УСТРОЙСТВО ОПРЕДЕЛЕНИЯ ЭЛЕКТРОПРОВОДИМОСТИ МАГНИТНЫХ ОТЛОЖЕНИЙ НА ПОВЕРХНОСТИ ТРУБ ВИХРЕТОКОВЫМ МЕТОДОМ Российский патент 2019 года по МПК G01N27/72 

Описание патента на изобретение RU2697936C1

Изобретение относится к методам неразрушающего контроля и может быть использовано на тепловых и атомных энергоустановках, трубопроводах нефти и газа на химических и нефтехимических предприятиях.

Техническая целесообразность изобретения заключается в том, что наличие отложений ведет к нарушению протекания тепловых процессов в системе, а кроме того наличие отложений (особенно магнитных) существенно затрудняет процесс проведения вихретокового неразрушающего контроля, поэтому обнаружение отложений и определение значений их параметров представляет собой актуальную задачу.

Известны способ и устройство [1] для определения толщины и электропроводимости отложений на поверхности труб импульсным вихретоковым методом, но они применимы только для немагнитных отложений.

Наиболее близким к предлагаемому техническому решению является устройство для определения толщины и магнитных свойств отложений на поверхности труб импульсным вихретоковым методом [2]. Измерение реализуется накладным датчиком, радиус возбуждающей катушки которого выбирается в соответствии с конфигурацией объекта контроля, период возбуждающего импульсного тока определяется в зависимости от электрофизических параметров металла трубы и отложения.

К недостаткам данного устройства можно отнести невозможность контроля значения удельной электрической проводимости материала магнитных отложений, хотя этот параметр коррелирует с плотностью и тепловыми свойствами отложения, и поэтому представляет интерес для технологов-эксплуатационников.

Предлагаемое устройство позволяет определить, как значения (при необходимости) толщины стенки трубки и электрической проводимости ее материала, так и толщину слоя отложения и магнитных и электрических свойств его материала.

Кроме того, информация о магнитных свойствах и значении удельной электрической проводимости материала отложения в значительной степени упрощает его структурный анализ.

Задачей предлагаемого технического решения является определение значения удельной электрической проводимости материала магнитного отложения.

Прототипом предлагаемого устройства является устройство, использованное в [2].

Технический эффект, получаемый при решении данной задачи, и заключающийся в определении структуры отложений посредством анализа его толщины, удельной электрической проводимости и магнитной проницаемости, достигается тем, что в известном устройстве вихретокового контроля удельной электрической проводимости магнитных отложений на поверхности труб, содержащем генератор прямоугольных периодических импульсов тока, вихретоковый датчик с возбуждающей катушкой, радиус Rв которой выбирают из условия 3(δмном)>Rв>1,0(δмнoм), где δмн и δом, номинальная толщина стенки трубы и максимальная толщина отложений соответственно, измеритель магнитного потока и измерительную катушку, при этом выход генератора прямоугольных импульсов присоединен к возбуждающей катушке вихретокового датчика, измерительная катушка и измеритель магнитного потока через блоки усиления и АЦП подключены к микроконтроллеру, к выходам которого присоединены индикатор толщины отложений, и индикатор относительной магнитной проницаемости отложений, согласно изобретению, оно снабжено моделирующим устройством, двумя блоками нормировки сигналов измерительной катушки и моделирующего устройства, блоком сравнения значений этих сигналов и индикатором электропроводимости, при этом вход моделирующего устройства подключен к одному из выходов микроконтроллера, выход моделирующего устройства подсоединен к первому блоку нормировки, ко второму блоку нормировки подключен выход усилителя исследуемого сигнала, выходы первого и второго блоков нормировки подключены к блоку сравнения, выход которого соединен с индикатором электропроводимости.

На Фиг. 1 Показано взаимное расположение объекта контроля и вихретокового датчика, снабженного измерителем магнитного потока.

На Фиг. 2 Приведена временная диаграмма тока возбуждающей катушки.

На Фиг. 3 Приведены нормированные кривые разностного вносимого напряжения для различных значений параметров отложения

На Фиг. 4 Приведены начальные участки нормированных кривых, рассчитанных моделирующим устройством для различных значений электропроводимости отложения

На Фиг. 5 Приведено положение кривой нормированного разностного вносимого напряжение от исследуемого объекта на диаграмме (Фиг. 4) начальных участков семейства нормированных кривых

На Фиг. 6 Приведена блок-схема предлагаемого устройства.

Объект контроля (фиг. 6) состоит из слоя металла 1 и слоя отложения 2. Вихретоковый датчик (фиг. 1), возбуждающая катушка 3 которого подключена к генератору импульсов тока 4 (фиг. 2), расположен над объектом контроля. Измерительная катушка 9 через блоки усиления 10 и АЦП 11 соединена с микроконтроллером 8, выход которого соединен с индикаторами толщины отложения 12 и магнитной проницаемости отложения 13. Устройство функционирует следующим образом: Над поверхностью двухслойного объекта контроля (стенка трубы, плоская поверхность) со стороны слоя металла 1 (более удаленный - слой отложения 2) расположен вихретоковый датчик, возбуждающая катушка 3 которого питается от генератора 5 импульсным током iв (фиг. 2) с периодом Тв≥3Rвμ0нмσнмомσомμrм) (где σнм, σом - номинальное и максимальное значение электропроводимости слоев металла и отложения, δнм, δом - номинальное и максимальное значение толщины слоев металла и отложения, μrм - максимальное значение магнитной проницаемости отложения). Сигналы измерительной катушки и измерителя потока 5 через блоки усиления 6, 10 и АЦП 7 и 11 поступают в микроконтроллер 8, в котором происходит определение толщины и магнитной проницаемости отложений, что фиксируется индикаторами 12 и 13.

Устройство функционирует следующим образом. Над поверхностью двуслойного объекта контроля (стенка трубы, плоская поверхность) со стороны слоя металла 1 (более удаленный - слой отложения 2) расположен вихретоковый датчик, возбуждающая катушка 3 которого питается от генератора 5 импульсным током iв (фиг. 2) с периодом Тв≥3Rвμ0нмσнмомσомμrм), где σнм, σом - номинальное и максимальное значение электропроводности слоев металла и отложения, δнм, δом - номинальное и максимальное значение толщины слоев металла и отложения, μrм - максимальное значение магнитной проницаемости отложения). Сигналы измерительной катушки и измерителя потока 5 через блоки усиления 6,10 и АЦП 7 и 11 поступают в микроконтроллер 8, в котором происходит определение толщины и магнитной проницаемости отложений, что фиксируется индикаторами 12 и 13.

Алгоритм обработки сигнала предусматривает (если это необходимо) определение толщины стенки и электропроводимости металла трубы. Периоды Тв импульсов тока генератора выбирают из условия Тв≥3Rвμ0нмσнмомσомμrм), где σнм и σом - номинальное и максимальное значение электропроводимости слоев металла и отложения, δнм, δом - номинальное и максимальное значение толщины слоев металла и отложения, μrм - максимальное значение магнитной проницаемости отложения, μ0 - магнитная постоянная, в микроконтроллере реализован алгоритм определения магнитной проницаемости и толщины магнитного отложения посредством фиксации в определенные моменты времени приращений вносимого напряжения измерительной катушки, зависящего от вихревых токов, и измерителя магнитного потока по отношению к их значениям для объекта без отложения и сравнению этих приращений с их значениями в узлах градуировочной, полученной экспериментально или моделированием, сетки, находящейся в памяти микроконтроллера.

По специальному алгоритму моделирующее устройство 14 генерирует сигналы, подобные сигналам измерительной катушки для полученных значений толщины отложения δо и величины магнитных свойств его материала и различных значений удельной электрической проводимости σо. Полученные сигналы нормируются (фиг. 4) в блоке нормировки 15 и на градуировочную сетку (фиг. 5), построенную по начальным участкам нормированных кривых, наносится аналогичный нормированный в блоке 16 сигнал от исследуемого объекта, после чего нормированные сигналы сравниваются (в блоке сравнения 17) для момента t=14 мкс (на интервале максимальной различимости и упорядоченности) и их совпадение определяет величину удельной электрической проводимости материала магнитного отложения, фиксируемую блоком 18.

Значения параметров, при которых проводилось моделирование:

δм=2÷2.3 мм, σм=10±1 МСм/м - параметры трубы

δо=0.5÷2 мм, σо=0.05÷0.15 МСм/м, - параметры отложения

Тв=2 мс, Rв=4 мм.

Предлагаемое устройство отличается тем, что после определения толщины отложения δo и величины магнитных свойств его материала моделирующее устройство (компьютер) по специальному алгоритму генерирует сигналы, подобные сигналам измерительной катушки для полученных значений δо и и различных значений удельной электрической проводимости в таком диапазоне, чтобы он, превосходил возможное ее значение. Полученные сигналы нормируются по их максимальному значению и начальные участки этих кривых образуют в какой-то фиксированный момент времени регулярную зависимость. Сравнивая полученные значения и нормированные значения исследуемого сигнала определяют значение электропроводимости σо исследуемого отложения.

Таким образом, благодаря совместному использованию вихретокового датчика, состоящего из возбуждающей и измерительной катушек и измерителя магнитного потока, микроконтроллера с его алгоритмом обработки сигналов, осуществляется измерение толщины магнитного отложения, количественная оценка магнитных свойств и удельной электрической проводимости материала отложения, что характеризует в значительной степени его структурное состояние.

Источники информации:

1. Патент 2487343 Р; опубл. 10.07.2013.

2. Пат. 143178, опубл. 20.07.2014.

Похожие патенты RU2697936C1

название год авторы номер документа
СПОСОБ ОПРЕДЕЛЕНИЯ ТОЛЩИНЫ ОТЛОЖЕНИЙ НА ВНУТРЕННЕЙ ПОВЕРХНОСТИ ТРУБ ВИХРЕТОКОВЫМ МЕТОДОМ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2012
  • Лунин Валерий Павлович
  • Бобруцков Михаил Васильевич
  • Иванычев Дмитрий Сергеевич
  • Стенин Александр Игоревич
  • Чернов Леонид Андреевич
RU2487343C1
УСТРОЙСТВО ОПРЕДЕЛЕНИЯ СТЕПЕНИ НЕОДНОРОДНОСТИ СТРУКТУРНОГО СОСТОЯНИЯ МАГНИТНЫХ МЕТАЛЛОВ ВИХРЕТОКОВЫМ МЕТОДОМ 2019
  • Лунин Валерий Павлович
  • Кошельников Владимир Сергеевич
  • Барат Вера Александровна
  • Чернов Леонид Андреевич
RU2725020C1
СПОСОБ КОНТРОЛЯ ИЗМЕНЕНИЙ ЭЛЕКТРОПРОВОДИМОСТИ ВНУТРЕННИХ СЛОЕВ НЕМАГНИТНОГО МЕТАЛЛА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2015
  • Лунин Валерий Павлович
  • Чернов Леонид Андреевич
  • Славинская Екатерина Андреевна
  • Терехин Иван Владимирович
  • Барат Вера Александровна
RU2597960C1
УСТРОЙСТВО ОПРЕДЕЛЕНИЯ СТЕПЕНИ НЕОДНОРОДНОСТИ ЭЛЕКТРОПРОВОДИМОСТИ НЕМАГНИТНЫХ МЕТАЛЛОВ ВИХРЕТОКОВЫМ МЕТОДОМ 2019
  • Барат Вера Александровна
  • Лунин Валерий Павлович
  • Чернов Леонид Андреевич
  • Кошельников Владимир Сергеевич
RU2713031C1
Способ измерения электропроводности материала неферромагнитных цилиндрических изделий и устройство для его осуществления 1982
  • Себко Вадим Пантелеевич
  • Пантелеев Михаил Сергеевич
  • Рохман Макс Григорьевич
SU1093957A1
Устройство для измерения удельной электрической проводимости немагнитного листа под изоляционным покрытием 1981
  • Виноградова Лариса Николаевна
  • Вяхорев Виктор Григорьевич
  • Клейнберг Андрис Янович
  • Никульшин Виктор Сергеевич
  • Олейников Петр Петрович
  • Фастрицкий Виктор Сергеевич
SU1037158A1
УСТРОЙСТВО ОПРЕДЕЛЕНИЯ ПОЛОЖЕНИЯ МАЛОРАЗМЕРНЫХ МЕТАЛЛИЧЕСКИХ ВКЛЮЧЕНИЙ В ИЗДЕЛИЯХ ИЗ КОМПОЗИТНЫХ МАТЕРИАЛОВ 2019
  • Кузнецов Антон Олегович
  • Чернов Леонид Андреевич
  • Будадин Олег Николаевич
RU2710080C1
СПОСОБ ОПРЕДЕЛЕНИЯ ВЕЛИЧИНЫ ОТЛОЖЕНИЙ НА ВНУТРЕННЕЙ ПОВЕРХНОСТИ ТРУБОПРОВОДА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2010
  • Лунин Валерий Павлович
  • Чернов Леонид Андреевич
  • Клементьева Елизавета Александровна
  • Цуканов Виктор Владимирович
  • Иванычев Дмитрий Сергеевич
RU2439491C1
Вихретоковый преобразователь для дефектоскопии 2023
  • Шкатов Петр Николаевич
RU2813477C1
МАГНИТНЫЙ ДЕФЕКТОСКОП ДЛЯ ОБНАРУЖЕНИЯ ДЕФЕКТОВ В СВАРНЫХ ШВАХ 2015
  • Гурин Сергей Федорович
  • Кузнецов Вадим Вячеславович
  • Краснов Александр Александрович
  • Орлов Вячеслав Викторович
RU2587695C1

Иллюстрации к изобретению RU 2 697 936 C1

Реферат патента 2019 года УСТРОЙСТВО ОПРЕДЕЛЕНИЯ ЭЛЕКТРОПРОВОДИМОСТИ МАГНИТНЫХ ОТЛОЖЕНИЙ НА ПОВЕРХНОСТИ ТРУБ ВИХРЕТОКОВЫМ МЕТОДОМ

Использование: для неразрушающего контроля. Техническая целесообразность изобретения заключается в том, что устройство вихретокового контроля удельной электрической проводимости магнитных отложения на поверхности труб содержит генератор прямоугольных периодических импульсов тока с периодом Тв, выбираемым из условия Тв≥3Rвμ0нмσнмомσомμrм), где δнм и σнм - номинальные значения толщины и электропроводимости металла, δом, σом и μrм - максимальные значения толщины, удельной электрической проводимости и магнитной проницаемости отложений, μ0 - магнитная постоянная, вихретоковый датчик с возбуждающей катушкой, радиус Rв которой выбирают из условия 3(δмном)>Rв>1,0(δмнoм), где δмн и δом - номинальная и максимальная толщина стенки трубы и отложений соответственно, измеритель магнитного потока и измерительную катушку, выход генератора прямоугольных импульсов присоединен к возбуждающей катушке вихретокового датчика, измерительная катушка и измеритель магнитного потока через блоки усиления и АЦП подключены к микроконтроллеру, к выходам которого присоединены индикатор толщины отложений и индикатор относительной магнитной проницаемости отложений, также снабжено моделирующим устройством, двумя блоками нормировки сигналов измерительной катушки и моделирующего устройства, блоком сравнения значений этих сигналов и индикатором электропроводимости, при этом вход моделирующего устройства подключен к одному из выходов микроконтроллера, выход моделирующего устройства подсоединен к первому блоку нормировки, ко второму блоку нормировки подключен выход усилителя исследуемого сигнала, выходы первого и второго блоков нормировки подключены к блоку сравнения, выход которого соединен с индикатором электропроводимости. Технический результат: обеспечение возможности определения структуры отложений. 6 ил.

Формула изобретения RU 2 697 936 C1

Устройство вихретокового контроля удельной электрической проводимости магнитных отложений на поверхности труб, содержащее генератор прямоугольных периодических импульсов тока с периодом Тв, выбираемым из условия Тв≥3Rвμ0нмσнмомσомμrм), где δнм и σнм - номинальные значения толщины и электропроводимости металла, δом, σом и μrм - максимальные значения толщины, удельной электрической проводимости и магнитной проницаемости отложений, μ0 - магнитная постоянная, вихретоковый датчик с возбуждающей катушкой, радиус Rв которой выбирают из условия 3(δмном)>Rв>1,0(δмнoм), где δмн и δом - номинальная и максимальная толщина стенки трубы и отложений соответственно, измеритель магнитного потока и измерительную катушку, выход генератора прямоугольных импульсов присоединен к возбуждающей катушке вихретокового датчика, измерительная катушка и измеритель магнитного потока через блоки усиления и АЦП подключены к микроконтроллеру, к выходам которого присоединены индикатор толщины отложений и индикатор относительной магнитной проницаемости отложений, отличающееся тем, что оно снабжено моделирующим устройством, двумя блоками нормировки сигналов измерительной катушки и моделирующего устройства, блоком сравнения значений этих сигналов и индикатором электропроводимости, при этом вход моделирующего устройства подключен к одному из выходов микроконтроллера, выход моделирующего устройства подсоединен к первому блоку нормировки, ко второму блоку нормировки подключен выход усилителя исследуемого сигнала, выходы первого и второго блоков нормировки подключены к блоку сравнения, выход которого соединен с индикатором электропроводимости.

Документы, цитированные в отчете о поиске Патент 2019 года RU2697936C1

СПОСОБ ОПРЕДЕЛЕНИЯ ТОЛЩИНЫ ОТЛОЖЕНИЙ НА ВНУТРЕННЕЙ ПОВЕРХНОСТИ ТРУБ ВИХРЕТОКОВЫМ МЕТОДОМ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2012
  • Лунин Валерий Павлович
  • Бобруцков Михаил Васильевич
  • Иванычев Дмитрий Сергеевич
  • Стенин Александр Игоревич
  • Чернов Леонид Андреевич
RU2487343C1
Электродное покрытие 1960
  • Ворновицкий И.Н.
  • Заско Ф.А.
  • Мазель А.Г.
  • Шарапов Ф.Д.
SU143178A1
WO 2010086238 A1, 05.08.2010
СПОСОБ ОПРЕДЕЛЕНИЯ ТОЛЩИНЫ СЛОЯ ПАРАФИНОВ НА ВНУТРЕННЕЙ СТОРОНЕ НЕФТЕ- И ГАЗОПРОВОДОВ 2004
  • Шухостанов В.К.
  • Коровин В.Н.
RU2257510C1
ПРИБОР ДЛЯ ОПРЕДЕЛЕНИЯ ТОЛЩИНЫ СЛОЯ НАКИПИ НА ВНУТРЕННЕЙ ПОВЕРХНОСТИ КОТЕЛЬНЫХ ТРУБ 1944
  • Елизаров П.П.
SU64773A1

RU 2 697 936 C1

Авторы

Лунин Валерий Павлович

Малушин Дмитрий Сергеевич

Кошельников Владимир Сергеевич

Чернов Леонид Андреевич

Даты

2019-08-21Публикация

2018-12-04Подача