Способ цифрового и визуального мониторинга интратрахеального давления прикроватным монитором при проведении искусственной вентиляции легких Российский патент 2019 года по МПК A61M16/00 

Описание патента на изобретение RU2699735C1

Изобретение относится к области медицины, а именно к интенсивной терапии и может применяться при проведении искусственной вентиляции легких (ИВЛ).

ИВЛ является одним из наиболее часто применяемых методов интенсивной терапии. Подбор оптимальных параметров ИВЛ производится в основном путем анализа цифр, определяемых датчиками давления аппарата ИВЛ (пиковое давление на высоте вдоха (Рпик), давление плато (Рплато), положительное давление в конце выдоха (ПДКВ), аутоПДКВ) и расчета ряда производных показателей (вентиляционное давление (Drivingpressure), комплайнс, эластичность и аэродинамическое сопротивление респираторной системы). При этом, датчики расположены в аппарате ИВЛ и, следовательно, измеряют давление в дыхательном контуре, которое отличается от истинного давления в респираторной системе больного.

Известен способ измерения интратрахеального давления, который точнее отражает динамику давления в респираторной системе при проведении ИВЛ. Однако, такую опцию имеют только дорогостоящие и малодоступные аппараты ИВЛ экспертного класса. Кроме того, для реализации мониторинга необходимо приобретение дополнительных расходных материалов, которые не универсальны и могут использоваться только с одной моделью аппарата ИВЛ (А.С. Горячев, И.А. Савин. Основы ИВЛ. Москва, 2017). Это ограничивает широкое применение информативного мониторинга интратрахеального давления при ИВЛ в практике отделений интенсивной терапии.

Вместе с тем, все койки в палате интенсивной терапии оснащены прикроватными мониторами, большинство которых имеют опцию инвазивного измерения давления. Это широко используется для инвазивного мониторинга артериального и центрального венозного давлений.

Авторами предлагается способ цифрового и визуального мониторинга интратрахеального давления прикроватным мониторам при проведении ИВЛ.

Техническим результатом заявляемого способа является возможность в процессе ИВЛ точного измерения максимального (Рпик), минимального (ПДКВ) и среднего интратрахеальных давлений, определение Рплато и аутоПДКВ, визуальный анализ кривой трахеального давления для выявления потокового голода при инспираторной попытке больного в режиме PS и корректный расчет таких производных параметров, как вентиляционное давление (drivingpressure), комплайнс, эластичность респираторной системы и аэродинамическое сопротивление.

Технический результат достигается тем, что вместо дорогостоящих и малодоступных аппаратов ИВЛ экспертного класса для точного измерения показателей интратрахеального давления, визуального анализа кривой давления и корректного расчета характеристик респираторной системы и параметров ИВЛ используются доступные в любом отделении интенсивной терапии прикроватные мониторы с опцией инвазивного мониторинга давления.

Для осуществления способа используются стандартный трансдьюсер для инвазивного мониторинга артериального и венозного давлений и малообъемная инфузионная магистраль, предназначенная для соединения шприцевого дозатора с внутрисосудистым катетером. В случаях, когда артериальное и/или венозное давление уже мониторируются - только инфузионная магистраль. Это делает предлагаемый способ не только доступным в любом отделение интенсивной терапии, но и малозатратным.

Магистраль укорачивается до 50-60 см, что уменьшает объем воздуха в ней до 0,22- 0,26 мл. Малый объем магистрали, плотность ее стенки и единственное место соединения с трансдьюсер омминимизируют возможное демпфирование.

Другим фактором, который может влиять на точность измерения, является собственная частота системы трансдукции. Но ее влияние на точность измерения интратрахеального давления исключается из-за малой частоты дыхания и медленного роста давления во время вдоха. Точности измерения способствуют и небольшие цифры трахеального давления при ИВЛ. (В.В. Кузьков. М.Ю. Киров. Инвазивный мониторинг гемодинамики в интенсивной терапии и анестезиологии. Архангельск. 2015).

Дистальный конец инфузионной магистрали через санационный порт на адаптере дыхательного контура и интубационную или трахеостомическую трубку вводится в трахею, а проксимальный - соединятся с трансдьюсером, расположенным максимально близко к кровати пациента и строго на уровне трахеи. Для обеспечения герметичности системы трансдукции на месте вхождения инфузионной магистрали в санационный порт на ней фиксируются несколько слоев лейкопластыря.

На мониторе устанавливается скорость развертки 25 мм/сек и масштаб измерения 0-20 мм.рт.ст. После обнуления системы становится возможным измерение трахеального давления и визуальное наблюдение кривой давления на экране монитора. Измеряются 3 показателя давления в трахее: максимальное (Рпик), минимальное (ПДКВ) и среднее. При выбранной скорости развертки на экране монитора одномоментно можно наблюдать по графику 1,5-2 дыхательных циклов.

Визуальный анализ восходящей части кривой давления при вентиляции в режиме поддержки давлением (PS) через интубационную трубку позволяет оценить достаточность давления поддержки для преодоления сопротивления последней и надежно исключить «потоковый голод» при инспираторной попытке больного (фиг.).

Наряду с этим, после последовательной активации клавиш аппарата ИВЛ по удержанию вдоха и выдоха на экране монитора определяются соответственно цифры Рплато и аутоПДКВ. Определение двух последних показателей дает возможность рассчитать такие производные параметры, как вентиляционное давление (drivingpressure), комплайнс, эластичность респираторной системы и аэродинамическое сопротивление.

Для подтверждения отличий результатов измерения давления датчиками аппарата ИВЛ в дыхательном контуре и интратрахеального давления, определяемого прикроватным монитором, были проведены исследования у 21 больного. Тестировались 3 вида аппаратов ИВЛ: Puritanbennett 840, Hamilton с3, MedicalcareAvea. Трахеальное давление измерялось монитором nihonkohden. Перед исследованием аппараты ИВЛ тестировались с последующей активацией опций компенсации поддатливости контура, утечки и коррекции сопротивления интубационной трубки.

Была произведена одновременная регистрация величин Рпик, ПДКВ, Рплато и аутоПДКВ, определяемых аппаратом ИВЛ и прикроватным монитором.

Для измерения Рплато и аутоПДКВ клавиши задержки вдоха и выдоха активировались на 2-3 сек. с последующей «заморозкой» изображения кривых давления на мониторе аппарата ИВЛ. Величина давления определялась по значению в середине интервала задержки. Для перевода мм рт. ст. в см вод. ст. использовали коэффициент 1,33.

Все аппаратные показатели давления (независимо от типа аппарата ИВЛ) превышали аналогичные, измеренные прикроватным монитором в трахее. При этом, различия были не только однонаправленными, но и сопоставимыми по степени. В связи с этим, мы сочли возможным для статистического анализа полученных данных объединить всех больных в одну группу (таблица).

X(95% DИ) - средняя величина (95% доверительный интервал).

Как видно из таблицы, аппаратный мониторинг давления в разной степени, но статистически достоверного завышал все определяемые показатели.

С практической точки зрения важно, что различия средней величины Рплато достигали 2,6 см вод. ст. Следовательно, использование аппаратного Рплато для расчета вентиляционного давления будет значимо завышать определяемый показатель, что приведет к некорректному определению вентиляционного давления и выбору оптимальной величины ПДКВ.

Небольшая разница аппаратных и трахеальных показателей аутоПДКВ объясняется тем, что у большинства пациентов его не было.

Однако, у 5 больных, которым ИВЛ проводилось в режиме «сбрасывания» давления в дыхательных путях (APRV), который предполагает искусственное создание аутоПДКВ, его величина в трахее была в среднем на 2,8 см вод. ст. (2,4-3,1) ниже аппаратного показателя. Учитывая прямую зависимость между величиной аутоПДКВ и ателектотравмой, при ИВЛ в режиме APRV выявленные различия становятся практически значимыми.

Кроме того, учитывая, что при ИВЛ у больных с обострением бронхиальной астмы или хронического обструктивного бронхита ключевую роль играет минимизация аутоПДКВ, его корректное определение у этих категорий пациентов приобретает принципиальное значение. Следует отметить, что чем больше абсолютное значение показателя давления, тем больше искажает его аппаратный мониторинг. Так, наибольшая разница давлений отмечалась при измерении пикового давления.

Это подтверждается и результатами аппаратного и интратрахеального мониторинга давлений у больных с внутрибрюшной гипертензией.

Клинический пример.

Больной К. 54 лет с диагнозом деструктивный панкреатит. ИВЛ проводится в режиме контроля по объему. В связи с внутрибрюшной гипертензией (давление в мочевом пузыре - 23 см вод. ст.) проводится мониторинг пищеводного давления. Оно, в конце выдоха составляло 20 см вод. ст.

Для достижения нулевого транспульмонального давления установлено аппаратное ПДКВ - 20 см вод. ст.

При этом Рпик составило 34 см вод. ст. (в трахее - 27,8, разница - 6,2) ПДКВ-20 см вод. ст. (в трахее - 16,8, разница - 3,2), Рплато - 29 см вод. ст. (в трахее - 25,2, разница - 3.8), аутоПДКВ - 2,2 см вод. ст. (в трахее - 0, разница - 2,2).

Выявленная разница определяемых показателей заметно превышала среднюю разницу давлений, представленную в таблице 1.

Таким образом, заявляемый способ превосходит по точности мониторинг давления аппаратом ИВЛ, обеспечивает корректный расчет производных параметров респираторной системы и ИВЛ, визуальный анализ кривой давления, доступен в любом отделении интенсивной терапии и требует минимальных материальных затрат.

Похожие патенты RU2699735C1

название год авторы номер документа
СПОСОБ ЛЕЧЕНИЯ ОСТРОГО РЕСПИРАТОРНОГО ДИСТРЕСС-СИНДРОМА 2003
  • Мороз В.В.
  • Остапченко Д.А.
  • Власенко А.В.
RU2265434C2
СПОСОБ ДОСТУПА К ДЫХАТЕЛЬНЫМ ПУТЯМ ДЛЯ ПРОВЕДЕНИЯ ИСКУССТВЕННОЙ ВЕНТИЛЯЦИИ ЛЕГКИХ ПРИ ТРАВМАХ НИЖНИХ ОТДЕЛОВ ТРАХЕИ И ОДНОСТОРОННИХ ПАРЕНХИМАТОЗНЫХ ПОВРЕЖДЕНИЯХ ЛЕГКИХ 2004
  • Галстян Г.М.
  • Рязанова И.Б.
  • Шулутко Е.М.
RU2257165C1
СПОСОБ ЛЕЧЕНИЯ ОСТРОГО РЕСПИРАТОРНОГО ДИСТРЕСС-СИНДРОМА ПРИ НАЛИЧИИ ПНЕВМОТОРАКСА 2007
  • Мороз Виктор Васильевич
  • Остапченко Дмитрий Анатольевич
  • Марченков Юрий Викторович
  • Морозова Ольга Александровна
RU2349352C1
СПОСОБ ПРЕКРАЩЕНИЯ ДЛИТЕЛЬНОЙ ИСКУССТВЕННОЙ ВЕНТИЛЯЦИИ ЛЕГКИХ У ПАЦИЕНТОВ-КАНЮЛЕНОСИТЕЛЕЙ С ВЫСОКИМ РИСКОМ НЕЭФФЕКТИВНОГО ОТЛУЧЕНИЯ ОТ РЕСПИРАТОРА 2023
  • Власенко Алексей Викторович
  • Корякин Альберт Геннадьевич
  • Евдокимов Евгений Александрович
  • Родионов Евгений Петрович
  • Шабунин Алексей Васильевич
RU2819519C1
СПОСОБ ДИАГНОСТИКИ ОСТРОГО ПОВРЕЖДЕНИЯ ЛЕГКИХ 2003
  • Чеченин М.Г.
  • Чурляев Ю.А.
  • Мартыненков В.Я.
  • Лукашев К.В.
  • Денисов Э.Н.
  • Воеводин С.В.
RU2234855C1
СПОСОБ ДИАГНОСТИКИ НАРУШЕНИЙ ОКСИГЕНАЦИИ КРОВИ В ПРОЦЕССЕ ИСКУССТВЕННОЙ ВЕНТИЛЯЦИИ ЛЕГКИХ 2011
  • Чеченин Михаил Геннадьевич
  • Полукаров Андрей Николаевич
  • Банин Александр Владимирович
  • Глушков Андрей Владимирович
  • Сергеева Ольга Николаевна
  • Попов Николай Иванович
RU2457781C1
СПОСОБ ЛЕЧЕНИЯ РЕСПИРАТОРНОГО ДИСТРЕСС СИНДРОМА ВЗРОСЛЫХ 1997
  • Буров Н.Е.
  • Тимен Л.Я.
  • Остапченко Д.А.
  • Стуклов А.В.
RU2157705C2
СПОСОБ ЛЕЧЕНИЯ ИНГАЛЯЦИОННЫХ ПОРАЖЕНИЙ 2003
  • Тарасенко М.Ю.
  • Шпаков И.Ф.
  • Акулинов Е.Е.
  • Адмакин А.Л.
  • Петрачков С.А.
  • Гранов Д.А.
  • Баутин А.Е.
  • Каллистов Д.Б.
  • Розенберг О.А.
RU2238757C1
СПОСОБ ДИАГНОСТИКИ СИНДРОМА ДЫХАТЕЛЬНЫХ РАССТРОЙСТВ У БОЛЬНЫХ В ПОСТАГРЕССИВНОМ ПЕРИОДЕ 2000
  • Григорьев Е.В.
  • Чурляев Ю.А.
  • Афанасьев А.Г.
  • Денисов Э.Н.
RU2171619C1
СПОСОБ ПРОФИЛАКТИКИ ПНЕВМОНИИ И РЕСПИРАТОРНОГО ДИСТРЕСС-СИНДРОМА ВЗРОСЛЫХ ПРИ АСПИРАЦИИ ЖЕЛУДОЧНОГО СОДЕРЖИМОГО 1999
  • Гранов А.М.
  • Розенберг О.А.
  • Гранов Д.А.
  • Осовских В.В.
RU2149018C1

Иллюстрации к изобретению RU 2 699 735 C1

Реферат патента 2019 года Способ цифрового и визуального мониторинга интратрахеального давления прикроватным монитором при проведении искусственной вентиляции легких

Изобретение относится к медицине, а именно к интенсивной терапии, и может применяться при проведении искусственной вентиляции легких (ИВЛ). Используют трансдьюсер для инвазивного мониторинга и инфузионную магистраль. Причем последнюю укорачивают до 50-60 см. Дистальный конец инфузионной магистрали через санационный порт на адаптере дыхательного контура и интубационную или трахеостомическую трубку вводят в трахею, а проксимальный - соединяют с трансдьюсером, расположенным максимально близко к кровати пациента и строго на уровне трахеи. На прикроватном мониторе с опцией инвазивного мониторинга давления устанавливают скорость развертки 25 мм/с и масштаб измерения 0-20 мм рт. ст. После обнуления системы проводят измерение интратрахеального давления и визуальное наблюдение кривой давления на экране монитора. При этом измеряют 3 показателя давления в трахее: максимальное (Рпик), минимальное (ПДКВ) и среднее. Способ обеспечивает возможность в процессе ИВЛ точного и доступного измерения максимального (Рпик), минимального (ПДКВ) и среднего интратрахеальных давлений, а также визуальный анализ кривой трахеального давления за счет методики использования прикроватного монитора с опцией инвазивного мониторинга давления, трансдьюсера для инвазивного мониторинга и инфузионной магистрали. 1 ил., 1 табл., 1 пр.

Формула изобретения RU 2 699 735 C1

Способ цифрового и визуального мониторинга интратрахеального давления прикроватным монитором при проведении искусственной вентиляции легких, включающий использование трансдьюсера для инвазивного мониторинга и инфузионной магистрали, причем последнюю укорачивают до 50-60 см, дистальный конец инфузионной магистрали через санационный порт на адаптере дыхательного контура и интубационную или трахеостомическую трубку вводят в трахею, а проксимальный - соединяют с трансдьюсером, расположенным максимально близко к кровати пациента и строго на уровне трахеи, на прикроватном мониторе с опцией инвазивного мониторинга давления устанавливают скорость развертки 25 мм/с и масштаб измерения 0-20 мм рт. ст., после обнуления системы проводят измерение интратрахеального давления и визуальное наблюдение кривой давления на экране монитора, при этом измеряют 3 показателя давления в трахее: максимальное (Рпик), минимальное (ПДКВ) и среднее.

Документы, цитированные в отчете о поиске Патент 2019 года RU2699735C1

ГОРЯЧЕВ А.С
Основы ИВЛ
Колосоуборка 1923
  • Беляков И.Д.
SU2009A1
0
SU161756A1
СПОСОБ ВЫБОРА ОПТИМАЛЬНОГО РЕЖИМА ИСКУССТВЕННОЙ ВЕНТИЛЯЦИИ ЛЕГКИХ У РЕАНИМАЦИОННЫХ БОЛЬНЫХ С ЧЕРЕПНО-МОЗГОВОЙ ТРАВМОЙ 1998
  • Мартыненков В.Я.
  • Денисов Э.Н.
  • Чурляев Ю.А.
  • Афанасьев А.Г.
  • Редкокаша Л.Ю.
RU2141350C1
Домовый приемник для мусора 1930
  • Юдин И.К.
SU21407A1
US 20130276789 A1, 24.10.2013
KARASON S
Evaluation of pressure/volume loops based on intratracheal pressure measurements during dynamic conditions
Acta Anaesthesiol Scand
ЩИТОВОЙ ДЛЯ ВОДОЕМОВ ЗАТВОР 1922
  • Гебель В.Г.
SU2000A1

RU 2 699 735 C1

Авторы

Райкин Илья Давыдович

Савеленок Максим Игоревич

Захарченко Игорь Анатольевич

Меркулов Игорь Викторович

Черкасова Татьяна Алексеевна

Даты

2019-09-09Публикация

2018-09-24Подача