Радиофармацевтическая композиция для терапии воспалительных заболеваний суставов на основе радионуклида 188Re и микросфер альбумина крови человека, а также состав и способ её получения Российский патент 2019 года по МПК A61K51/04 A61K51/12 A61K38/38 A61K47/02 A61K47/12 A61K47/22 A61K47/26 A61K47/42 A61P35/00 

Описание патента на изобретение RU2698101C2

Описание изобретения:

Радиофармацевтическая композиция для терапии воспалительных заболеваний суставов на основе радионуклида 188Re и микросфер альбумина крови человека, а также состав и способ её получения.

Настоящее изобретение относится к ядерной медицине в общем и к радиофармацевтическим терапевтическим препаратам в частном. В качестве изобретения будет рассмотрен состав и способ получения суспензии полипептидных макромолекул диаметром 5-10 мкм, меченных радионуклидом рения (188Re), а также способ применения полученной радиофармацевтической композиции в целях терапии ревматоидных заболеваний суставов.

На протяжении более четырех десятилетий радиосиновиортез (РСО) является доказанным важным методом для местного лечения хронических воспалительных заболеваний суставов в контексте медицинских и ортопедических достижений. Термин радиосиновиортез был создан Delbarre и др. [1] и означает восстановление (ортез) синовиальной оболочки под действием ионизирующего излучения. При внутрисуставном введении радиофармпрепаратов для РСО происходит локализация радиофармацевтического препарата (РФП) внутри сустава, что оказывает благоприятное воздействие на воспалительные процессы синовиальной оболочки. Терапевтический эффект достигается благодаря благотворному воздействию ионизирующего излучения на синовиальную пролиферацию, тормозя ее развитие и приводя к дальнейшему регрессу с последующим фиброзным уплотнением. Как результат - уменьшение воспалений в суставе и снижение болей.

В литературе можно встретить термин «радиосиновэктомия» - синоним термина «радиосиновиортез».

Первые описания метода принадлежат Ишидо (у животных) [2] и Fellinger и Schmid (применительно к людям) [3].

При локальном применении радиоактивных веществ, предпринимается попытка воздействовать на болезненный деструктивный процесс в суставе, что является альтернативой хирургической синовэктомии. В основном, РСО предназначен для местного лечения практически всех видов хронических синовитов. Основными показаниями для РСО являются ревматоидный артрит, серонегативная спондилоартропатия, гемартроз при гемофилии, рецидивирующий внутрисуставной выпот (после артроскопии), пигментный виллонодулярный синовит, остеоартроз, после суставного протезирования и недифференцированные артриты. Большое исследование было проведено Kresnik и др. [4] на 2190 пролеченных суставов и показало высокую терапевтическую эффективность (73 ± 17) %. Наибольшее число ответов на лечение было получено при гемофилическом артрите. Помимо снижения воспалений при артритах, РСО позволяет привести к уменьшению гиперваскуляризации синовиальной оболочки с последующим значительным снижением эпизодов кровотечений. Ответ на ревматоидный артрит был ниже и зависел от стадии заболевания. Эффективность (73 ± 12) % была зарегистрирована у пациентов с первой стадией синартроза по классификации Стейнброкера и со значениями (52 ± 24) % у больных с третьей стадией (табл. 1). Для получения оптимального эффекта пациент должен получить лечение как можно раньше, насколько это возможно, для предотвращения развития артрита.

Таблица 1 – Ответ на лечение методом радиосиновэктомии различных суставов из исследования Kresnik и др.

Вид заболевания Ответ на лечение (%) Общее число 73 ± 17 Ревматоидный артрит 65 ± 15 Остеоартрит 52 ± 15 Гемофилический артрит 91 ± 4 I стадия РА 73 ± 12 II стадия РА 64 ± 17 III стадия РА 52 ± 24

Наиболее распространенными радиофармацевтическими препаратами, используемыми для РСО, являются: коллоид цитрата иттрия (90Y) для коленных суставов, рений (186Re) сульфид коллоид для средних суставов и эрбия (169Er) цитрат коллоид для мелких суставов с оптимальным размером частиц от 2 мкм до 10 мкм [5]. Множество различных бета-излучающих радионуклидов применялись для мечения коллоидов и потенциально могут быть использованы для РСО в составе РФП (табл. 2).

Таблица 2 – Физические характеристики используемых радиоизотопов для радиосиновэктомии.

Радионуклид β Emax, МэВ γ - излучение, % (кэВ) Пробег в ткани, макс, мм Глубина эффективного прохождения, мин, мм Период полураспада
Дни (д)
Часы (ч)
Применяемая активность* из литературы (МБк)
Иттрий–90 2,26 - 11,0 3,6 2,7 д 185 – 250 Рений–186 0,98 9 (137) 3,7 1,2 3,7 д 37 – 185 Эрбий–169 0,34 - 1,0 0,3 9,5 д 15 – 37 Рений–188 2,10 15 (155) 11,0 3,8 17,0 ч 555 – 920 Гольмий–166 1,84 6 (81) 8,4 3,3 26,9 ч 1,111 Диспрозий–165 1,30 4 (90) 5,7 1,3 2,3 ч 9,990 Золото–198 0,95 95 (412) 3,9 1,0 2,7 д 18 - 370 Самарий–153 0,81 28 (103) 2,5 0,8 46,8 ч 590

Из мирового уровня техники известно использование вышеуказанных радионуклидов, в частности радионуклида 188Re, в качестве действующего вещества в составе РПФ при РСО. В основном для этих целей применяются неорганические коллоиды 188Re различного состава.

Так, например, известен способ получения радиофармацевтической композиции на основе радионуклида 188Re в виде оловянного коллоида [6]. В данном патенте защищается способ получения радиофармацевтической композиции из предварительно подготовленного набора реагентов и раствора натрия перрената (188Re), получаемого из 188W/188Re генератора. В основе данного способа лежит использование двух флаконов с вспомогательными лиофилизированными реагентами. В одном из флаконов находится олова дихлорид дигидрат и полисорбат-80, обеспечивающие образование коллоида с включенным в его состав радионуклидом рения-188. В другом флаконе находится стабилизатор рН. Последовательное смешение содержимого двух флаконов с элюатом 188W/188Re генератора приводит к получению радиофармацевтической композиции, действующим веществом которой являются коллоидные частицы, содержащие радионуклид 188Re. Образованные частицы находятся в изотоническом 0,9 % физиологическом растворе. Их размер лежит в диапазоне от 2 до 10 мкм (приемлемый размер частиц для проведения внутрисуставной инъекции) с выходом мечения более 80 %, радиохимическая чистота препарата более 90 %, рН готовой композиции лежит в интервале 3,2 – 5,9. Параметр выхода мечения частиц в заданном диапазоне очень важен, так как частицы с размерами менее 2 мкм имеют повышенную вероятность выхода из области сустава, диффундируя в теле пациента, что приводит к увеличению необоснованных лучевых нагрузок при проведении РСО. Но в данном случае, образование частиц нужного размера носит статистический характер, так как их формирование происходит в ходе реакции из низкомолекулярных продуктов. В защищаемом нами изобретении будет использован более узкий диапазон частиц, а именно – от 5 до 10 мкм, что уменьшит вероятность выхода радиоактивности из сустава. Обеспечить такой точный контроль будет возможно благодаря использованию полипептидного носителя уже заданного размера, в состав которого будет инкорпорировать радионуклид 188Re, что, в свою очередь, позволит добиться выхода мечения более 95 %.

В качестве таких полипептидных макромолекул возможно использовать микросферы альбумина крови человека, применение которых в качестве носителя радионуклидов в составе РФП уже не одно десятилетие изучается в мировой практике, в первую очередь по причине их сродства с организмом человека.

Авторами заявки на патент на изобретение [7] защищается состав и способ получения радиофармацевтического препарата на основе радионуклида рения-188 или рения-186 и микросфер альбумина крови человека диаметром от 20 до 40 мкм, а также возможность осуществления прикладного применения полученной радиофармацевтической композиции в целях терапии нерезектабельных злокачественных образований в печени. В основе состава лежит использование трех флаконов с лиофилизированными вспомогательными веществами, последовательное смешение которых приводит к образованию инъекционной формы препарата, что является основой способа получения, защищаемого в заявке на патент. Образованный препарат состоит из микросфер альбумина крови человека с инкорпорированными в состав полипептидной молекулы ионами рения-188 (получают из 188W/188Re генератора, либо из стационарного экстрактора) или рения-186 (получают в ядерном реакторе). Размеры образовавшихся частиц способствуют проведению трансартериальной радиоэмболизации капилляров, питающих клетки карциномы печени. Таким образом, синергетическое воздействие уменьшения кровоснабжения опухолевых клеток с локальным воздействием ионизирующего излучения приводит к целевым цитотоксическим эффектам. В данной заявке защищается использование микросфер альбумина крови человека, меченных радионуклидом 188Re, как и в настоящей формируемой заявке на патент, однако, принципиальная разница заключается в составе наборов для приготовления радиофармацевтической композиции, а именно в количестве реагентов, а также в диаметре меченых микросфер. Как следствие, отличается и дальнейшее практическое применение готового РФП.

Также известен способ получения меченных радионуклидами рения-188 или рения-186 микросфер сывороточного альбумина крови человека, где рений на пригодной для мечения микросфер альбумина стадии находится в виде Re-трикарбонил иона (186/188Re-(H2O)3(CO)3)+) [8], образование которого происходит за счет взаимодействия 186/188ReO4- c BH3NH3 в качестве восстановителя в атмосфере монооксида углерода. Данный способ способен усложнить процесс производства готового РФП, так как необходимо проводить работы в атмосфере монооксида углерода. В защищаемом нами способе получения меченых радионуклидом 188Re микросфер, такая необходимость отсутствует.

Стоит отметить патент [9], в котором в качестве потенциальных носителей радионуклида 188Re выступают не только микросферы сывороточного альбумина крови человека, но полипептидные молекулы в общем, в составе которых не менее 6 % аминокислот содержат сульфгидрильную группу в боковой цепи. Данная белковая композиция предварительно обрабатывается восстанавливающим агентом, способным восстанавливать дисульфиды до сульфгидрилов перед радиомечением. Согласно формуле изобретения защищается пептидная композиция, содержащая в качестве бета-излучателя радиоактивный изотоп Re-186, Re-188, или комбинацию Re-186 и Re-188. Указанная композиция предполагает по существу: сферическую форму микросферы радиоизотопно меченого белка (пептида) сферической формы, применяемые в целях проведения лучевой терапии млекопитающего. Сферические микросферы содержат радиоактивный изотоп, выбранный из группы, состоящей из Re-186, Re-188 или сочетания Re-186 и Re-188; указанные микросферы имеют диаметр от 10 до 30 мкм. По описанию изобретения белок - в том числе, альбумин. Однако размер меченных рением-188 микросфер, лежащий в защищаемом нами интервале, является оптимальным для проведения именно РСО, так как превышение диаметра более 10 мкм может способствовать увеличению сложности захвата микросфер макрофагами внутренней поверхности синовиальной оболочки сустава.

В задачи настоящего изобретения входит создание суспензии полипептидных макромолекул, меченных изотопом 188Re, для целей ядерной медицины с устранением вышеизложенных недостатков уже имеющихся в мировой практике разработок, с дальнейшим применением полученной радиофармацевтической композиции в целях терапии воспалительных заболеваний суставов.

В качестве первого объекта изобретения будет рассмотрен состав набора для приготовления суспензии полипептидных биодеградабельных микрочастиц. Набор для приготовления РФП состоит из трех флаконов из дрота для лекарственных средств вместимостью 10 мл, герметично укупоренных резиновыми пробками и обжатых алюминиевыми колпачками. На каждый из флаконов набора нанесена этикетка с обозначением номера и серии. В каждом флаконе реагенты находятся в лиофилизированной форме (табл. 3). Содержимое каждого флакона стерильно.

Таблица 3. Состав набора лиофилизатов для приготовления суспензии микросфер альбумина, меченных радионуклидом 188Re активностью от 37 до 1000 МБк.

Наименование
лиофилизатов
Флакон № 1 Флакон № 2 Флакон № 3
Аскорбиновая
кислота, мг
SnCl22H2O,
мг
МСА 5-10 мкм,
мг
Твин-80,
мг
K,Na виннокислый, мг
Набор лиофилизатов для изготовления 7 11,4 5 1,25 10,0

Во флаконе № 1 содержится стерильный лиофилизат смеси восстановителя – дихлорида олова 2-х водного (SnCl2.2H2O) и антиоксиданта – аскорбиновой кислоты (C6H8O6). Олова дихлорид 2-х водный является восстановителем рения до более низкого валентного состояния.

Во флаконе № 2 содержится стерильный лиофилизат смеси носителя атомов радионуклида – микросфер альбумина человека диаметром от 5 до 10 мкм и эмульгатора – полисорбата-80 (C64H124O26). МСА представляют собой сферические монолитные частицы с зеркальной поверхностью, плотность их составляет (1,26 ± 0,12) г/см3. В 5 мг МСА содержится (28 500 000 ± 545 000) шт., средний радиус МСА ~7,5 мкм. Tween-80 в составе компонентов для приготовления суспензии используется для улучшения смачиваемости микросфер альбумина, так как их поверхность обладает гидрофобными свойствами.

Во флаконе № 3 содержится стерильный лиофилизат трансхелатора и стабилизатора рН. Для этих целей используется соль тартрат-Na, K (натрий-калий виннокислый), который является лигандом, образующим комплекс с 188Re с низкой константой стабильности с последующим перелигандирующим свойством. Кроме этого, натрий-калий виннокислый является реагентом, поддерживающим буфферность реакционной смеси и выполняющий роль стабилизатора pH.

Следующим объектом защиты является способ приготовления инъекционной формы готового РФП на основе микросфер альбумина крови человека 5-10 мкм и рения-188, состоящий из трех этапов:

Этап № 1

Изотонический раствор натрия перрената (188Re) объемом от 2 до 4 мл и активностью от 37 до 1300 МБк/флакон путем прокола резиновой пробки переносится одноразовым стерильным шприцем в флакон со стерильным лиофилизатом № 1, который затем устанавливается в шейкер с частотой вращения 100-150 об/мин на 5 минут. В результате во флаконе № 1 образуется раствор с величиной рН от 1,5 до 2,5.

Этап № 2

По завершении предыдущего этапа образовавшийся во флаконе № 1 раствор путем прокола резиновой пробки отбирают одноразовым стерильным шприцем. Как только весь раствор собран, снимают иглу и на шприц одевают мембранный фильтр с диаметром пор 0,22 мкм, устанавливают новую иглу и фильтруют содержимое шприца путем прокола резиновой пробки во флакон со стерильным лиофилизатом № 2, обеспечивая таким образом дополнительную стерилизацию раствора, попадающего во флакон № 2. Затем флакон № 2 помещают в печку, где нагревают при температуре 90-99 оС, периодически перемешивая. Время нагрева зависит от объема нагреваемого раствора, при величине в 2 мл время нагрева составляет 1 час, при 3-х мл - полтора часа, а при 4-х мл - 2 часа. Такой интервал нагрева объясняется уменьшением концентрации реагирующих веществ, а значит необходимостью продления времени реакции для достижения схожих результатов. По завершении нагрева во флаконе № 2 образуется суспензия микросфер альбумина, меченных изотопом рения на 60-80 %, значение рН раствора находится в интервале от 1,5 до 2,5.

Этап № 3

По завершении предыдущего этапа, флакон № 2 достают из печки и оставляют остывать при комнатной температуре на 10-20 минут. Остывшую суспензию путем прокола резиновой пробки отбирают стерильным одноразовым шприцем и переносят во флакон с лиофилизатом № 3, который затем помещают в шейкер на 10 мин при частоте оборотов 100 об/мин. После перемешивания образуется суспензия микросфер альбумина с выходом реакции мечения не менее 95 %, величина рН надосадочной жидкости лежит в интервале от 2,5 до 3,5. Содержимое флакона № 3 представляет собой готовую инъекционную форму радиофармацевтической композиции.

В результате была получена суспензия полипептидных макромолекул (МСА), меченных радионуклидом 188Re, состав которой приведен в табл. 4.

Таблица 4. Состав набора лиофилизатов для приготовления суспензии микросфер альбумина, меченных радионуклидом 188Re активностью от 37 до 1000 МБк.

Рений-188 37 – 1000 МБк Микросферы альбумина 1,25–2,5 мг Аскорбиновая кислота 1,75–3,5 мг Олова дихлорид 2-х водный 2,85–5,7 мг Полисорбат-80 0, 312–0,625 мг Калий-натрий виннокислый 4-х водный 2,5–5,0 мг Натрия хлорид 9,0 мг Вода для инъекций 1 мл.

Была исследована возможность использования суспензии микросфер альбумина 5 – 10 мкм, меченных радионуклидом 188Re, в медицинских целях в качестве потенциального радиофармацевтического препарата терапевтического назначения. МСА, меченные изотопом 188Re, были исследованы на лабораторных животных (кролики 6 шт., самки весом 1,5 кг в среднем, и крысы 24 шт., самки весом 180 г в среднем) с искусственно созданной моделью острого асептического синовита коленного сустава у половины животных из каждой группы. Для выполнения исследований крысам интраартикулярно в сустав вводили 0,05 мл препарата с объемной активностью 70,8 МБк/мл, дозировка для кроликов составила 0,1 мл препарата с объемной активностью 192,0 МБк/мл, т.е. 3,6 и 19,2 МБк на животное соответственно.

Полученные данные показали, что после внутрисуставного введения исследуемого РФП интактным крысам, большая часть активности (через 3 ч более 95 %, в остальные временные точки – более 97 %) оставалась фиксированной в суставе на протяжении 72 часов исследования. Накопление в здоровых органах и тканях не превышало 0,5-0,8 %. Схожие результаты были получены для животных с моделью патологии коленного сустава. Таким образом, можно говорить о том, что размер меченных микросфер является оптимальным для фиксации источника ионизирующего излучения в целевом органе, а именно в суставе. Основным источником дозовых нагрузок на здоровые ткани, с большой долей вероятности, были несвязанные ионы 188Re, диффундирующие из полости сустава (один из показателей качества готового РФП – это выход мечения не менее 95 %).

Терапевтическая эффективность РФП на основе микросфер альбумина 5-10 мкм с рением-188 в организме животных с модельной патологией была тоже изучена. Исследования терапевтической эффективности РФП «МСА 5-10 мкм, 188Re» показали эффективность внутрисуставного введения РФП по критериям снижения болевой чувствительности пораженной конечности у крыс и положительной динамики восстановления двигательной активности у кроликов в течение 7 дней.

Таким образом, защищаемый состав лиофилизированных наборов для приготовления, а также способ получения радиофармацевтического препарата на основе микросфер альбумина крови человека и β - эмиттирующего радионуклида рений-188 можно считать потенциальным лекарственным средством для терапии суставных заболеваний. Результаты исследований на животных подтверждают его функциональную пригодность и безопасность применения.

Литература:

1. Delbarre F., Cayla J., Menkes C.J., Aignan J., Roucayrol J.C., Ingrand J. La synoviorthèse par les radioisotopes.// Presse Med. Vol. 76, 1045–1050, 1968.

2. Ishido C., Über die Wirkung des Radiothoriums auf die Gelenke.// Strahlentherapie Vol. 15, 537–544, 1923.

3. Fellinger K., Schmid J., Die lokale Behandlung der rheumatischen Erkrankungen.// Wiener Z Inn Med. Vol. 33, 351–363, 1952.

4. Kresnik E., Mikosch P., Clinical outcome of radiosynoviorthesis: a meta-analysis including 2190 treated joints.// Nucl Med Commun Vol. 23, 683–688, 2002.

5. Schneider P., Farahati J., Reiners C., Radiosynovectomy in Rheumatology, Orthopedics, and Hemophilia// J. of Nuc. Med.// Vol. 46, 48S-54S, 2005.

6. Кодина Г.Е., Малышева А.О., Клементьева О.Е., Лямцева Е.А., Таратоненкова Н.А., Вороницкая Н.Н., Симоненко Н.П., Графскова Т.А., Радиофармацевтическая композиция для радиосиновэктомии и способ ее получения, патент РФ № 2624237.

7. Зверев А.В., Дороватовский С.А., Петриев В.М., Скворцов В.Г., Галкин В.Н., Каприн А.Д., Радиофармацевтический препарат для терапии первичной гепатоцеллюлярной карциномы и метастатических образований в печень, а также состав и способ его получения, заявка на патент РФ № 2017135839.

8. Yu Chia-Yu, Lee Te-Wei, Chen Su-Jung, Chen Liang-Cheng, Lin Chen-Hong, Method for making Rhenium-186/188 labeled human serum albumin microspheres and kit for making the same and method for using the kit, US 2013172532.

9. Day D.E., Ehrhard G. J., Zinn K. R., Radiolabeled protein composition and method for radiation synovectomy, US 5403573

Похожие патенты RU2698101C2

название год авторы номер документа
Радиофармацевтический препарат для терапии первичной гепатоцеллюлярной карциномы и метастатических образований в печень, а также состав и способ его получения 2017
  • Зверев Александр Васильевич
  • Дороватовский Станислав Анатольевич
  • Петриев Василий Михайлович
  • Скворцов Валерий Григорьевич
  • Галкин Всеволод Николаевич
  • Каприн Андрей Дмитриевич
RU2698111C2
Способ автоматизированного синтеза радиофармпрепаратов на основе полимерных микрочастиц с использованием устройства для его осуществления 2023
  • Сысоев Дмитрий Сергеевич
  • Антуганов Дмитрий Олегович
  • Тимин Александр Сергеевич
  • Карпов Тимофей Евгеньевич
  • Ахметова Дарья Рамилевна
  • Надпорожский Михаил Александрович
  • Алексеев Никита Сергеевич
  • Синицын Михаил Сергеевич
  • Евтушенко Владимир Иванович
  • Николаев Дмитрий Николаевич
  • Станжевский Андрей Алексеевич
  • Майстренко Дмитрий Николаевич
RU2807899C1
Радиофармацевтическая композиция для радиосиновэктомии и способ ее получения 2016
  • Кодина Галина Евгеньевна
  • Малышева Анна Олеговна
  • Клементьева Ольга Евгеньевна
  • Лямцева Елена Александровна
  • Таратоненкова Надежда Александровна
  • Вороницкая Нина Николаевна
  • Семоненко Нина Петровна
  • Графскова Татьяна Александровна
RU2624237C1
Радиофармацевтическая композиция для лечения боли при воспалительных заболеваниях суставов 2017
  • Кодина Галина Евгеньевна
  • Малышева Анна Олеговна
  • Клементьева Ольга Евгеньевна
  • Лямцева Елена Александровна
  • Таратоненкова Надежда Александровна
  • Жукова Мария Валерьевна
  • Красноперова Алина Сергеевна
  • Лунев Александр Сергеевич
RU2662088C1
РАДИОФАРМАЦЕВТИЧЕСКИЙ ПРЕПАРАТ С РЕНИЕМ-188 ДЛЯ ТЕРАПИИ КОСТНЫХ ПОРАЖЕНИЙ СКЕЛЕТА И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2014
  • Петриев Василий Михайлович
  • Скворцов Валерий Григорьевич
  • Крылов Валерий Васильевич
  • Каныгин Валерий Владимирович
  • Рузиев Рамзес Джауланович
  • Зверев Александр Васильевич
  • Антонюк Алла Владиславовна
  • Лебедева Виктория Сергеевна
RU2567728C1
Способ получения радиофармацевтического препарата для диагностики и терапии костных поражений скелета при онкологических заболеваниях на основе комплекса золедроновой кислоты с изотопом рения-188 2022
  • Назаренко Анна Борисовна
  • Федоров Владимир Егорович
  • Рабинович Эдуард Зиновьевич
RU2792618C1
РАДИОФАРМАЦЕВТИЧЕСКОЕ СРЕДСТВО ДЛЯ ДИАГНОСТИКИ И ЛЕЧЕНИЯ (ТЕРАПИИ) КОСТНЫХ ПОРАЖЕНИЙ СКЕЛЕТА И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2008
  • Малышева Анна Олеговна
  • Клементьева Ольга Евгеньевна
  • Кодина Галина Евгеньевна
  • Корсунский Валентин Николаевич
  • Назаренко Михаил Евгеньевич
  • Михайлов Олег Ростиславович
  • Перминов Сергей Владимирович
  • Уваров Николай Александрович
  • Федоров Владимир Егорович
RU2407746C2
ЛИОФИЛИЗАТ ДЛЯ ПОЛУЧЕНИЯ ДИАГНОСТИЧЕСКОГО РАДИОФАРМАЦЕВТИЧЕСКОГО ЛЕКАРСТВЕННОГО ПРЕПАРАТА НА ОСНОВЕ РАДИОНУКЛИДА Tc 2022
  • Петриев Василий Михайлович
  • Тищенко Виктория Константиновна
  • Власова Оксана Петровна
  • Федоров Олег Владимирович
  • Дороватовский Станислав Анатольевич
  • Шегай Петр Викторович
  • Иванов Сергей Анатольевич
  • Каприн Андрей Дмитриевич
RU2799325C2
СПОСОБ ПОЛУЧЕНИЯ РАСТВОРОВ Ga ВЫСОКОЙ ЧИСТОТЫ 2011
  • Ларенков Антон Алексеевич
  • Брускин Александр Борисович
  • Кодина Галина Евгеньевна
RU2464043C1
Применение радиофармацевтической композиции с использованием меченых аутологичных лейкоцитов для визуализации местных лучевых поражений методом однофотонной эмиссионной томографии 2018
  • Кодина Галина Евгеньевна
  • Малышева Анна Олеговна
  • Клементьева Ольга Евгеньевна
  • Лямцева Елена Александровна
  • Таратоненкова Надежда Александровна
  • Лунев Александр Сергеевич
  • Лунева Кристина Андреевна
RU2708088C2

Реферат патента 2019 года Радиофармацевтическая композиция для терапии воспалительных заболеваний суставов на основе радионуклида 188Re и микросфер альбумина крови человека, а также состав и способ её получения

Группа изобретений относится к области ядерной медицины. Набор для приготовления суспензии полипептидных биодеградабельных микрочастиц для радиосиновэктомии, находящихся в изотоническом 0,9%-ном водном растворе хлорида натрия, меченных изотопом рения, состоит из вспомогательных реагентов: антиоксиданта - аскорбиновой кислоты в количестве 7 мг, восстановителя рения до более низкого валентного состояния - хлорида олова дигидрата - 11,4 мг, эмульгатора - полисорбата-80 - 1,25 мг, полипептидного носителя радионуклидов - микросфер альбумина крови человека диаметром 5-10 мкм - 5 мг, трансхелатора и стабилизатора рН - K,Na-виннокислого (тартрат K, Na) - 10 мг, при этом все вспомогательные реагенты расфасованы по трем флаконам: во флаконе №1 содержится смесь восстановителя и антиоксиданта, во флаконе №2 содержится смесь полипептидного носителя атомов радионуклида и эмульгатора, во флаконе №3 содержится трансхелатор и стабилизатор рН, при этом содержимое каждого флакона стерильно и лиофилизировано. Также раскрыт последовательный трехэтапный способ получения суспензии полипептидных биодеградабельных микрочастиц для радиосиновэктомии. Группа изобретений обеспечивает лечение воспалительных заболеваний суставов. 2 н. и 2 з.п. ф-лы, 4 табл.

Формула изобретения RU 2 698 101 C2

1. Набор для приготовления суспензии полипептидных биодеградабельных микрочастиц для радиосиновэктомии, находящихся в изотоническом 0,9%-ном водном растворе хлорида натрия, меченных изотопом рения, состоящий из вспомогательных реагентов: антиоксиданта - аскорбиновой кислоты в количестве 7 мг, восстановителя рения до более низкого валентного состояния - хлорида олова дигидрата в количестве 11,4 мг, эмульгатора - полисорбата-80 в количестве 1,25 мг, полипептидного носителя радионуклидов - микросфер альбумина крови человека диаметром 5-10 мкм в количестве 5 мг, трансхелатора и стабилизатора рН - K,Na-виннокислого (тартрат K, Na) в количестве 10 мг, при этом все вспомогательные реагенты расфасованы по трем флаконам: во флаконе №1 содержится смесь восстановителя и антиоксиданта, во флаконе №2 содержится смесь полипептидного носителя атомов радионуклида и эмульгатора, во флаконе №3 содержится трансхелатор и стабилизатор рН, при этом содержимое каждого флакона стерильно и лиофилизировано.

2. Набор для приготовления суспензии полипептидных биодеградабельных микрочастиц, находящихся в изотоническом 0,9%-ном водном растворе хлорида натрия, меченных изотопом рения согласно п. 1, где в качестве изотопа рения используется радионуклид 188Re.

3. Последовательный трехэтапный способ получения суспензии полипептидных биодеградабельных микрочастиц для радиосиновэктомии из набора по п. 1, в котором:

на первом этапе радионуклид рения переносится во флакон №1 с последующим перемешиванием флакона №1 в течение 5 минут при частоте оборотов шейкера от 100 до 150 об/мин, при этом величина рН раствора во флаконе №1 по окончании первого этапа находится в интервале от 1,5 до 2,5;

на втором этапе содержимое флакона №1 после осуществления первого этапа переносится во флакон №2 через мембранный фильтр с порами 0,22 мкм, после чего содержимое флакона №2 периодически перемешивается при температуре от 90 до 99°С в течение 60 мин, если объем реакционной смеси составляет 2 мл; 90 мин, если объем реакционной смеси составляет 3 мл; 120 мин, если объем реакционной смеси составляет 4 мл; при этом величина рН раствора во флаконе №2 по окончании второго этапа находится в интервале от 1,5 до 2,5, а значение выхода реакции мечения полимерных биодеградабельных микрочастиц радионуклидом принадлежит интервалу от 60 до 80%;

на третьем этапе содержимое флакона №2, после осуществления второго этапа, охлаждается до температуры окружающей среды, а затем переносится во флакон №3 с последующим перемешиванием в течение 10 минут при частоте оборотов от 50 до 120 об/мин, при этом по окончании третьего этапа содержимое флакона №3 представляет собой суспензию биодеградабельных полимерных микрочастиц, меченных радионуклидом рения-188 с величиной рН в интервале от 2 до 5, с выходом реакции мечения не менее 95%.

4. Последовательный трехэтапный способ получения суспензии полипептидных биодеградабельных микрочастиц, меченных изотопом рения согласно п. 3, в котором раствор изотопа рения представляет собой изотонический водный раствор 0,9%-ного хлорида натрия объемом от 2 до 4 мл, содержащий радионуклид 188Re с объемной активностью от 37 МБк/мл до 3,7 ГБк/мл.

Документы, цитированные в отчете о поиске Патент 2019 года RU2698101C2

Радиофармацевтическая композиция для радиосиновэктомии и способ ее получения 2016
  • Кодина Галина Евгеньевна
  • Малышева Анна Олеговна
  • Клементьева Ольга Евгеньевна
  • Лямцева Елена Александровна
  • Таратоненкова Надежда Александровна
  • Вороницкая Нина Николаевна
  • Семоненко Нина Петровна
  • Графскова Татьяна Александровна
RU2624237C1
US 2008219923 A1, 11.09.2008.

RU 2 698 101 C2

Авторы

Дороватовский Станислав Анатольевич

Петриев Василий Михайлович

Зверев Александр Васильевич

Скворцов Валерий Григорьевич

Каприн Андрей Дмитриевич

Антонюк Алла Владиславовна

Лесковец Елена Юрьевна

Даты

2019-08-22Публикация

2018-05-25Подача