Распыляемый блок магнетрона для осаждения пленок твердых растворов TiWO Российский патент 2019 года по МПК C23C14/35 

Описание патента на изобретение RU2699702C1

Предлагаемый блок относится к устройствам, используемым для изготовления, хромогенных пленок, изменяющих прозрачность под воздействием электрического поля, солнечного освещения, водородной среды или ИК излучения. При любом из этих воздействий прозрачность пленки уменьшается и она становится цветной. Пленка окрашивается за счет увеличения в 5-10 раз поглощения в ближнем ИК диапазоне. Такие пленки применяют для изготовления "умных" энергетически эффективных стекол, не эмиссионных индикаторных устройств; зеркал с управляемым коэффициентом отражения, в частности, антибликовых автомобильных зеркал заднего вида. Изучается применение хромогенных пленок в технике резистивной энергонезависимой памяти с произвольным доступом, в устройствах оптической регистрации и хранения (УФ фотохромная память), в качестве оптических модуляторов [Шаповалов В.И. Пленки оксида вольфрама: технология, свойства, применение. СПб.: Изд-во СПбГЭТУ «ЛЭТИ», 2014. 118].

Наиболее распространенным и изученным хромогенным материалом является оксид вольфрама WO3 [Granqvist C.G. Electrochromics and thermochromics: towards a new paradigm for energy efficient buildings // Materials Today: Proc. 2016. V. 3. P. S2-S11].

Суть хромогенного эффекта в пленке WO3 состоит в том, что при двойной инжекции в нее легких ионов (Н+, Li+, Na+, К+) и электронов возникает ее окрашивание в синий цвет. Интенсивность окраски зависит от концентрации инжектированного заряда. При экстракции заряда пленка возвращается в неокрашенное состояние. Осажденные пленки WO3 практически всегда содержат кислородные вакансии, поэтому их химическую формулу корректнее записывать в виде WO3-х. Процессы окрашивания и обесцвечивания связаны с химической реакцией образования соединения внедрения с переменным составом, в которых внедренные атомы располагаются в пустотах или туннелях кристаллической структуры пленки

где М++, Li+, Na+, K+; х - стехиометрический коэффициент, изменяющийся в диапазоне 0-1.

При этом происходит окислительно-восстановительная реакция:

приводящая к возникновению в пленке нового субоксидного компонента. Реакция (2) описывает появление ионов W5+ за счет захвата электронов на кислородные вакансии. Компенсатором возникшего заряда являются протоны. Быстрая диффузия протонов в пленку WO3 обеспечена особенностями ее структуры. Основным структурным элементом кристаллической решетки WO3 является кислородный октаэдр WO6, в центре которого расположен ион W6+. Соединяясь вершинами, октаэдры образуют пространственную сетку со сквозными каналами, по которым легко диффундируют протоны. Ионы W5+ являются так называемыми F-центрами окраски.

Наблюдаемая в спектрах пропускания полоса поглощения является результатом межвалентного переноса электронов:

где А и В - близко расположенные ионы вольфрама; hv - энергия фотона.

Действенным способом увеличения хромогенных свойств пленок WO3 является создание на их основе композита [Granqvist C.G. Oxide electrochromics: An introduction to devices and materials // Sol. Ener. Mater. Sol. Cells 2012. V. 99. P. 1-13]. Такой композит, содержащий WO3 и несколько процентов оксида, например, титана обычно рассматривают как твердый раствор замещения двух оксидов с химическим составом TixW1-xO3 при 0.01<х<0.05.

Синтез пленок оксидов выполняют с помощью многих методов. Наибольший интерес в промышленности проявляют к методам реактивного магнетронного распыления. Типичный планарный магнетронный источник содержит металлическую мишень, магнитную систему, корпус и систему охлаждения. Работая в среде аргона и кислорода, он дает возможность синтезировать пленку одиночного оксида. Известны магнетронные источники, предназначенные для синтеза композиционных пленок, содержащих два оксида. [Патент РФ 2371514, С23С 14/35; патент США №2371514, С23С 14/34; Abadias, G. Structual and photoelectrochromical properties of Ti1-xWxO2 thin films deposited by magnetron sputtering / G. Abadias, A.S. Gago, N. Alonso-Vante // Sur. Coat. Technol. 2011. V. 205. P. 265-270]. Они обычно содержит два планарных магнетрона, расположенные рядом друг с другом. При этом их эффективно охлаждаемые мишени, изготовленные из разных металлов, находятся в одной плоскости.

Общим недостатком таких магнетронов является низкая энергетическая эффективность реактивного распыления Е1:

где Qtot - суммарный поток рабочего вещества, который генерирует магнетрон; Р - мощность разряда. Величина (4) имеет размерность [Дж-1] и задает энергию, которая затрачивается на эмиссию мишенью одного атома. Она служит аналогом коэффициента полезного действия для устройств этого типа.

Наиболее близкой к заявляемому изобретению по совокупности существенных признаков, является дуальная магнетронная распылительная система, описанная в патенте США №6361668 B1, С23С 14/34, взятая за прототип.

В патенте предлагается распыляемый блок, который содержит мишень, состоящую из двух пластин, расположенных в одной плоскости, изготовленные из разных металлов и размещенные в реактивной среде, состоящей из плазмообразующего газа аргона и кислорода. Обе пластины выполнены охлаждаемыми, поэтому они генерируют потоки оксидов только за счет распыления, на что расходуется не более 10-15% мощности потребляемой блоком. Остальная мощность превращается в тепло. Основным недостатком прототипа является низкая энергетическая эффективность реактивного распыления.

Задача, на решение которой направлено заявляемое изобретение, является создание распыляемого устройства магнетрона, позволяющее увеличить энергетическую эффективность реактивного распыления при синтезе пленок TixW1-xO3 со стехиометрическим коэффициентом в диапазоне 0.01<х<0.05.

Данная задача решается за счет того, что распыляемый блок магнетрона так же, как в известном устройстве, содержит мишень, состоящую из двух пластин, изготовленных из разных металлов и размещенных в реактивной среде, состоящей из плазмообразующего газа аргона и кислорода. Но, в отличие от него, в предлагаемом устройстве пластины расположены, на одной оси с магнетроном параллельно друг другу и жестко прикреплены к нему. Причем внутренняя пластина, выполненная охлаждаемой, изготовлена из титана, а внешняя изготовлена из вольфрама и в зоне ее эрозии выполнены прорези, расположенные симметрично относительно ее центра.

Достигаемым техническим результатом является создание распыляемого устройства магнетрона, имеющего высокую энергетическую эффективность реактивного распыления.

Сущность изобретения поясняется чертежами, где:

фиг. 1 - конструкция распыляемого блока;

фиг. 2 - зависимости плотности потоков оксидов TiO2 и WO3 от плотности тока разряда, которые генерируют внутренняя титановая и внешняя вольфрамовая пластины;

фиг. 3 - зависимости энергетической эффективности магнетрона и стехиометрического коэффициента x в твердом растворе TixW1-xO3 от площади прорезей и плотности тока разряда.

Рассмотрим пример выполнения распыляемого блока магнетрона (фиг. 1). Предлагаемое изобретение было реализовано на базе цилиндрического сбалансированного магнетрона 1 диаметром 130 мм, на котором авторы выполняли эксперименты. Распыляемый блок содержит на одной оси внутреннюю охлаждаемую пластину 2 толщиною 4 мм, изготовленную из титана, и внешнюю пластину 3 толщиною 1 мм, изготовленную из вольфрама Вся конструкция жестко скреплена болтами 4 с корпусом магнетрона 1 и размещена в реактивной среде, состоящей из плазмообразующего газа аргона и кислорода. Зона эрозии 5 вольфрамовой пластины имеет форму кольца с площадью s=36 см2. В этой зоне выполнены прорези 6, расположенные симметрично относительно ее центра. Прорези выполнены в виде отверстий. Суммарная площадь прорезей s2 задает площадь зоны эрозии 7 внутренней пластины. Для внешней пластины площадь аналогичной области равна s1=s-s2. Величина s2 является параметром устройства, который влияет на химический состав пленки.

Устройство работает следующим образом (см. фиг. 1). Распыление мишени происходит в реактивной среде Ar+О2 (Ar - плазмообразующий газ, O2 - химически активный газ) при суммарном давлении 2-8 мТорр. Управляя плотностью тока и расходом кислорода, пластины переводят в оксидный режим работы, при котором их поверхности покрыты соответствующими оксидами. Ионы аргона, образующиеся в разряде, бомбардируют эти поверхности. Внутренняя пластина 2 выполнена охлаждаемой, поэтому поток оксида титана формируется только за счет распыления ее поверхности через прорези 6 в вольфрамовой пластине 3. При этом в пластине 2 возникает область эрозии 7. На фиг. 2, а приведена зависимость плотности потока оксида титана от плотности тока разряда j. Полный поток от внешней пластины с плотностью состоит из распыленного и испаренного потоков с плотностями и соответственно (фиг. 2, б). Указанное отличие между пластинами обусловлено конструктивной особенностью распыляемого узла. Отвод тепла от внешней пластины на два-три порядка меньше, чем от внутренней. Поэтому вольфрамовая пластина может быть нагрета до высокой температуры, при которой величина может значительно превысить величину . Если первая из них имеет зависимость от мощности разряда в форме показательной функции ~10х, то вторая пропорциональна мощности разряда. В результате за счет симметричного расположения прорезей возникают осесимметричные потоки двух оксидов, которые в газовой среде перемешиваются, создавая суммарный поток с однородным распределением молекул в сечениях на расстоянии более 40-60 мм от мишени. На подложке синтезируется однородная пленка в виде твердого раствора двух оксидов TixW1-xO3 с низким (фиг. 3) стехиометрическим коэффициентом (0.01<x<0.05). Химическим составом этого раствора можно управлять, варьируя суммарную площадь прорезей 6.

Предлагаемое устройство было изготовлено и использовано для оценки его относительной энергетической эффективности:

Выражение (5) задает отношение энергетических эффективностей предлагаемого устройства E1ST и прототипа с титановой и вольфрамовой холодными пластинами E1CT. Как видно из (5) в конечном итоге величину η задают три потока: распыленного оксида титана распыленного и испаренного оксида вольфрама. Величина (5) зависит от плотности тока разряда j и суммарной площади прорезей s2. Она может быть вычислена, если известны вольтамперные характеристики разряда магнетрона и зависимость температуры вольфрамовой пластины от j и s2. Для измерения этих зависимостей была изготовлена партия вольфрамовых пластин с отверстиями, имеющими суммарную площадь s2=(2, 4, 8, 12, 16 и 18) см2.

По результатам измерений были выполнены необходимые вычисления. Зависимости, приведенные на фиг. 2, б показывают, что при плотности тока больше 160 мА/см2 плотность полного потока оксида вольфрама начинает увеличиваться за счет испарения. Это свидетельствует о том, что поставленная цель достигнута. Зависимости на фиг. 3, а доказывают, что заявляемое изобретение, имеет высокую энергетическую эффективность реактивного распыления. При плотности тока больше 165 мА/см2, величина η начинает экспоненциально возрастать и уже при 185 мА/см2 достигает 2.5. При этом стехиометрическим коэффициентом можно управлять в диапазоне 0.01<х<0.05, изменяя величины j и s2 (фиг. 3, б).

Похожие патенты RU2699702C1

название год авторы номер документа
Распылительный блок магнетрона для осаждения пленок твердых растворов FeTiO в диапазоне 0<x<0,6 2017
  • Шаповалов Виктор Иванович
  • Смирнов Владислав Юрьевич
  • Минжулина Екатерина Андреевна
  • Козин Александр Андреевич
RU2664009C1
Способ получения пленки нитрида пермаллоя FeNiN 2022
  • Шаповалов Виктор Иванович
RU2784453C1
ПЛАНАРНЫЙ МАГНЕТРОН С РОТАЦИОННЫМ ЦЕНТРАЛЬНЫМ АНОДОМ 2022
  • Семенов Александр Петрович
  • Цыренов Дмитрий Бадма-Доржиевич
  • Семенова Ирина Александровна
RU2792977C1
ПЛЕНОЧНЫЙ ЛАЗЕРНЫЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2004
  • Интюшин Евгений Борисович
  • Перевощиков Виктор Александрович
  • Скупов Владимир Дмитриевич
  • Чигиринский Юрий Исаакович
  • Водзинский Владимир Юрьевич
RU2271593C2
ВОЛЬФРАМ-ТИТАНОВАЯ МИШЕНЬ ДЛЯ МАГНЕТРОННОГО РАСПЫЛЕНИЯ И СПОСОБ ЕЕ ПОЛУЧЕНИЯ 2007
  • Глебовский Вадим Георгиевич
  • Штинов Евгений Дмитриевич
  • Кочетов Олег Савельевич
RU2352684C1
Распыляемый узел магнетрона для осаждения композиционных многокомпонентных пленок NiCoFe 2023
  • Шаповалов Виктор Иванович
  • Шарковский Даниил Сергеевич
RU2808293C1
НЕСТЕХИОМЕТРИЧЕСКАЯ КЕРАМИЧЕСКАЯ МИШЕНЬ ИЗ NiO 2003
  • Фантон Ксавье
  • Жирон Жан-Кристоф
RU2310012C2
СПОСОБ ОСАЖДЕНИЯ ТОНКИХ ПЛЕНОК СЕГНЕТОЭЛЕКТРИКОВ НА ОСНОВЕ СЛОЖНЫХ ОКСИДОВ МЕТОДОМ ИОННО-ПЛАЗМЕННОГО РАСПЫЛЕНИЯ 2009
  • Вольпяс Валерий Александрович
  • Козырев Андрей Борисович
RU2434078C2
СПОСОБ ИЗГОТОВЛЕНИЯ ХИМИЧЕСКИ И ТЕРМИЧЕСКИ СТАБИЛЬНОЙ МЕТАЛЛИЧЕСКОЙ ПОГЛОЩАЮЩЕЙ СТРУКТУРЫ ВОЛЬФРАМА НА СИЛИКАТНОЙ ПОДЛОЖКЕ 2021
  • Бернт Дмитрий Дмитриевич
  • Пономаренко Валерий Олегович
  • Мещерякова Екатерина Андреевна
  • Ерёмин Игорь Сергеевич
RU2767482C1
СПОСОБ НАНЕСЕНИЯ НА ИЗДЕЛИЯ ЗАЩИТНО-ДЕКОРАТИВНЫХ ПОКРЫТИЙ 1992
  • Вахминцев Г.Б.
  • Березников В.И.
  • Уваров Л.А.
RU2039844C1

Иллюстрации к изобретению RU 2 699 702 C1

Реферат патента 2019 года Распыляемый блок магнетрона для осаждения пленок твердых растворов TiWO

Распыляемый блок магнетрона для осаждения пленок твердых растворов TiхW1-xO3 относится к устройствам, используемым в электронике, оптоэлектронике, архитектуре, автомобилестроении и др. Распыляемый блок магнетрона для осаждения пленки в виде твердого раствора TiхW1-xO3 со стехиометрическим коэффициентом в диапазоне 0,01<x<0,05 содержит мишень, размещенную в реактивной среде, состоящей из плазмообразующего газа аргона и кислорода. Мишень выполнена из двух металлических пластин, расположенных на одной оси с магнетроном параллельно друг другу и жестко прикрепленных к нему. Внутренняя пластина выполнена охлаждаемой и изготовлена из титана, а внешняя – изготовлена из вольфрама, при этом в зоне ее эрозии выполнены прорези, расположенные симметрично относительно ее центра. Обеспечивается увеличение энергетической эффективности реактивного магнетронного распыления за счет управления химическим составом пленки TiхW1-xO3 посредством варьирования суммарной площадью прорезей и током разряда. 3 ил.

Формула изобретения RU 2 699 702 C1

Распыляемый блок магнетрона для осаждения пленки в виде твердого раствора TiхW1-xO3 со стехиометрическим коэффициентом в диапазоне 0,01<x<0,05, содержащий мишень, размещенную в реактивной среде, состоящей из плазмообразующего газа аргона и кислорода, отличающийся тем, что мишень выполнена из двух металлических пластин, расположенных на одной оси с магнетроном параллельно друг другу и жестко прикрепленных к нему, причем внутренняя пластина, выполненная охлаждаемой, изготовлена из титана, а внешняя изготовлена из вольфрама, при этом в зоне ее эрозии выполнены прорези, расположенные симметрично относительно ее центра.

Документы, цитированные в отчете о поиске Патент 2019 года RU2699702C1

ВОЛЬФРАМ-ТИТАНОВАЯ МИШЕНЬ ДЛЯ МАГНЕТРОННОГО РАСПЫЛЕНИЯ И СПОСОБ ЕЕ ПОЛУЧЕНИЯ 2007
  • Глебовский Вадим Георгиевич
  • Штинов Евгений Дмитриевич
  • Кочетов Олег Савельевич
RU2352684C1
СПОСОБ ПОЛУЧЕНИЯ СОСТАВНОЙ МИШЕНИ ДЛЯ РАСПЫЛЕНИЯ ИЗ СПЛАВА ВОЛЬФРАМ-ТИТАН-КРЕМНИЙ 2010
  • Глебовский Вадим Георгиевич
RU2454481C2
US 20180342378 A1, 29.11.2018
US 20180105920 A1, 19.04.2018.

RU 2 699 702 C1

Авторы

Шаповалов Виктор Иванович

Минжулина Екатерина Андреевна

Козин Александр Андреевич

Даты

2019-09-09Публикация

2019-02-07Подача