СПОСОБ ЭЛЕКТРОПОЛИРОВАНИЯ ЛОПАТОК БЛИСКА Российский патент 2019 года по МПК C25F3/16 

Описание патента на изобретение RU2700229C1

Изобретение относится к электрополированию лопаток блисков и может быть использовано в турбомашиностроении при обработке лопаток блиска компрессоров газотурбинных двигателей, для обеспечения необходимых физико-механических и эксплуатационных свойств деталей турбомашин, а также в качестве подготовительной операции перед ионно-имплантационным модифицированием поверхности детали и нанесением защитных ионно-плазменных покрытий.

Рабочие лопатки компрессора газотурбинного двигателя (ГТД) в процессе эксплуатации подвергаются воздействиям значительных динамических и статических нагрузок, а также эрозионному разрушению. Исходя из предъявляемых к эксплуатационным свойствам требований, для изготовления лопаток компрессора газовых турбин применяются титановые сплавы, которые по сравнению с техническим титаном имеют более высокую прочность, в том числе и при высоких температурах, сохраняя при этом достаточно высокую пластичность и коррозионную стойкость.

Однако лопатки турбин обладают повышенной чувствительностью к концентраторам напряжения. Поэтому дефекты, образующиеся в процессе изготовления этих деталей, недопустимы, поскольку вызывают возникновение интенсивных процессов разрушения. Это вызывает проблемы при механической обработке поверхностей деталей турбомашин. В этой связи развитие способов получения высококачественных поверхностей деталей турбомашин является весьма актуальной задачей.

Наиболее перспективными методами обработки лопаток турбомашин являются электрохимические методы полирования поверхностей [Грилихес С.Я. Электрохимическое и химическое полирование: Теория и практика. Влияние на свойства металлов. Л., Машиностроение, 1987.], при этом наибольший интерес для рассматриваемой области представляют методы электролитно-плазменного полирования (ЭПП) деталей [например, Патент ГДР (DD) №238074 (А1), МПК C25F 3/16, опубл. 06.08.86., а также Патент РБ №1132, МПК C25F 3/16, 1996, БИ №3].

Известен способ полирования металлических поверхностей, включающий анодную обработку в электролите [Патент РБ №1132, МПК C25F 3/16, 1996, БИ №3], а также способ электрохимического полирования [Патент США №5028304, МПК В23Н 3/08, C25F 3/16, C25F 5/00, опубл. 02.07.91.]

Известные способы электрохимического полирования не позволяют производить качественное полирование поверхности лопаток блисков.

Известен также способ электролитно-плазменного полирования деталей из титановых сплавов [Патент РФ №2373306, МПК C25F 3/16. Способ многоэтапного электролитно-плазменного полирования изделий из титана и титановых сплавов. Бюл. №32, 2009], включающий погружение детали в электролит, содержащий окислитель, фторсодержащее соединение и воду, формирование вокруг обрабатываемой поверхности детали парогазовой оболочки и зажигание разряда между обрабатываемой деталью и электролитом путем подачи на обрабатываемую деталь электрического потенциала.

Однако известный способ [Патент РФ №2373306, МПК C25F 3/16] является многостадийным, что приводит с одной стороны к возрастанию сложности процесса обработки деталей, снижению качества и надежности процесса обработки из-за необходимости обеспечения большего количества параметров процесса и их соотношений, а также к повышению его трудоемкости.

Наиболее близким техническим решением к заявляемому способу является способ ионного полирования металлической детали, заключающийся в заполнении электропроводящими гранулами рабочий контейнер установки, выполненный их электропроводного материала, закрепление детали на держателе, погружении детали в электропроводящие гранулы, заполняющие контейнер, подключении детали к аноду, а контейнера к катоду. [WO 2017186992 - |Method for smoothing and polishing metals via ion transport by means of free solid bodies, and solid bodies for carrying out said method. Опубл. 2017.11.02].

Однако известный способ [WO 2017186992] не позволяет обеспечить высокое качество поверхности детали за счет неравномерности взаимодействия гранул с обрабатываемой поверхностью лопаток блиска.

Кроме того, способ-прототип [WO 2017186992] не может быть применен к обработке лопаток блисков, имеющих большие размеры, поскольку при обработке изделий, имеющих значительную площадь поверхности выделяется чрезмерное количество тепла, что делает процесс нестабильным и приводит к возникновению дефектов на поверхности лопаток. При этом обработка крупных изделий, к которым относятся блиски компрессора ГТД, требуется значительное количество электроэнергии и при реализации процесса полирования в этих условиях резко снижается к.п.д. обработки.

Задачей, на решение которой направлено заявляемое изобретение, является повышение качества обработки и надежности процесса полирования лопаток блисков за счет обеспечения равномерного взаимодействия гранул с поверхностью обрабатываемой детали и уменьшения площади обработки.

Техническим результатом предлагаемого изобретения является повышение качества и однородности обработки поверхности деталей.

Технический результат достигается за счет того, что в способе электрополирования лопаток блиска, включающем заполнение электропроводящими гранулами рабочего контейнера, закрепление блиска на держателе, погружение блиска в электропроводящие гранулы, заполняющие рабочий контейнер и выполненные в виде пористых гранул из сульфированного сополимера стирол-дивинилбензола, поры которых заполнены электролитом без образования пленки электролита на внешней поверхности гранулы, подключении блиска к аноду, а гранул к катоду, и полирование до получения заданной шероховатости поверхности лопаток блиска, в отличие от прототипа блиск погружают в электропроводящие гранулы частично на глубину, обеспечивающую полное погружение сегмента блиска с находящейся в его центре лопаткой, а электропроводящие гранулы приводят в непрерывное возвратно-поступательное движение амплитудой 22 кГц в направлении вдоль спинки и корыта лопатки, обеспечивающем равномерное омывание электропроводящими гранулами спинки и корыта лопатки и вращают блиск относительно его оси со скоростью, обеспечивающей полирование поверхности лопаток блиска до получения заданной шероховатости по крайней мере за один цикл поворота блиска относительно его оси.

Кроме того возможны следующие приемы способа: электропроводящие гранулы приводят в возвратно-поступательное движение возвратно-поступательным движением рабочего контейнера; используют рабочий контейнер выполненный из электропроводного материала, а подключение гранул к катоду производят за счет их контакта с поверхностью контейнера; в качестве гранул используют сферические частицы диаметром от 0,4 до 1,2 мм или овальные частицы размерами от 0,3 до 1,4 мм; полирование осуществляют в среде аргона, при этом в качестве блиска используют блиск турбины из титанового сплава, а в качестве электролита используют водный раствор смеси NH4F и KF при содержании NH4F - от 5 до 15 г/л и KF - от 30 до 50 г/л.

Сущность заявляемого способа, возможность его осуществления и использования иллюстрируются представленными ниже примерами.

Изобретение поясняется следующей схемой. На фиг. 1 и 2 показан процесс электрополирования лопатки блиска. На фиг. 1 представлен блиск в процессе полирования лопаток, на фиг. 2 - блиск в процессе полирования лопаток (вид сверху. Фигуры 1 и 2 содержат: 1 - блиск; 2 - лопатка блиска; 3 - текущая (обрабатываемая) лопатка блиска; 4 - рабочий контейнер; 5 - электропроводные гранулы; 6 - держатель блиска. (Стрелками показано возвратно-поступательное движение рабочего контейнера; скругленной стрелкой - направления вращения блиска).

Заявляемый способ электрополирования лопаток блиска осуществляется следующим образом (фиг. 1 и 2). Обрабатываемый блиск 1 закрепляют на держателе блиска 6 и погружают нижнюю его часть (сегмент) в рабочий контейнер 4 с электропроводящими гранулами 5, прикладывают к обрабатываемому блиску 1 положительный электрический потенциал (анод), а к электропроводящим гранулам - отрицательный электрический потенциал (катод), придают электропроводящим гранулам 5 возвратно-поступательное движение по одному из выбранных режимов. Блиск 1 погружают в электропроводящие гранулы частично, охватывая только его сегмент (фиг. 1), причем погружение осуществляют на глубину, обеспечивающую полное погружение текущей обрабатываемой лопатки 3, находящейся в центре сегмента блиска 1. Электропроводящие гранулы 5 приводят в возвратно-поступательное движение в направлении вдоль спинки и корыта лопатки 3 (показано стрелками), обеспечивающем равномерное омывание электропроводящими гранулами 5 спинки и корыта лопатки 3 и вращают блиск 1 относительно его оси со скоростью обеспечивающей полирование поверхности лопаток блиска 1. При этом возвратно-поступательное движение электропроводящих гранул 5 могут быть созданы за счет возвратно-поступательных движений рабочего контейнера 4 или блиска 1. Блиск 1 закрепляют на держателе с возможностью поворота блиска 1 вокруг своей оси, устанавливают текущую лопатку блиска 3 перед рабочим контейнером 4 (фиг. 1), а погружение текущей лопатки блиска 3 в электропроводящие гранулы 5 осуществляют опусканием блиска 1 перемещая вниз держатель 6 (фиг. 1). Причем в процессе полирования текущей лопатки блиска 3 обеспечивают возвратно-поступательное движения гранул во всем объеме рабочего контейнера 4, а в процессе обработки текущей лопатки 3 блиска 1, держатель 6 поворачивает блиск 1 вокруг его оси постепенно погружая в электропроводящие гранулы 5 очередную обрабатываемую лопатку 2, которая становится текущей (обрабатываемой в данный момент)лопаткой 3. Указанный цикл последовательного полирования лопаток блиска 2 повторяют до окончания полирования всех лопаток блиска 2.

Для полирования каждой лопатки блиска 2 используют рабочий контейнер 4 в виде коробки, выполненной с возможностью обеспечения возвратно-поступательного движения при помощи одного из известных способов. Рабочий контейнер 4 выполняют электроизолированным с внешней его стороны. Причем для лучшей герметизации рабочего контейнера 4.

Процесс полирования может осуществляться при плотности тока 0,2-10 А/см2. В качестве электропроводящих гранул 5 могут использоваться, либо сферические частицы диаметром от 0,4 до 1,2 мм, либо овальные частицы размерами от 0,3 до 1,4 мм, а также пористые гранулы 5 из материала, обеспечивающего заполнение пор электролитом без образования пленки электролита на внешней поверхности гранулы 5, например, гранулы 5 выполненные из сульфированный сополимер стирол-дивинилбензола. Полирование может осуществляться в среде аргона, особенно при полировании деталей из титана и титановых сплавов, в частности лопаток блиска 2 турбины. При полировании блиска 1 из титанового сплава в качестве электролита может использоваться водный раствор смеси NH4F и KF при содержании NH4F - от 5 до 15 г/л и KF - от 30 до 50 г/л. Кроме того, в процессе полирования может дополнительно производится относительное движение обрабатываемого блиска 1 и рабочего контейнера 4 в режимах возвратно-поступательного движения. Процесс полирования осуществляют до получения заданной величины шероховатости поверхности лопаток блиска 1.

Возвратно-поступательные движения электропроводящих гранул 5 позволяют обеспечить равномерное воздействие на всю обрабатываемую поверхность текущей лопатки 3 и тем самым повысить качество и однородность ее поверхности. Кроме того, за счет создание однородных условий для всего объема гранул обеспечивается равномерное протекание электрических процессов, в частности ионного переноса при обработки лопатки.

При осуществлении способа происходят следующие процессы. При возвратно-поступательном движении гранул происходят их столкновения с обрабатываемой поверхностью детали. При этом столкновения между гранулами происходят также и во всем объеме рабочего контейнера, создавая таким образом для всего объема гранул равномерные условия протекания электрических процессов. При этом электрические процессы между деталью (анодом) и гранулами (катодом) происходят за счет контакта массы электропроводных гранул друг с другом и с находящимся под отрицательным потенциалом рабочего контейнера и/или введенных в массу гранул электродов (катодов), находящихся под отрицательным потенциалом. При столкновениях гранул с микровыступами на обрабатываемой поверхности детали происходит ионный унос массы с микровыступов, в результате чего происходит выравнивание поверхности, уменьшается ее шероховатость и происходит полирование поверхности.

Пример. Обработке подвергали лопатки блиска из титанового сплава марки ВТ9. Обрабатываемые лопатки блиска последовательно погружали в рабочий контейнер с пористыми сферическими гранулами размерами от 0,6 до 0,8 мм, выполненными из сульфированного сополимера стирол-дивинилбензола. Полирование производили в среде аргона. В качестве электролита-заполнителя гранул использовали водный раствор смеси NH4F и KF при содержании NH4F - 6 г/л и KF - 33 г/л. Прикладывали к детали положительное, а к гранулам (через корпус контейнера) - отрицательное напряжение. Процесс полирования проводили при непрерывном колебательном движении гранул амплитудой 22 кГц. Процесс полирования проводили при плотности тока 1,8 А/см2.

Условия обработки по способу-прототипу [WO 2017186992] были следующие. Взаимодействие лопаток блиска и гранул за счет вращения блиска в объеме гранул. Обрабатываемые лопатки погружали рабочий контейнер с пористыми сферическими гранулами размерами от 0,6 до 0,8 мм, выполненными из сульфированного сополимера стирол-дивинилбензола. Рабочий контейнер обеспечивал погружение сразу всех лопаток блиска в гранулы. Полирование производили в среде аргона. В качестве электролита-заполнителя гранул использовали водный раствор смеси NH4F и KF при содержании NH4F - 6 г/л и KF - 33 г/л. Прикладывали к детали положительное, а к гранулам (через корпус контейнера) - отрицательное напряжение. Процесс полирования проводилипри плотности тока 1,8 А/см2.

Сравнивались величины шероховатости на различных участках детали после сравниваемых способах обработки. Исходная шероховатость поверхности деталей составляла Ra 0,72 мкм. После обработки разброс шероховатости на различных участках поверхности обработанных деталей составляла: для прототипа от Ra 0,16 мкм до Ra 0,32 мкм, для обработанных по предлагаемому способу от Ra 0,14 мкм до Ra 0,18 мкм. Кроме того, при обработке по способу-прототипу наблюдался перегрев среды гранул и блиска из-за необходимости использования большей энергии, поскольку площадь обработки в этом случае была значительно большей, чем по предлагаемому способу.

Кроме того, были проведены исследования следующих режимов обработки деталей из титановых сплава, (ВТ-1, ВТ3-1, ВТ8). За отрицательный результат принимался режим обработки дающий разброс значений шероховатости по поверхности детали более ΔRa 0, 05 мкм. Возвратно-поступательные движения гранул - удовлетворительный результат (У.Р.), обеспечение только трения гранул о поверхность обрабатываемой детали при ее полном погружении неудовлетворительный результат (Н.Р.).

Размеры и форма гранул: сферические частицы диаметром: 0,2 мм (Н.Р.), 0,4 мм (У.Р.), 0,6 мм (У.Р.), 0,8 мм (У.Р.), 1,2 мм (У.Р.), 0,14 мм (Н.Р.). Овальные частицы размерами от 0,3 до 1,4 мм. 0,2 мм (Н.Р.), 0,3 мм (У.Р.), 0,5 мм (У.Р.), 0,8 мм (У.Р.), 1,2 мм (У.Р.), 1,4 мм (У.Р.), 0,16 мм (Н.Р.).

Улучшение качества электрополирования лопаток блиска по предлагаемому способу, во всех проведенных случаях обработки указывает на то, что использование способа электрополирования лопаток блиска, включающего следующие признаки: заполнение электропроводящими гранулами рабочего контейнера; закрепление блиска на держателе; погружении блиска в электропроводящие гранулы, заполняющие рабочий контейнер; подключении блиска к аноду, а гранул к катоду и полирование до получения заданной шероховатости поверхности лопаток блиска; погружение блиска в электропроводящие гранулы частично, охватывая только сегмент блиска; погружение на глубину, обеспечивающую полное погружение лопатки, находящейся в центре сегмента; приведение электропроводящих гранул в возвратно-поступательное движение в направлении вдоль спинки и корыта лопатки, обеспечивающем равномерное омывание электропроводящими гранулами спинки и корыта лопатки; вращение блиска относительно его оси со скоростью обеспечивающей полирование поверхности лопаток блиска до получения заданной шероховатости, по крайней мере за один цикл поворота блиска относительно его оси, а также использование следующих признаков способа: приведение электропроводящих гранул в возвратно-поступательное движение возвратно-поступательным движением рабочего контейнера; использование рабочего контейнера, выполненного из электропроводного материала, а подключение гранул к катоду производят за счет их контакта с поверхностью контейнера; в качестве гранул используют, либо сферические частицы диаметром от 0,4 до 1,2 мм, либо овальные частицы размерами от 0,3 до 1,4 мм; используют пористые гранулы из материала, обеспечивающего заполнение пор электролитом без образования пленки электролита на внешней поверхности гранулы; в качестве материала гранул используют сульфированный сополимер стирол-дивинилбензола; полирование осуществляют в среде аргона,, а в качестве блиска используют блиск турбины из титанового сплава, а в качестве электролита используют водный раствор смеси NH4F и KF при содержании NH4F - от 5 до 15 г/л и KF - от 30 до 50 г/л, позволяют достичь технического результата заявляемого способа - повышение качества и однородности обработки поверхности деталей.

Похожие патенты RU2700229C1

название год авторы номер документа
СПОСОБ СУХОГО ЛОКАЛЬНОГО ЭЛЕКТРОПОЛИРОВАНИЯ ЛОПАТОК БЛИСКА И РАБОЧИЙ КОНТЕЙНЕР ДЛЯ ЕГО РЕАЛИЗАЦИИ 2018
  • Мингажев Аскар Джамилевич
  • Криони Николай Константинович
  • Мингажева Алиса Аскаровна
RU2697757C1
СПОСОБ ПОСЛЕДОВАТЕЛЬНОГО ЭЛЕКТРОПОЛИРОВАНИЯ ЛОПАТОК БЛИСКА И РАБОЧИЙ КОНТЕЙНЕР ДЛЯ ЕГО РЕАЛИЗАЦИИ 2018
  • Мингажев Аскар Джамилевич
  • Криони Николай Константинович
  • Мингажева Алиса Аскаровна
  • Давлеткулов Раис Калимуллович
RU2699495C1
СПОСОБ ЭЛЕКТРОПОЛИРОВАНИЯ ЛОПАТОК БЛИСКА И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2019
  • Мингажев Аскар Джамилевич
  • Криони Николай Константинович
  • Мингажева Алиса Аскаровна
  • Давлеткулов Раис Калимуллович
RU2715395C1
СПОСОБ ЭЛЕКТРОПОЛИРОВАНИЯ ЛОПАТОК БЛИСКА И РАБОЧИЙ КОНТЕЙНЕР ДЛЯ ЕГО РЕАЛИЗАЦИИ 2018
  • Мингажев Аскар Джамилевич
  • Криони Николай Константинович
  • Мингажева Алиса Аскаровна
RU2694941C1
СПОСОБ ЭЛЕКТРОПОЛИРОВАНИЯ МОНОКОЛЕСА С ЛОПАТКАМИ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2019
  • Мингажев Аскар Джамилевич
  • Криони Николай Константинович
  • Мингажева Алиса Аскаровна
  • Давлеткулов Раис Калимуллович
RU2719217C1
СПОСОБ ЭЛЕКТРОПОЛИРОВАНИЯ МЕТАЛЛИЧЕСКОЙ ДЕТАЛИ 2019
  • Мингажев Аскар Джамилевич
  • Криони Николай Константинович
  • Давлеткулов Раис Калимуллович
RU2716292C1
СПОСОБ СУХОГО ЭЛЕКТРОПОЛИРОВАНИЯ ДЕТАЛИ 2020
  • Мингажев Аскар Джамилевич
  • Криони Николай Константинович
RU2730306C1
Способ сухого электрополирования лопатки турбомашины 2021
  • Мингажев Аскар Джамилевич
  • Криони Николай Константинович
RU2769105C1
СПОСОБ ЭЛЕКТРОПОЛИРОВАНИЯ МЕТАЛЛИЧЕСКОЙ ДЕТАЛИ 2018
  • Мингажев Аскар Джамилевич
  • Криони Николай Константинович
  • Мингажева Алиса Аскаровна
RU2700226C1
Способ сухого электрополирования лопатки турбомашины 2021
  • Мингажев Аскар Джамилевич
  • Криони Николай Константинович
RU2752835C1

Иллюстрации к изобретению RU 2 700 229 C1

Реферат патента 2019 года СПОСОБ ЭЛЕКТРОПОЛИРОВАНИЯ ЛОПАТОК БЛИСКА

Изобретение относится к электрополированию лопаток блисков и может быть использовано в турбомашиностроении при обработке лопаток блиска компрессоров газотурбинных двигателей, для обеспечения необходимых физико-механических и эксплуатационных свойств деталей турбомашин, а также в качестве подготовительной операции перед ионно-имплантационным модифицированием поверхности детали и нанесением защитных ионно-плазменных покрытий. Способ включает заполнение электропроводящими гранулами рабочего контейнера, закрепление блиска на держателе, погружение блиска в электропроводящие гранулы, заполняющие рабочий контейнер и выполненные в виде пористых гранул из сульфированного сополимера стирол-дивинилбензола, поры которых заполнены электролитом без образования пленки электролита на внешней поверхности гранулы, подключение блиска к аноду, а гранул к катоду и полирование до получения заданной шероховатости поверхности лопаток блиска, при этом блиск погружают в электропроводящие гранулы частично на глубину, обеспечивающую полное погружение сегмента блиска с находящейся в его центре лопаткой, а электропроводящие гранулы приводят в непрерывное возвратно-поступательное движение амплитудой 22 кГц в направлении вдоль спинки и корыта лопатки, обеспечивающем равномерное омывание электропроводящими гранулами спинки и корыта лопатки, и вращают блиск относительно его оси со скоростью, обеспечивающей полирование поверхности лопаток блиска до получения заданной шероховатости по крайней мере за один цикл поворота блиска относительно его оси. Технический результат: повышение качества и однородности обработки поверхности деталей. 5 з.п. ф-лы, 2 ил.

Формула изобретения RU 2 700 229 C1

1. Способ электрополирования лопаток блиска, включающий заполнение электропроводящими гранулами рабочего контейнера, закрепление блиска на держателе, погружение блиска в электропроводящие гранулы, заполняющие рабочий контейнер и выполненные в виде пористых гранул из сульфированного сополимера стирол-дивинилбензола, поры которых заполнены электролитом без образования пленки электролита на внешней поверхности гранулы, подключение блиска к аноду, а гранул к катоду и полирование до получения заданной шероховатости поверхности лопаток блиска, отличающийся тем, что блиск погружают в электропроводящие гранулы частично на глубину, обеспечивающую полное погружение сегмента блиска с находящейся в его центре лопаткой, а электропроводящие гранулы приводят в непрерывное возвратно-поступательное движение амплитудой 22 кГц в направлении вдоль спинки и корыта лопатки, обеспечивающем равномерное омывание электропроводящими гранулами спинки и корыта лопатки, и вращают блиск относительно его оси со скоростью, обеспечивающей полирование поверхности лопаток блиска до получения заданной шероховатости по крайней мере за один цикл поворота блиска относительно его оси.

2. Способ по п. 1, отличающийся тем, что электропроводящие гранулы приводят в возвратно-поступательное движение возвратно-поступательным движением рабочего контейнера.

3. Способ по п. 1, отличающийся тем, что используют рабочий контейнер, выполненный из электропроводного материала, а подключение гранул к катоду производят за счет их контакта с поверхностью контейнера.

4. Способ по любому из пп. 1-3, отличающийся тем, что в качестве гранул используют сферические частицы диаметром от 0,4 до 1,2 мм или овальные частицы размерами от 0,3 до 1,4 мм.

5. Способ по любому из пп. 1-3, отличающийся тем, что полирование осуществляют в среде аргона, при этом в качестве блиска используют блиск турбины из титанового сплава, а в качестве электролита используют водный раствор смеси NH4F и KF при содержании NH4F - от 5 до 15 г/л и KF - от 30 до 50 г/л.

6. Способ по п. 4, отличающийся тем, что полирование осуществляют в среде аргона, при этом в качестве блиска используют блиск турбины из титанового сплава, а в качестве электролита используют водный раствор смеси NH4F и KF при содержании NH4F - от 5 до 15 г/л и KF - от 30 до 50 г/л.

Документы, цитированные в отчете о поиске Патент 2019 года RU2700229C1

WO 2017186992 A1, 02.11.2017
СПОСОБ ЗАЩИТЫ БЛИСКА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ ИЗ ТИТАНОВЫХ СПЛАВОВ ОТ ПЫЛЕАБРАЗИВНОЙ ЭРОЗИИ 2017
  • Смыслов Анатолий Михайлович
  • Дыбленко Юрий Михайлович
  • Смыслова Марина Константиновна
  • Мингажев Аскар Джамилевич
  • Гонтюрев Василий Андреевич
  • Олейник Алексей Валерьевич
  • Гумеров Александр Витальевич
  • Гордеев Вячеслав Юрьевич
  • Селиванов Константин Сергеевич
RU2655563C1
СПОСОБ ПОЛИРОВАНИЯ ДЕТАЛЕЙ ИЗ ТИТАНОВЫХ СПЛАВОВ 2012
  • Смыслов Анатолий Михайлович
  • Таминдаров Дамир Рамилевич
  • Мингажев Аскар Джамилевич
  • Смыслова Марина Константиновна
  • Самаркина Александра Борисовна
RU2495966C1
СПОСОБ ЭЛЕКТРОЛИТНО-ПЛАЗМЕННОГО ПОЛИРОВАНИЯ ДЕТАЛЕЙ ИЗ ТИТАНА И ТИТАНОВЫХ СПЛАВОВ 2011
  • Таминдаров Дамир Рамилевич
  • Смыслов Анатолий Михайлович
  • Мингажев Аскар Джамилевич
RU2461667C1

RU 2 700 229 C1

Авторы

Мингажев Аскар Джамилевич

Криони Николай Константинович

Мингажева Алиса Аскаровна

Давлеткулов Раис Калимуллович

Даты

2019-09-13Публикация

2018-10-09Подача