МНОГОСТУПЕНЧАТАЯ ИСПАРИТЕЛЬНАЯ УСТАНОВКА Российский патент 2019 года по МПК C02F1/04 F22B1/02 F22D5/00 F01K13/00 B01D1/26 

Описание патента на изобретение RU2700534C1

Изобретение относится к области устройств, предназначенных для термической очистки питательной воды для восполнения ее потерь в котлах на тепловых электростанциях. Изобретение может быть также использовано на производствах и в технологиях с широким диапазоном изменения потребности в термически очищенной воде при пиковых нагрузках.

Известна многоступенчатая испарительная установка, содержащая трубу подачи первичного греющего пара, трубу отвода вторичного греющего пара, первую, вторую, третью, четвертую ступени испарения, соединенных между собой последовательно по греющему пару и питательной воде, трубу отвода конденсата, трубы отвода дистиллята, трубу подачи питательной воды, трубу межступенчатого перетока питательной воды, подогреватель питательной воды, трубу отвода дистиллята, трубу подвода питательной воды для подогрева, концевую трубу продувки питательной воды (см. патент на изобретение РФ №2065062 http://www.freepatent.ru/patents/2065062). Недостатки известной конструкции:

1. Невозможность увеличения производительности установки из-за ограничения пропускной способности по греющему пару и по питательной воде при пиковой потребности в термически обессоленной воде, так как все ступени испарения соединены последовательно.

2. Невозможность выбора режимов работы установки с минимальными удельными затратами тепла на получение термически обессоленной воды.

Задачей изобретения является создание многоступенчатой испарительной установки, в которой устранены недостатки прототипа.

Технический результат направлен на решение задачи минимизации удельных затрат тепла на получение термически обессоленной воды, что достигается за счет снижения гидравлического сопротивления проточной части установки при пиковых нагрузках и выбора значений температуры, давления греющего пара, питательной воды и конденсата путем регулирования расходов греющего пара, питательной воды, конденсата и дистиллята с применением компьютеризированного программного управления.

Технический результат достигается тем, что в многоступенчатой испарительной установке, содержащей трубу подачи первичного греющего пара, трубы отвода вторичного греющего пара, первую, вторую, третью, четвертую ступени испарения, соединенных технологически между собой по греющему пару и питательной воде, трубу отвода конденсата, трубы отвода дистиллята, трубу подачи питательной воды, трубы межступенчатого перетока питательной воды, подогреватель питательной воды, трубы отвода дистиллята, концевую трубу продувки питательной воды, согласно настоящему изобретению дополнительно включены технологически соединенные компьютеризированный блок программного управления, байпасные трубы подачи первичного и вторичного греющего пара, подачи и продувки питательной воды, снабженные электроприводными вентилями, расходомерами, датчиками давления и температуры, технологически соединенные электрической связью с компьютеризированным блоком программного управления и выполненные с возможностью соединения по компьютерной программе всех последовательно соединенных ступеней испарения по греющему пару и питательной воде в виде одной цепочки или соединения всех ступеней испарения в виде двух параллельных цепочек, содержащих по две ступени испарения, последовательно соединенные по греющему пару и воде, а также с возможностью обеспечения минимального удельного расхода тепла на выработку дистиллята.

Заявляемая конструкция показана на фиг., где позициями обозначены следующие элементы и узлы:

1 - труба подачи первичного греющего пара,

2 - байпасный вентиль первичного греющего пара,

3 - труба отвода вторичного греющего пара,

4 - первая ступень испарения,

5 - труба отвода конденсата,

6 - труба подачи питательной воды,

7 - труба межступенчатого перетока питательной воды,

8 - байпасный вентиль продувки питательной воды,

9 - переключающий вентиль межступенчатого перетока питательной воды,

10 - байпасная труба продувки питательной воды,

11 - байпасный вентиль подачи питательной воды,

12 - байпасная труба подачи питательной воды,

13 - подогреватель питательной воды,

14 - труба отвода конденсата вторичного сбросного пара,

15 - труба подвода питательной воды для подогрева,

16 - концевая труба продувки питательной воды,

17 - байпасный вентиль вторичного греющего пара,

18 - компьютеризированный блок программного управления,

19 - байпасная труба вторичного греющего пара,

20 - переключающий вентиль вторичного греющего пара,

21 - вторая ступень испарения,

22 - третья ступень испарения,

23 - четвертая ступень испарения,

24 - расходомер,

25 - дачик давления,

26 - датчик температуры,

27 - труба отвода дистиллята,

28 - регулировочный многофункциональный вентиль,

29 - регулировочный вентиль первичного греющего пара,

30 - регулировочный вентиль питательной воды,

31 - байпасная труба первичного греющего пара.

Все вентили в составе установки заявляемой конструкции являются электроприводными по компьютерной команде с блока управления.

Тонкими пунктирными линиями на фиг. показаны электрические связи между компьютеризированным блоком программного управления и расходомерами, датчиками температуры, давления, электроприводными вентилями.

Назначение и взаимодействие элементов и узлов следующее.

По трубе 1 (см. фиг.) подачи первичного греющего пара поступает пар с давлением около 1,2 МПа от постороннего источника через электроприводной вентиль 29 и расходомер 24 в первую ступень испарения 4.

Расходомер 24 служит для измерения расхода греющего пара, выработки электрического сигнала и передачи этого сигнала по электрической связи в компьютеризированный блок 18 программного управления.

Электроприводной байпасный вентиль 2 служит для открытия подачи первичного греющего пара по байпасной трубе 31 непосредственно в третью ступень 22 испарения при работе ступеней испарения в виде двух параллельных цепочек.

Вентиль 2 соединен электрической связью с компьютеризированным блоком программного управления 18 и управляется по компьютерной команде для регулирования расхода тепла, подаваемого с греющим паром на испарение питательной воды при параллельном соединении ступеней испарения в две цепочки по две ступени в каждой.

Первая ступень испарения 4 служит для передачи тепла от греющего пара питательной воде, очищаемой от загрязняющих включений и солей, и подводимой по трубе 6.

Труба 3 служит для отвода ко второй ступени 21 испарения вторичного греющего пара, образующегося при испарении питательной воды за счет тепла первичного греющего пара в первой ступени 4.

Конструктивно по размеру площадей теплообменных поверхностей первая 4, вторая 21, третья 22 и четвертая 23 ступени испарения являются идентичными.

Греющий пар, подводимый к первой ступени испарения 4, отдавая тепло питательной воде, конденсируется и отводится по трубе 5 в сборник термически обессоленной воды (сборник термически обессоленной вода на фиг. 1 не показан).

Температура и давление конденсата на выходе трубы 5 контролируется датчиком температуры и давления, соединенными с компьютеризированным блоком 18. Расход конденсата регулируется электроприводным вентилем 28, соединенным электрической связью с компьютеризированным блоком программного управления 18.

Количество питательной воды, не превратившееся во вторичный греющий пар в первой ступени 4, отводится по трубе 7 межступенчатого перетока питательной воды во вторую ступень 21.

Вторая ступень 21 испарения служит для передачи тепла от вторичного греющего пара, поступившего по трубе 3 из первой 4 ступени испарения, питательной воде, поступившей по трубе 7 из первой ступени 4.

Байпасная труба 10 служит для продувки питательной воды из второй ступени 21 и подачи этой воды в концевую трубу продувки 16 при переключении третьей 22 и четвертой ступени 23 в параллельную цепочку.

Электроприводной байпасный вентиль 8, размещенный на трубе 10, служит переключения движения питательной на стадии продувки в обход третьей 22 и четвертой 23 ступеней испарения при параллельном режиме их работы.

Переключающий электроприводной вентиль 9 служит для закрытия движения питательной воды со второй ступени на третью ступень при переходе на параллельный режим подачи питательной воды в ступени 22 и 23.

Переключающий электроприводной вентиль 11 служит для открытия подачи питательной воды по трубе 12 непосредственно в третью ступень 22 после подогревателя 13 при переходе на параллельный режим работы с повышенной производительностью.

Электроприводной байпасный вентиль 8, электроприводной переключающий вентиль 9 межступенчатого перетока питательной воды и электроприводной переключающий вентиль 11 подвода питательной воды соединены электрической связью с компьютеризированным блоком программного управления 18 и управляются по компьютерной команде.

Электроприводной переключающий вентиль 20 вторичного пара служит для закрытия подачи вторичного греющего пара после второй ступени 21 в третью ступень испарения 22.

Электроприводной байпасный вентиль 17 открывает подачу вторичного пара после второй ступени испарения 21 в подогреватель 13 питательной воды, подводимой через трубу 15.

Труба 16 служит для подачи продувочной воды внешним потребителям для утилизации тепла (на фиг. потребители условно не показаны).

Электроприводные регулировочные вентили 28 (на фиг. номер позиции у всех четырех вентилей одинаковый) соответственно служат для регулирования расхода из первой ступени 4 конденсата греющего пара и расхода дистиллята из труб 27 ступеней 21, 22, 23.

Байпасная труба 31 служит для подачи первичного греющего пара непосредственно в третью ступень при переключении работы третьей и четвертой ступеней в параллельный режим.

Электроприводные регулировочные вентили первичного греющего пара 2, 29 и питательной воды 11, 30, соединенные электрической связью с компьютеризированным блоком программного управления 18, служат для количественного изменения по компьютерной команде расходов греющего пара и питательной воды в соответствии с требуемым объемом потребления термически обессоленной воды при минимальных удельных затратах тепла q на получение дистиллята, определяемых по формуле

где Qy - расход теплоты на испарительную установку, кДж/с; Dy - производительность испарительной установки, т/ч.

Расход теплоты на испарительную установку

где Dп - расход первичного греющего пара, кг/с; iп, i'п - энтальпия пара и конденсата при температуре насыщения, кДж/кг.

Энтальпия пара и конденсата зависят от температуры и давления, измеряемых датчиками температуры и давления 25, 26, установленными в трубах первичного и вторичного греющего пара, а также на трубах отвода конденсата и дистиллята.

Расходомеры 24 служат для измерения расходов первичного греющего пара и питательной воды и передачи сигналов о величине расходов по электрической связи на компьютеризированный блок программного управления 18.

Датчики давления 25 и температуры 26 служат для измерения давления и температуры первичного греющего пара, конденсата и питательной воды и передачи электрического сигнала на компьютеризированный блок программного управления 18, который осуществляет количественное регулирование подачи теплоты на испарение путем изменения с помощью электроприводных вентилей расходов рабочих сред.

С применением компьютерного программного регулирования обеспечивается минимизация удельных затрат теплоты q на получение дистиллята и достигается положительный технический эффект по сравнению с известной конструкцией.

Применение в заявляемой конструкции электроприводных вентилей 2, 17, 20 обеспечивает подачу первичного греющего пара непосредственно в третью ступень испарения параллельно с подачей первичного греющего пара непосредственно в первую ступень.

Расход пара на установку при параллельной подаче увеличивается и в связи с этим увеличивается количество конденсата греющего пара, который входит в состав термически обессоленной воды.

В заявляемой конструкции за счет дополнительного применения байпасной трубы 10 и применения электроприводных вентилей 8, 9, 11, обеспечивающих подачу питательной воды получаются две параллельные цепочки с более низким гидравлическим сопротивлением, по сравнению с известным устройством, и более высоким расходом питательной воды, который увеличивает количество получаемого дистиллята.

Первая цепочка состоит из первой 4 и второй 21 ступеней испарения. Вторая цепочка состоит из третьей 22 и четвертой 23 ступеней испарения.

В заявляемой конструкции по первичному греющему пару за счет дополнительного применения байпасной трубы 31 и электроприводных вентилей 2, 17, 20, обеспечивающих подачу первичного греющего пара, две параллельные цепочки позволяют получить более высокий расход греющего пара и большее количество получаемого конденсата по сравнению с известным устройством.

Заявляемая установка работает следующим образом.

При низкой потребности в термически обессоленной воде все четыре ступени испарения 4, 21, 22, 23 включены по греющему пару и по питательной воде последовательно в одну цепочку.

Электроприводные вентили 2, 17, 8, 11 закрыты, электроприводные вентили 9 и 20 открыты, электроприводные регулировочные вентили 28 открыты на уровне среднего расхода конденсата и дистиллята.

Питательная вода, подлежащая обессоливанию, поступает под давлением через трубу подвода 15 в подогреватель 13, после которого она идет в первую ступень испарения 4.

По трубе 1 поступает первичный греющий пар на первую ступень испарения 4, в которой конденсируется, отдавая тепло питательной воде. Температура и давление питательной воды и греющего пара измеряются датчиками 25, 26, расход воды и первичного греющего пара измеряется расходомерами 24.

Сигналы с датчиков температуры и давления и с расходомеров поступают по электрической связи в компьютеризированный блок программного управления 18.

Конденсат из первой ступени 4 через трубу 5 отводится в сборник термически обессоленной воды как конечный продукт (на фиг. сборник не показан).

Солевой концентрат, выделенный из питательной воды в первой ступени, отводится в виде отстоя через специальный патрубок с вентилем (на фиг. патрубок условно не показан).

Температура конденсата измеряется термометром, электрический сигнал с которого поступает по электрической связи в компьютеризированный блок программного управления 18.

Часть питательной воды за счет подведенного тепла греющего пара в ступени 4 испаряется с образованием вторичного греющего пара, отводимого по трубе 3 во вторую ступень испарения 21.

Излишнее количество питательной воды с более высоким содержанием солей по трубе 7 из первой ступени испарения 4 перетекает во вторую ступень испарения 21.

Во второй ступени испарения 2 Происходит конденсация вторичного греющего пара, поступившего по трубе 3 из первой ступени 4 и испарение питательной воды, поступившей по трубе 7 из первой ступени.

Конденсат вторичного греющего пара, называемый дистиллятом, отводится через трубу 27 в сборник термически обессоленной воды (на фиг. сборник не показан).

За счет испарения питательной воды во второй ступени 21 образуется вторичный греющий пар, который при открытом вентиле 20 отводится в третью ступень испарения 22.

При открытом вентиле 9 излишняя питательная вода из второй ступени испарения 21 поступает в третью ступень 22 и далее по ступеням при последовательном соединении процесс испарения повторяется.

После четвертой ступени 23 получаемый вторичный греющий пар отводится в подогреватель питательной воды 13, а питательная вода с высоким солесодержанием удаляется через концевую трубу продувки 16.

В заявляемой конструкции применяется компьютеризированное программное управление через блок 18 электроприводными вентилями, обеспечивающими регулирование расходов первичного греющего пара и питательной воды на основании измерений температуры воды, конденсата и дистиллята по принципу минимизации значений удельных затрат теплоты на получение дистиллята. За счет этого достигается положительный эффект минимальных удельных затрат на получение термически обессоленной воды по сравнению с известной конструкцией.

При пиковом возникновении потребности в термически обессоленной воде по компьютерной команде с блока 18 открываются электроприводные вентили 2, 8, 11, 17 и закрываются электроприводные вентили 9, 20.

При этом образуются две цепочки с подачей в них первичного греющего пара и питательной воды с повышенными расходами пара и воды. Соответственно увеличивается количество конденсата первичного греющего пара и дистиллята, то есть термически обессоленной воды, при давлении первичного греющего пара 1,2 МПа. в среднем на 13%.

Минимизация удельных тепловых затрат q на получение термически обессоленной воды при работе двух цепочек производится по компьютерной программе по сигналам с датчиков температуры на концевой трубе 16 и на байпасной трубе 19 вторичного пара перед входом его в подогреватель 13.

В заявляемой конструкции за счет компьютеризированного переключения половины ступеней испарения из последовательного соединения в параллельное в виде двух цепочек и компьютерного регулирования расходом первичного греющего пара и расходом питательной воды по цепочкам достигается техническое решение по увеличению производительности установки и снижения удельных затрат теплоты на получение обессоленной воды и обеспечивается положительный технический эффект по сравнению с известной конструкцией.

Похожие патенты RU2700534C1

название год авторы номер документа
ОПРЕСНИТЕЛЬНАЯ УСТАНОВКА И ЕЕ ТЕРМОУМЯГЧИТЕЛЬ 2014
  • Тё Анатолий Михайлович
  • Тё Виталий Анатольевич
RU2554720C1
Комбинированная установка опреснения морской воды и выработки электроэнергии 2017
  • Бирюк Владимир Васильевич
  • Елисеев Юрий Сергеевич
  • Кирсанов Юрий Георгиевич
  • Шелудько Леонид Павлович
  • Шиманова Александра Борисовна
  • Шиманов Артем Андреевич
RU2678065C1
Комплексная установка для опреснения морской воды и выработки электроэнергии 2018
  • Бирюк Владимир Васильевич
  • Елисеев Юрий Сергеевич
  • Кирсанов Юрий Георгиевич
  • Шелудько Леонид Павлович
  • Анисимов Михаил Юрьевич
  • Шиманова Александра Борисовна
  • Шиманов Артем Андреевич
RU2687914C1
Испарительная установка промышленной теплоэлектроцентрали 1981
  • Мошкарин Андрей Васильевич
  • Стерман Лев Самойлович
  • Седлов Анатолий Степанович
SU964200A1
МНОГОСТУПЕНЧАТАЯ ИСПАРИТЕЛЬНАЯ УСТАНОВКА ПАРОГАЗОВОГО УТИЛИЗАЦИОННОГО ТИПА 1996
  • Мошкарин Андрей Васильевич
  • Седлов Анатолий Степанович
  • Зорин Михаил Юрьевич
RU2116559C1
Способ подготовки питательной воды из высокоминерализованных вод 1990
  • Гейвандов Иоган Аристагесович
  • Воронин Александр Ильич
  • Стоянов Николай Иванович
  • Вислогузов Александр Николаевич
  • Злыгостев Евгений Евгеньевич
  • Гейвандов Александр Иоганович
SU1807003A1
МНОГОСТУПЕНЧАТАЯ ИСПАРИТЕЛЬНАЯ УСТАНОВКА ПАРОГАЗОВОЙ ТЭЦ 1994
  • Мошкарин Андрей Васильевич
  • Седлов Анатолий Степанович
  • Шелыгин Борис Леонидович
  • Зорин Михаил Юрьевич
RU2065062C1
Установка опреснения морской воды 2022
  • Бирюк Владимир Васильевич
  • Лукачев Сергей Викторович
  • Шиманов Артём Андреевич
  • Шиманова Александра Борисовна
  • Горшкалев Алексей Александрович
  • Благин Евгений Валерьевич
  • Анисимов Михаил Юрьевич
  • Урлапкин Виктор Викторович
  • Корнеев Сергей Сергеевич
  • Елисеев Юрий Сергеевич
  • Кирсанов Юрий Георгиевич
  • Звягинцев Виктор Александрович
  • Лысенко Юрий Дмитриевич
  • Грошев Александр Игоревич
  • Марахова Елизавета Андреевна
RU2797936C1
Испарительная установка 1989
  • Петин Владимир Сергеевич
  • Яковлев Анатолий Аркадьевич
  • Табатчиков Владимир Иванович
  • Андреев Геннадий Иванович
  • Арсеньев Олег Арсеньевич
SU1623675A1
Многоступенчатая испарительная установка мгновенного вскипания 1979
  • Голубев Евгений Константинович
  • Берсенев Владимир Александрович
  • Бессонова Любовь Александровна
  • Глазов Евгений Евгеньевич
SU856997A1

Иллюстрации к изобретению RU 2 700 534 C1

Реферат патента 2019 года МНОГОСТУПЕНЧАТАЯ ИСПАРИТЕЛЬНАЯ УСТАНОВКА

Изобретение может быть использовано при термической очистке питательной воды для восполнения ее потерь в котлах на тепловых электростанциях, а также на производствах и в технологиях с широким диапазоном изменения потребности в термически очищенной воде при пиковых нагрузках. Многоступенчатая испарительная установка содержит трубу подачи первичного греющего пара 1, трубы отвода вторичного греющего пара 3, первую 4, вторую 21, третью 22, четвертую 23 ступени испарения, соединенные технологически между собой по греющему пару и питательной воде, трубу отвода конденсата 5, трубы отвода дистиллята 27, трубу подачи питательной воды 6, трубы межступенчатого перетока питательной воды 7, подогреватель питательной воды 13, концевую трубу продувки питательной воды 16, технологически соединенные компьютеризированный блок программного управления, байпасные трубы подачи первичного 31 и вторичного 19 греющего пара, подачи 12 и продувки питательной воды 10, снабженные электроприводными вентилями 2, 8, 11, 17, 20, 28, 29, 30, расходомерами 24, датчиками давления 25 и температуры 26, технологически соединенные электрической связью с компьютеризированным блоком программного управления 18 и выполненные с возможностью соединения по компьютерной программе всех последовательно соединенных ступеней испарения 4, 21, 22, 23 по греющему пару и питательной воде в виде одной цепочки или соединения всех ступеней испарения 4, 21, 22, 23 в виде двух параллельных цепочек, содержащих по две ступени испарения, последовательно соединенные по греющему пару и воде, а также с возможностью обеспечения минимального удельного расхода тепла на выработку дистиллята. Изобретение позволяет минимизировать удельные затраты тепла на получение термически обессоленной воды за счет снижения гидравлического сопротивления проточной части установки при пиковых нагрузках и выбора значений температуры, давления греющего пара, питательной воды и конденсата путем регулирования расходов греющего пара, питательной воды, конденсата и дистиллята с применением компьютеризированного программного управления. 1 ил.

Формула изобретения RU 2 700 534 C1

Многоступенчатая испарительная установка, содержащая трубу подачи первичного греющего пара, трубы отвода вторичного греющего пара, первую, вторую, третью, четвертую ступени испарения, соединенные технологически между собой по греющему пару и питательной воде, трубу отвода конденсата, трубы отвода дистиллята, трубу подачи питательной воды, трубы межступенчатого перетока питательной воды, подогреватель питательной воды, концевую трубу продувки питательной воды, отличающаяся тем, что дополнительно включены технологически соединенные компьютеризированный блок программного управления, байпасные трубы подачи первичного и вторичного греющего пара, подачи и продувки питательной воды, снабженные электроприводными вентилями, расходомерами, датчиками давления и температуры, технологически соединенные электрической связью с компьютеризированным блоком программного управления и выполненные с возможностью соединения по компьютерной программе всех последовательно соединенных ступеней испарения по греющему пару и питательной воде в виде одной цепочки или соединения всех ступеней испарения в виде двух параллельных цепочек, содержащих по две ступени испарения, последовательно соединенные по греющему пару и воде, а также с возможностью обеспечения минимального удельного расхода тепла на выработку дистиллята.

Документы, цитированные в отчете о поиске Патент 2019 года RU2700534C1

МНОГОСТУПЕНЧАТАЯ ИСПАРИТЕЛЬНАЯ УСТАНОВКА ПАРОГАЗОВОЙ ТЭЦ 1994
  • Мошкарин Андрей Васильевич
  • Седлов Анатолий Степанович
  • Шелыгин Борис Леонидович
  • Зорин Михаил Юрьевич
RU2065062C1
Паротурбинная установка 1989
  • Мошкарин Андрей Васильевич
  • Бускунов Рашид Шарипович
  • Петин Владимир Сергеевич
  • Шелыгин Борис Леонидович
SU1671910A1
Способ водоподготовки отопительных котельных и устройство для его осуществления 1988
  • Сень Леонид Илларионович
  • Те Анатолий Михайлович
  • Сайдаминов Рустам Сайдаминович
  • Таиров Абдузаир Ташханович
  • Трошин Николай Николаевич
  • Сень Наталия Викторовна
SU1744366A1
CN 206288995 U, 30.06.2017
ВИЛОЧНЫЙ ЗАХВАТ С УСТРОЙСТВОМ ДЛЯ УДЕРЖАНИЯ ГРУЗА 2010
  • Кеслер Анатолий Александрович
RU2475442C2
US 7708865 B2, 04.05.2010.

RU 2 700 534 C1

Авторы

Таймаров Михаил Александрович

Ахметова Римма Валентиновна

Ильин Владимир Кузьмич

Ахметов Эдуард Адгамович

Даты

2019-09-17Публикация

2018-09-24Подача