИОНИРОВАНИЯ МЕТАЕМОГО ТЕЛА В ПОЛНОМ БАЛЛИСТИЧЕСКОМ ЦИКЛЕ | 2009 |
|
RU2413917C1 |
СПОСОБ КОМБИНИРОВАННОГО БЕСКОНТАКТНОГО РЕГИСТРИРОВАНИЯ ДВИЖЕНИЯ ТЕЛА В СПЛОШНОЙ СРЕДЕ | 2019 |
|
RU2720258C1 |
Изобретение относится к измерительной технике и может быть использовано для исследований параметров динамического деформирования металлических материалов в авиационной и космической технике. Сущность: регистрируют электромагнитное поле, возникающее при динамическом деформировании тел, например при высокоскоростном соударении тел. Полезный сигнал регистрируют исследуемым образцом, подключенным через коаксиальное электрическое соединение к устройству измерения: осциллографу, мультиметру, вольтметру и т.д. Функция, аппроксимирующая полученный сигнал, аппаратно или программно дифференцируется. Определяют скорость деформации, которая численно равна значению производной, взятой с обратным знаком, при стремлении аргумента к нулю. Определяют время окончания деформации, которое равно времени локального экстремума производной. В случае высокоскоростного соударения ударника и мишени время этого экстремума определяет время остановки ударника при проникании в мишень. Технический результат: повышение точности определения параметров деформирования, возможность определения скорости деформации и времени окончания деформации. 2 ил.
Способ определения параметров динамического деформирования металлических материалов, заключающийся в том, что регистрируют электромагнитное поле, возникающее при динамическом деформировании тел, регистрируют полезный сигнал исследуемым образцом, подключенным через коаксиальное электрическое соединение к устройству измерения, отличающийся тем, что программно или аппаратно дифференцируют функцию, описывающую регистрируемую функцию, определяют скорость деформации и время окончания деформации.
СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ДИНАМИЧЕСКОГО ДЕФОРМИРОВАНИЯ МЕТАЛЛИЧЕСКИХ МАТЕРИАЛОВ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2014 |
|
RU2559118C1 |
СПОСОБ РЕГИСТРАЦИИ ПАРАМЕТРОВ ЭЛЕКТРОМАГНИТНОГО | 0 |
|
SU365554A1 |
Способ определения динамических деформаций материала | 1988 |
|
SU1631259A1 |
Способ и приспособление для вкладывания оттяжных палочек на коттон-машинах | 1948 |
|
SU84174A3 |
US 8132466 B2, 13.03.2012 | |||
JP 62299984 A, 26.12.1987 | |||
Способ получения фтористых солей | 1914 |
|
SU1980A1 |
Авторы
Даты
2019-07-18—Публикация
2018-07-10—Подача