Изобретение относится к машиностроению и может быть использована при изготовлении и ремонте лопаток, работающих в условиях воздействия газоабразивной эрозии.
Развитие современных газовых турбин предполагает увеличение мощности двигателя, уменьшение расхода топлива, увеличение общей надежности функционирования турбины и, как следствие, - увеличение ресурса. Пути решения вышеперечисленных задач лежат в плоскости увеличения рабочей температуры турбин, что в свою очередь требует применения новых конструкционных материалов со свойствами, позволяющими деталям, изготовленным из них, функционировать при увеличенных рабочих параметрах. Повышение эксплуатационных характеристик за счет использования имеющихся жаропрочных сплавов и покрытий практически исчерпало свои возможности, что требует инновационных подходов к совершенствованию и разработке нового поколения металлических и керамических материалов для деталей и покрытий различного функционального назначения, обладающих повышенной стойкостью к разрушению в условиях воздействия циклических термомеханических напряжений и агрессивных сред.
Оптимальным решением, позволяющим поднять рабочую температуру двигателя и увеличить его ресурс, является нанесение теплозащитных покрытий с чередующимися слоями различного композиционного состава и функционального назначения, формируемых на основе наноструктурированных материалов.
Поиск новых материалов керамического слоя теплозащитных покрытий (ТЗП) выявил ряд недостатков традиционного состава ZrO2-7Y2O3, среди, которых отмечается недостаточная фазовая стабильность и высокая скорость спекания при высоких температурах. При длительных выдержках в температурных условиях, соответствующих эксплуатационным, это приводит к росту теплопроводности покрытий от первоначальных значений (0,9-1,1 Вт/мК) до значений, характерных для плотного материала (1,9-2,2 Вт/мК). Теплозащитный эффект покрытия при этом падает всего до 20-ЗОК, не обеспечивая требуемых свойств. (Cao, X.Q. Application of rare earths in thermal barrier coating materials / X.Q. Cao // Journal of Material Science Technology, 2007, Vol. 2З No. 1. P. 15-35. Vassen, R. Overview on advanced thermal barrier coatings / R. Vassen, M, Jarligo, T. Steinke, D. Mack, D. Stoever // Surface and Coatings Technology, 2010. Vol. 205. P. 938-942.
В исследовательском центре NASA (США) разработаны покрытия с низкой теплопроводностью, которая слабо зависит от времени выдержки при высоких температурах благодаря легированию стандартного материала ZrO2-7Y2O3 оксидами редкоземельных металлов. Состав покрытия не раскрывается. Zhu, D. Thermal Conductivity and Sintering Behavior of Advanced Thermal Barrier Coatings / Dongming Zhu, Robert A. Millor // Технический отчет NASA/TM- 2002-211481.2002. NASA. 15p.
Активно ведется разработка теплозащитных покрытий с низкой теплопроводностью для применения на деталях горячего тракта энергетических газотурбинных установок большой мощности в исследовательском центре Mitsubishi Heavy Industries. Новые покрытия доказали свою эффективность и будут применяться на турбинах. Состав покрытия не раскрывается. Ito, Е. Development of key technology for ultra-high-temperature gas turbines / E. Ito, К. Tsukagoshi, A. Muyama, J. Masada, T. Torigoe // Mitsubishi Heavy Industries Technical Review. 2010. Vol. 47 (1). P. 19.
Задача, на решение которой направлено настоящее изобретение, состоит в повышении ресурса термобарьерного покрытия на деталях горячего тракта «ГТД-110М».
Ближайшим к предлагаемому изобретению аналогом является лопатка газовой турбины (RU 2521924 С2, С22С 19/05, опубликовано 10.07.2014), содержащая нанесенное на поверхность лопатки методом высокоскоростного газопламенного напыления жаростойкого подслоя толщиной 150-200 мкм и затем керамического термобарьерного слоя.
Недостатком ближайшего аналога является недостаточная адгезионная связь напыляемого материала и материала подложки. Помимо достаточной стойкости защитного слоя при агрессивных воздействиях отработавших газов при температурах порядка 1000°С, защитный слой должен также иметь достаточно хорошие механические свойства. В условиях газоабразивной эрозии покрытие не должно трескаться и отслаиваться.
Задача, на которую направлено предлагаемое изобретение, заключается в том, чтобы увеличить газоабразивную стойкость лопаток ГТД-110М.
Желаемым техническим результатом является увеличение газообразивной стойкости защитного покрытия лопатки газовой турбины без ухудшения аэродинамических характеристик лопатки.
Желаемый технический результат достигается тем, что керамический термобарьерный слой подвергнут двухстадийной обработке, вначале в вакууме при давлении 1×10-4 мм.рт.ст. нагрет до температуры 1050°С в течение 3-4 часов, выдержан при той же температуре 2 часа и охлажден до температуры 700°С со скоростью 40-50°С, после чего на воздухе нагрет до температуры 850°С в течение 2,5-3 часов, выдержан при той же температуре в течение 16 часов и охлажден в течение 4,7 часа до нормальной температуры и составляет 100-120 мкм.
В технологический цикл нанесения термобарьерных покрытий, как правило, входит многостадийная термообработка, которая повышает прочность покрытия.
Предлагаемая в настоящем изобретении двухстадийная обработка позволяет повысить прочность покрытия после нанесения. Для этого проводится диффузионный отжиг в вакууме при давлении 1×10-4 мм.рт.ст. нагревании до температуры 1050°С в течение 3-4 часов, выдержки при той же температуре 2 часа и охлаждении до температуры 700°С со скоростью 40-50°С. При диффузионном отжиге формируется диффузионная зона шириной до 30 мкм, что повышает прочность сцепления керамического термобарьерного слоя и металлического подслоя.
Заключительный окислительный отжиг проводится на воздухе нагреванием до температуры 850°С в течение 2,5-3 часов, выдержке при той же температуре в течение 16 часов и охлаждении в течение 4,7 часа до нормальной температуры. Окислительный отжиг позволяет привести структуру покрытия в равновесное состояние и повышает прочность покрытия.
Примером является лопатки рабочие 1-й и 2-й ступени газовой турбины ГТД-110М, выполненные из ЧС-88У-ВИ, с нанесенным термобарьерным покрытием подвергали двухстадийной обработке: вначале в вакууме при давлении 1×10-4 мм.рт.ст. нагревали до температуры 1050°С в течение 3-4 часов, выдерживали при той же температуре 2 часа и охлаждали до температуры 700°С со скоростью 40-50°С, после чего на воздухе нагревали до температуры 850°С в течение 3 часов, выдерживали при той же температуре в течение 16 часов и охлаждают в течение 4,7 часа до нормальной температуры. Газоабразивная стойкость термобарьерных покрытий увеличилась в 2-2,5 раза по сравнению с нетермообработанными.
Примером является лопатки рабочие 1-й и 2-й ступени газовой турбины ГТД-110М, выполненные из INC738, с нанесенным термобарьерным покрытием подвергали двухстадийной обработке: вначале в вакууме при давлении 1×10-4 мм.рт.ст. нагревали до температуры 1050°С в течение 3-4 часов, выдерживали при той же температуре 2 часа и охлаждали до температуры 700°С со скоростью 40-50°С, после чего на воздухе нагревали до температуры 850°С в течение 3 часов, выдерживали при той же температуре в течение 16 часов и охлаждают в течение 4,7 часа до нормальной температуры. Газоабразивная стойкость термобарьерных покрытий увеличилась в 1,5-2 раза по сравнению с нетермообработанными.
Примером является лопатки сопловые 1-й и 2-й ступени газовой турбины ГТД-110М, выполненные из ЧС-104-ВИ, с нанесенным термобарьерным покрытием подвергали двухстадийной обработке: вначале в вакууме при давлении 1×10-4 мм.рт.ст. нагревали до температуры 1050°С в течение 3-4 часов, выдерживали при той же температуре 2 часа и охлаждали до температуры 700°С со скоростью 40-50°С, после чего на воздухе нагревали до температуры 850°С в течение 3 часов, выдерживали при той же температуре в течение 16 часов и охлаждают в течение 4,7 часа до нормальной температуры. Газоабразивная стойкость термобарьерных покрытий увеличилась в 2-2,5 раза по сравнению с нетермообработанными.
название | год | авторы | номер документа |
---|---|---|---|
ЖАРОВАЯ ТРУБА ГАЗОВОЙ ТУРБИНЫ ГТД-110М | 2018 |
|
RU2701025C1 |
СПОСОБ НАНЕСЕНИЯ ЖАРОСТОЙКИХ ПОКРЫТИЙ Y-AL-O ИЗ ПЛАЗМЫ ВАКУУМНО-ДУГОВОГО РАЗРЯДА | 2020 |
|
RU2756961C1 |
СПОСОБ НАНЕСЕНИЯ ТЕПЛОЗАЩИТНОГО ЭРОЗИОННО СТОЙКОГО ПОКРЫТИЯ | 2004 |
|
RU2260071C1 |
СПОСОБ ПОЛУЧЕНИЯ ЖАРОСТОЙКОГО ПОКРЫТИЯ НА ЛОПАТКАХ ГАЗОВЫХ ТУРБИН | 2010 |
|
RU2441100C2 |
СПОСОБ НАНЕСЕНИЯ КОМБИНИРОВАННОГО ЖАРОСТОЙКОГО ПОКРЫТИЯ НА ЛОПАТКИ ТУРБИН ГТД | 2020 |
|
RU2755131C1 |
ДЕТАЛЬ И СБОРОЧНАЯ ЕДИНИЦА СОПЛОВОГО АППАРАТА ТУРБИНЫ ВЫСОКОГО ДАВЛЕНИЯ | 2020 |
|
RU2746196C1 |
СПОСОБ ФОРМИРОВАНИЯ ТЕПЛОЗАЩИТНОГО ПОКРЫТИЯ НА ЛОПАТКЕ ТУРБИНЫ ИЗ ЖАРОПРОЧНЫХ НИКЕЛЕВЫХ СПЛАВОВ | 2009 |
|
RU2426817C2 |
СПОСОБ ПОЛУЧЕНИЯ ЖАРОСТОЙКОГО ПОКРЫТИЯ НА ЛОПАТКАХ ТУРБИН ГАЗОТУРБИННЫХ ДВИГАТЕЛЕЙ И ЭНЕРГЕТИЧЕСКИХ УСТАНОВОК | 2010 |
|
RU2435872C2 |
СПОСОБ ПОЛУЧЕНИЯ ЖАРОСТОЙКОГО ПОКРЫТИЯ НА ЛОПАТКАХ ГАЗОВЫХ ТУРБИН | 2010 |
|
RU2441101C2 |
СПОСОБ ФОРМИРОВАНИЯ ТЕПЛОЗАЩИТНОГО ПОКРЫТИЯ НА ДЕТАЛЯХ ГАЗОВЫХ ТУРБИН ИЗ НИКЕЛЕВЫХ И КОБАЛЬТОВЫХ СПЛАВОВ | 2011 |
|
RU2479666C1 |
Изобретение относится к машиностроению и может быть использовано при изготовлении и ремонте лопаток, работающих в условиях воздействия газоабразивной эрозии. Лопатка газовой турбины ГТД-110М имеет нанесенный на ее поверхность методом высокоскоростного газопламенного напыления жаростойкий подслой толщиной 150-200 мкм и керамический термобарьерный слой. Керамический термобарьерный слой напыляют плазмотроном толщиной 100-120 мкм, затем лопатку подвергают двухстадийной обработке, вначале в вакууме при давлении 1×10-4 мм.рт.ст. нагревают до температуры 1050°С в течение 3-4 часов, выдерживают при той же температуре 2 часа и охлаждают до температуры 700°С со скоростью 40-50°С. После чего на воздухе нагревают до температуры 850°С в течение 2,5-3 часов, выдерживают при той же температуре в течение 16 часов и охлаждают в течение 4,7 часа до нормальной температуры. Изобретение позволяет увеличить газоабразивную стойкость защитного покрытия лопатки газовой турбины.
Лопатка газовой турбины ГТД-110М с нанесенным на поверхность лопатки методом высокоскоростного газопламенного напыления жаростойкого подслоя толщиной 150-200 мкм и затем керамический термобарьерный слой, отличающийся тем, что керамический термобарьерный слой подвергнут двухстадийной обработке, вначале в вакууме при давлении 1×10-4 мм.рт.ст. нагрет до температуры 1050°С в течение 3-4 часов, выдержан при той же температуре 2 часа и охлажден до температуры 700°С со скоростью 40-50°С, после чего на воздухе нагрет до температуры 850°С в течение 2,5-3 часов, выдержан при той же температуре в течение 16 часов и охлажден в течение 4,7 часа до нормальной температуры и составляет 100-120 мкм.
СПОСОБ ПОЛУЧЕНИЯ МЕТАЛЛОКЕРАМИЧЕСКОГО ПОКРЫТИЯ НА ДЕТАЛЯХ ИЗ НИКЕЛЕВЫХ СПЛАВОВ | 2005 |
|
RU2375495C2 |
СПОСОБ ПОЛУЧЕНИЯ ЗАЩИТНОГО ПОКРЫТИЯ НА СПЛАВАХ | 1994 |
|
RU2073742C1 |
СПОСОБ ВЫСОКОЭНЕРГЕТИЧЕСКОГО ПЛАЗМЕННОГО НАПЫЛЕНИЯ ТЕПЛОЗАЩИТНОГО ПОКРЫТИЯ НА ЛОПАТКИ ТУРБИН ГАЗОТУРБИННОГО ДВИГАТЕЛЯ И ОБОРУДОВАНИЕ ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2013 |
|
RU2567764C2 |
СПОСОБ СОЗДАНИЯ КОНСТРУКЦИОННОГО КЕРАМИЧЕСКОГО МАТЕРИАЛА | 2010 |
|
RU2450998C2 |
US 6090191 A, 18.07.2000. |
Авторы
Даты
2019-09-17—Публикация
2018-08-28—Подача