Изобретение относится к области оптики, в частности интегрально-оптическим датчикам.
Сенсоры (датчики) позволяют собирать, фиксировать, обрабатывать и передавать информацию относительно состояния физических систем. Принципы их действия основываются на различных физических и химических явлениях. Среди множества различных датчиков в последнее время все большее распространение получают так называемые интегрально-оптические химические сенсоры. В них в свою очередь используются также различные принципы: абсорбционные, люминесцентные и др. Приборы такого типа предназначены определять наличие и идентифицировать химические соединения в окружающей среде.
Известно устройство интегрального оптического волноводного химического сенсора, состоящее из He-Ne лазера, оптического волновода (пленка), покровного слоя (воздух), подложки, устройства ввода и вывода лазерного излучения [1]. Волноводная мода распространяется по волноводу от устройства ввода до устройства вывода. Оптическое зондирующее излучения используется от внешнего He-Ne лазера. Длина волновода может варьироваться от нескольких миллиметров до нескольких метров. Излучение, введенное в волновод с помощью призменных вводов, распространяется по нему и, частично проникая в воздух, в присутствии аналита на выходе из призмы наблюдается уменьшение интенсивности сигнала, которое регистрируется фотоприемником.
Известно также устройство датчика абсорбционного типа [2]. Принцип работы волноводного оптического химического сенсора абсорбционного типа основан на регистрации изменения интенсивности волноводной моды, распространяющейся через исследуемую газообразную среду, находящуюся рядом с сенсором. Например, если в воздухе над волноводом появится газ, у которого есть характерная линия поглощения, совпадающая с длиной волны лазерного излучения, то будет наблюдаться затухание интенсивности волноводной моды. Когерентное оптическое излучение от лазера при помощи, например, оптоволокна, подводится к сенсорной ячейке. Оптический пучок вводится в волноводный оптический химический сенсор, распространяется в нем, частично проникая в воздух над волноводом, и, в присутствии исследуемого газового компонента, на выходе происходит уменьшение интенсивности сигнала, регистрируемого фотоприемником, который соединен с ним при помощи оптоволокна. Сенсор представляет собой подложку из оптически прозрачного материала, например, стекла. На подложке сформирована волноводная структура на основе ниобата лития легированного титаном, которая состоит из двух канальных и рупорных волноводов. Для ввода и вывода оптического излучения используется оптоволокно.
Для обоих аналогов характерны следующие недостатки: использование внешнего лазерного источника с хорошим качеством излучения, длина волны лазера должна соответствовать характерной линии поглощения определяемых веществ, волноводный канал может быть значительных размеров (до метров), сложность настройки устройства ввода – вывода излучения.
Наиболее близкий аналог это устройство [3]. В работе предложено три варианта конструкций люминесцентных сенсорных датчиков, где в качестве аналитов (определяемого вещества) выступают пары динитротолуола и тринитротолуола. Один из них вариант вывода усиленного спонтанного излучения через торец волновода, содержащий чувствительный тонкопленочный слой. Второй вариант предлагает использование распределенной обратной связи (РОС), на который нанесен чувствительный тонкопленочный слой. Третий вариант содержит кольцевой волновод, состоящий из чувствительного тонкопленочного слоя, без устройства вывода излучения. Предложенные конструкции относятся к люминесцентным сенсорам, поскольку механизм детектирования основан на взаимодействии электрондефицитных ароматических соединений с электрондонорными полимерами и тушению флуоресценции полимера по механизму образования комплексов с переносом энергии. Авторы различными методами пытаются реализовать надежные методы регистрации полезного сигнала, увеличить фотостабильность полимерной пленки и понизить порог генерации. При этом возбуждать, ввиду особых физических и химических особенностей, соединения приходится излучением ультрафиолетового азотного лазера (λ = 337 нм), которое разрушительным образом действует на компоненты сенсора, уменьшая ресурс работы. Не во всех вариантах авторам удалось достичь лазерной генерации из-за использования химических соединений с различными оптическими свойствами, поскольку приходится согласовывать волноводные свойства разнородных материалов по показателю преломления.
Задачей изобретения является создание сенсорного устройства способного определять наличие и идентифицировать химические соединения в окружающей среде, которое позволило бы увеличить чувствительность сенсорного устройства, уменьшить уровень накачки, понизить порог генерации, увеличить ресурс работы, расширить ряд чувствительных химических соединений, снизить требования к качеству возбуждающего излучения, уменьшить себестоимость и упростить конструкцию.
Решение поставленной задачи достигается в предлагаемом устройстве фотовозбуждаемого лазерного интегрально-оптического сенсора, который состоит из источника возбуждения, чувствительного слоя, тонкопленочной лазерно-активной среды, дополнительного слоя, оптических элементов обеспечения положительной обратной связи и вывода излучения, прозрачной подложки. Источник накачки подбирается из ряда лазерных и не лазерных источников излучения, способных накачать лазерно-активную среду до пороговой генерации. Чувствительный слой представляет собой пленку полиметилметакрилата, допированную химическим веществом чувствительным к аналиту, при взаимодействии с которым в пленке появляется спектральная полоса поглощения, а не люминесценции в отличие от прототипа. Этот чувствительный слой нанесен на поверхность тонкопленочной лазерно-активной среды на основе полиметилметакрилата и составляет с ней одно целое с одним коэффициентом преломления, а спектральная линия генерации совпадает со спектральной полосой поглощения чувствительного слоя, появляющаяся после взаимодействия с аналитом на поверхности чувствительного слоя.
В качестве лазерно-активной среды может выступать любой лазерный краситель с низким порогом генерации, допированный в полиметилметакрилат. В качестве чувствительного слоя может быть выбрано химическое соединение из множества химических веществ, удовлетворяющее условию, что при взаимодействии с аналитом будет образовывать комплекс, поглощение которого лежит в области лазерной генерации красителя. Это значительно расширяет ряд лазерно-активных сред и чувствительных химических соединений к различным аналитам, пригодных для создания сенсоров такого типа.
Для увеличения эффективной длины взаимодействия лазерного излучения с аналитом введена положительная обратная связь при помощи двух распределенных брэгговских отражателей (РБО). Другая роль РБО – увеличение добротности резонатора, что снижает порог возникновения генерации в тонкопленочном волноводе при отсутствии взаимодействия с аналитом и увеличение ресурса работы. Все это, в целом, повышает чувствительность сенсора. Один РБО выполнен с дифракционным максимумом под углом 90,° что позволяет обеспечить простой вывод полезного сигнала через прозрачную подложку. Другой РБО выполнен с условием полного обратного отражения. Они сформированы на дополнительном промежуточном слое, между лазерно-активной средой и прозрачной подложкой. Этот слой выполнен с условием соотношения показателей преломлением nслоя<nпмма для обеспечения хороших волноводных свойств в планарном волноводе и одновременно обеспечивает адгезию полиметилметакрилата к подложке.
Технический результат заключается в увеличении чувствительности сенсорного устройства, уменьшении уровня накачки, понижении порога генерации, увеличении ресурса работы, расширении ряда чувствительных химических соединений, снижении требований к качеству возбуждающего излучения, снижении себестоимости и упрощении настройки самой конструкции.
Для пояснения предполагаемого изобретения предложен чертеж Фигура 1. – Схематическое изображение конструкции фотовозбуждаемого лазерного интегрально-оптического сенсора, где: 1 – прозрачная подложка; 2 – адгезионный слой; 3 – тонкопленочная лазерно-активная среда – планарный волновод; 4 – распределенный брэгговский отражатель (глухое зеркало); 5 – распределенный брэгговский отражатель со вторым порядком дифракции под углом 90°; 6 – выходное излучение пороговой генерации; 7 – излучение от источника накачки; 8 – чувствительный слой к аналиту; 9 – покровный слой (воздух+аналит).
Устройство фотовозбуждаемого лазерного интегрально-оптического сенсора состоит из источника накачки 7, который может быть лазерным и не лазерным, излучающим в видимом диапазоне и способным накачать лазерно-активную среду до пороговой генерации. Прозрачная подложка 1 может быть выполнена из стекла и не требует прецизионной оптической обработки. Адгезионный слой 2 может быть выполнен из гидрализованного тетраэтоксисилана [4]. Распределенные брэгговские отражатели 4, 5 формируются на поверхности адгезионного слоя 2 одним из известных способов, с соблюдением условий: 4 – распределенный брэгговский отражатель (глухое зеркало), 5 – распределенный брэгговский отражатель со вторым порядком дифракции под углом 90°. В качестве лазерно-активной среды 3 может выступать любой лазерный краситель с низким порогом генерации, с хорошей растворимостью в метилметакрилате. В качестве чувствительного слоя 8 может быть выбрано любое химическое соединение с хорошей растворимостью в метилметакрилате, удовлетворяющее условию, что при взаимодействии с аналитом будет образовывать комплекс, поглощение которого лежит в области лазерной генерации красителя.
Устройство работает следующим образом: при фотовозбуждении тонколенточной лазерно-активной среды 3 от источника накачки 7 возникает пороговая генерация и распространяется в планарном волноводе. Вывод полезного сигнала 6 осуществляется через один из двух распределенных брэгговских отражателей 5 во втором порядке дифракции под углом 90° к поверхности через прозрачную подложку и улавливается фотоприемником. В качестве фотоприемника может выступать как спектральный приемник, так и амплитудный. Амплитудный приемник позволяет определить наличие амплитудного сигнала, а спектральный - изменение характерной спектральной ширины линии генерации. В присутствии аналита 9 происходит его взаимодействие с чувствительным слоем 8 и в поверхностном слое которого образуется спектральная полоса поглощения линии генерации. Поскольку лазерная генерация распространяется по планарному волноводу 3 благодаря явлению полного внутреннего отражения, т.е. многократно отражаясь от границ раздела: лазерно-активная среда 3 – адгезионный слой 2 и покровный слой (воздух + аналит) 9 – лазерно-активная среда 3, то при каждом отражении от последней возникают потери из-за имеющегося поглощения на границе раздела, которые с каждым отражением накапливаются в частности еще благодаря присутствию устройств обратной связи (РБО), наличие которых позволяет уменьшить реальную длину планарного волновода. При определенной концентрации аналита в покровном слое наступает срыв генерации, что регистрируется фотоприемником.
Технический результат заключается в увеличении чувствительности сенсорного устройства, уменьшении уровня накачки, понижении порога генерации, увеличении ресурса работа, расширении ряда чувствительных химических соединений, снижении требований к качеству возбуждающего излучения, снижении себестоимости и упрощении настройки самой конструкции.
Использованные источники информации
1. A.A. Egorov, M.A. Egorov, Yu.I. Tsareva, T.K. Chekhlova Study of the Integrated-Optical Concentration Sensor for Gaseous Substances // Laser Physics. – Vol. 17. – Is. 1. – P. 50–53 https://doi.org/10.1134/S1054660X0.
2. Н.В. Масальский Волноводный оптический химический сенсор концентрации газообразных веществ на ниобате лития // Материалы Международной научно-технической конференции. – 3-7 декабря 2012 г. – C. 15-18.
3. A. Rose, Z. Zhu, C.F. Madigan, T.M. Swager, V. Bulovic Sensitivity gains in chemosensing by lasing action in organic polymers // / NATURE. – Vol 434. – 2005. – P. 876–879.
4. Патент № 2666181 «Тонкопленочный фотовозбуждаемый органический лазер на основе полиметилметакрилата»; заявитель и патентообладатель Федеральное государственное автономное образовательное учреждение высшего образования Национальный исследовательский Томский государственный университет (ТГУ, НИ ТГУ) (RU) — № 2016150444; заявл. 21.12.2016; опубл. 06.09.2018.
название | год | авторы | номер документа |
---|---|---|---|
Фотовозбуждаемый волноводный лазерный сенсор для определения наличия кислорода в газовой среде | 2023 |
|
RU2804259C1 |
Лазерный сенсор для определения наличия углекислого газа | 2022 |
|
RU2798736C1 |
Многоволновый фотовозбуждаемый тонкопленочный органический лазер | 2019 |
|
RU2721584C1 |
ТОНКОПЛЕНОЧНЫЙ ФОТОВОЗБУЖДАЕМЫЙ ОРГАНИЧЕСКИЙ ЛАЗЕР НА ОСНОВЕ ПОЛИМЕТИЛМЕТАКРИЛАТА | 2016 |
|
RU2666181C2 |
ФОТОВОЗБУЖДАЕМЫЙ АЛМАЗНЫЙ NV-ЛАЗЕР | 2021 |
|
RU2779410C1 |
ОПТОЭЛЕКТРОННОЕ УСТРОЙСТВО ДЛЯ ВЫСОКОСКОРОСТНОЙ ПЕРЕДАЧИ ДАННЫХ, ОСНОВАННОЕ НА СДВИГЕ КРАЯ СТОП-ЗОНЫ РАСПРЕДЕЛЕННОГО БРЭГГОВСКОГО ОТРАЖАТЕЛЯ ЗА СЧЕТ ЭЛЕКТРООПТИЧЕСКОГО ЭФФЕКТА | 2007 |
|
RU2452067C2 |
ИНЖЕКЦИОННЫЙ ЛАЗЕР С МНОГОВОЛНОВЫМ МОДУЛИРОВАННЫМ ИЗЛУЧЕНИЕМ | 2013 |
|
RU2540233C1 |
ОПТОЭЛЕКТРОННЫЕ УСТРОЙСТВА | 2009 |
|
RU2532896C2 |
ПОЛЯРИТОННЫЙ ЛАЗЕР | 2015 |
|
RU2611087C1 |
ТВЕРДОТЕЛЬНЫЙ ЛАЗЕР, УПРАВЛЯЕМЫЙ ЭЛЕКТРИЧЕСКИМ ПОЛЕМ, И СПОСОБ ПЕРЕКЛЮЧЕНИЯ ЧАСТОТЫ ТВЕРДОТЕЛЬНОГО ЛАЗЕРА | 2009 |
|
RU2410809C1 |
Изобретение относится к области измерительной техники и касается фотовозбуждаемого лазерного интегрально-оптического сенсора. Сенсор состоит из источника возбуждения, прозрачной подложки, тонкопленочной лазерно-активной среды, чувствительного слоя, оптических элементов вывода излучения. При этом сенсор включает в себя дополнительный слой и два распределенных брэгговских отражателя. Чувствительный слой представляет собой пленку полиметилметакрилата, допированную химическим веществом, чувствительным к аналиту с эффектом появления спектральной полосы поглощения в нем при взаимодействии с аналитом. Чувствительный слой нанесен на поверхность тонкопленочной лазерно-активной среды на основе полиметилметакрилата и составляет с ней одно целое с одним коэффициентом преломления. Лазерно-активная среда представляет собой тонкопленочную структуру из полиметилметакрилата, допированную лазерным красителем с низким порогом возбуждения и имеющую спектральную линию генерации, совпадающую с полосой поглощения чувствительного слоя. Технический результат заключается в увеличении чувствительности, уменьшении уровня накачки, понижении порога генерации, расширении ряда детектируемых химических соединений, снижении требований к качеству возбуждающего излучения и упрощении настройки устройства. 5 з.п. ф-лы, 1 ил.
1. Фотовозбуждаемый лазерный интегрально-оптический сенсор, состоящий из источника возбуждения, прозрачной подложки, тонкопленочной лазерно-активной среды, чувствительного слоя, оптических элементов вывода излучения, отличающийся тем, что содержит дополнительный слой и два распределенных брэгговских отражателя, а также чувствительный слой, представляющий собой пленку полиметилметакрилата, допированную химическим веществом, чувствительным к аналиту, с эффектом появления спектральной полосы поглощения в нем при взаимодействии с аналитом, который нанесен на поверхность тонкопленочной лазерно-активной среды на основе полиметилметакрилата, составляет с ней одно целое с одним коэффициентом преломления, при этом лазерно-активная среда представляет собой тонкопленочную структуру из полиметилметакрилата, допированную лазерным красителем с низким порогом возбуждения и имеющую спектральную линию генерации, совпадающую с полосой поглощения чувствительного слоя.
2. Сенсор по п. 1, отличающийся тем, что между лазерно-активной средой и прозрачной подложкой располагается дополнительный слой, обеспечивающий адгезию полиметилметакрилата (ПММА) к подложке.
3. Сенсор по п. 2, отличающийся тем, что дополнительный слой выполнен с условием соотношения показателей преломлением nслоя<nпмма.
4. Сенсор по п. 1, отличающийся тем, что на дополнительном слое сформированы устройства положительной обратной связи в виде двух распределенных брэгговских отражателей.
5. Сенсор по пп. 1 или 4, отличающийся тем, что в качестве устройства вывода полезного сигнала используется один из двух распределенных брэгговских отражателей во втором порядке дифракции под углом 90° к поверхности через прозрачную подложку.
6. Сенсор по пп. 1 или 4, отличающийся тем, что второй распределенный брэгговский отражатель выполнен с условием полного обратного отражения.
A | |||
Rose и др | |||
"Sensitivity gains in chemosensing by lasing action in organic polymers", NATURE, т | |||
Станционный указатель направления времени отхода поездов и т.п. | 1925 |
|
SU434A1 |
Соединение металлических труб раструбом | 1925 |
|
SU876A1 |
A | |||
A | |||
Egorov и др | |||
"Study of the Integrated-Optical Concentration Sensor for Gaseous Substances", LASER PHYSICS, т | |||
Печь для сжигания твердых и жидких нечистот | 1920 |
|
SU17A1 |
Устройство для выпрямления многофазного тока | 1923 |
|
SU50A1 |
US 2006073607 A1, 06.04.2006 | |||
US 2009034902 A1, 05.02.2009. |
Авторы
Даты
2019-08-14—Публикация
2018-12-12—Подача