Сейсмоплатформа Российский патент 2019 года по МПК G01M7/02 

Описание патента на изобретение RU2700833C1

Изобретение относится к области строительства, в частности к устройствам для проведения модельных испытаний строительных конструкций и их оснований, воспринимающих динамические нагрузки и может быть использовано для оценки деформаций сооружений, их фундаментов и грунтовых оснований при строительстве в сейсмически опасных районах, либо воспринимающих динамические нагрузки иного рода (взрывы, вибрация и др.).

Известен стенд для моделирования сейсмовоздействия явления землетрясения на модели сооружений. Стенд состоит из основания, к стойкам которого при помощи шарнирно-поворотного механизма с фиксатором крепится рама с жестко закрепленным ударным механизмом с приводом и сейсмоплатформой, с системой амортизации и рабочим столом, закрепленным на сейсмоплатформе также при помощи шарнирно-поворотного механизма с фиксатором. На стол устанавливают датчики и исследуемые объекты (см. RU № 2024955, МПКG09B 25/00, 1994г.).

Недостатком данной установки является отсутствие возможности моделирования сжимаемости грунта основания, поскольку испытуемая модель конструкции жестко крепится к сейсмоплатформе.

Известна также сейсмоплатформа, содержащая средство для размещения модели испытуемого элемента сооружения или здания, средство формирования динамических нагрузок (см. RU № 2617568, МПК G01M 7/00, 2015 г.). Платформа установлена на опоры из витых пружин, которые установлены на дополнительную прокладную плиту, которая в свою очередь опирается на фундамент через податливые в горизонтальном направлении опоры и соединена со стеной и с фундаментом через гидравлические приводы. В результате такое решение обеспечивает возможность генерирования трехмерных затухающих колебаний.

Недостатком приведенного выше решения является представление грунтового основания сооружения в виде связей конечной жесткости (пружин), что приводит к погрешностям при моделировании.

Задачей, на решение которой направлено изобретение, является расширение возможностей моделирования сооружений, воспринимающих динамические нагрузки, путем имитации динамических колебаний основания сооружения в грунтовом лотке.

Технический результат состоит в создании динамических колебаний всей системы (подвижного лотка, заполненного грунтом, с установленной на грунт моделью сооружения).

Для решения поставленной задачи, сейсмоплатформа, содержащая средство для размещения модели испытуемого элемента сооружения или здания, средство формирования динамических нагрузок, отличается тем, что средство для размещения модели испытуемого элемента сооружения или здания выполнено в виде грунтового лотка, в форме короба, основание которого выполнено в виде жесткой рамы и снабжено отбойником, при этом основание размещено на жестких направляющих неподвижной опоры, с возможностью возвратно-поступательного перемещения по ним, и подпружинено со стороны противоположной отбойнику, кроме того, средство формирования динамических нагрузок выполнено как боек, в виде металлического ящика, шарнирно подвешенного на тяжах, на опорной раме с возможностью контактирования его торцом с отбойником, причем на дополнительной раме размещено средство отведения бойка от положения равновесия, выполненное с возможностью его зацепления-расцепления с бойком. Кроме того, средство отведения бойка от положения равновесия содержит систему полиспаст и спусковой механизм.

О соответствии критерию «новизна» свидетельствует сопоставительный анализ существенных признаков аналога и прототипа и существенных признаков предлагаемого технического решения.

Отличительные признаки формулы изобретения решают следующие функциональные задачи.

Признаки «…средство для размещения модели испытуемого элемента сооружения или здания выполнено в виде грунтового лотка, в форме короба, основание которого выполнено в виде жесткой рамы и снабжено отбойником…» обеспечивают возможность размещения в лотке модели здания или сооружения, с вмещающим их грунтом и возможность ударного воздействия на него.

Признак «…основание размещено на жестких направляющих неподвижной опоры, с возможностью возвратно-поступательного перемещения по ним…» обеспечивает возможность горизонтальных смещений грунтового лотка при ударном воздействии на него.

Признак, указывающий, что основание «подпружинено со стороны противоположной отбойнику» обеспечивает возможность колебательных движений основания в горизонтальной плоскости.

Признак, указывающий, что «средство формирования динамических нагрузок выполнено как боек» обеспечивает возможность ударного воздействия на грунтовый лоток.

Признак, указывающий, что грунтовый лоток выполнен «в виде металлического ящика, шарнирно подвешенного на тяжах, на опорной раме с возможностью контактирования его торцом с отбойником» обеспечивает варьирование веса бойка и варьирование скорости движения бойка, при упрощении механизма приведения бойка в движение.

Признак, указывающий, что «на дополнительной раме размещено средство отведения бойка от положения равновесия, выполненное с возможностью его зацепления-расцепления с бойком» обеспечивает отведение бойка от положения равновесия и, тем самым, придание ему возможности ударного воздействия на грунтовый лоток.

Признак, указывающий, что «средство отведения бойка от положения равновесия содержит систему полиспаст и спусковой механизм» раскрывает возможную конструкцию средства формирования динамических нагрузок позволяющее привести боек в начальное положение, при котором при сбросе бойка обеспечивается требуемая сила удара для создания колебаний нужной частоты.

Заявленное решение иллюстрируется чертежами, где на фиг.1 показан вид сбоку устройства; на фиг.2 показан вид сверху устройства; на фиг.3 показана расчетная схема работы устройства.

На чертежах показаны основание 1, грунтовый лоток 2, грунт 3, рама 4, колеса 5, дно 6 рамы 4, пружины 7, неподвижная опора 8, отбойник 9, боек 10, металлическая рама 11, датчики динамических колебаний 12, модель сооружения 13, датчики перемещений 14, дополнительная металлическая рама 15.

Сейсмоплатформа установлена на неподвижное основание 1. Основание представляет собой металлическую раму, состоящую из направляющих элементов (рельсы), скрепленных с поперечными соединительными элементами. Грунтовый лоток 2, заполненный грунтом 3, выполнен, как емкость, содержащая металлический каркас, обшитый листовой сталью. На грунт 3 устанавливается модель сооружения 13. Нижняя часть грунтового лотка 2 выполнена в виде рамы 4, снабженной колесами 5 (по три с каждой стороны), установленными на внешней стороне дна 6 рамы 4, с возможностью вращения. С одной из сторон рама 4 крепится через пружины 7 к неподвижной опоре 8. С противоположной стороны рамы 4 предусмотрен отбойник 9 (набранный из профилированного металла), по которому будет выполняться удар бойком 10. Боек 10 выполнен из металлических стержневых элементов и небольшого металлического ящика и крепится к металлической раме 11 с помощью тяжей (гибких тяг). Кроме того, показаны датчики динамических колебаний 12, модель сооружения 13 и требуемое по условиям испытаний количество датчиков перемещений 14, фиксирующих перемещения модели в плоскости действия нагрузки и/или тензометрических датчиков для фиксации напряжений в модели сооружения 13.

Для отвода бойка 10 от положения равновесия установлена дополнительная металлическая рама 15, к которой крепится система полиспаст и спусковой механизм (на чертежах не показаны).

Для обеспечения возможности моделирования динамической нагрузки на установленную в лоток 2 с грунтом 3 модель сооружения 13 в виде затухающих колебаний необходимой частоты, имитирующих реальное сейсмическое воздействие, предварительно определяют жесткость пружин 7.

При этом необходимая частота колебаний обеспечивается жесткостью пружин исходя из следующих рассуждений.

Основная собственная частота колебаний ω одномассовой системы определяется как

где k – жесткость опоры; m – масса.

В результате:

При известном весе системы Q лотка с грунтом и известном диапазоне несущей частоты наиболее вероятных землетрясений в данном районе суммарная жесткость пружин k экспериментальной установки, обеспечивающая заданный диапазон собственных колебаний, равна:

где g = 9,81 м/с2 – ускорение свободного падения.

Например, для веса системы Q = 30 кН и при несущей частоте наиболее вероятных землетрясений в районе Приморья и Японского моря ω от 0,7 до 2,2 Гц (Окамото Ш. Сейсмостойкость инженерных сооружений. – М.: Стройиздат, 1980 – 342с.) суммарная жесткость пружин составит:

Далее, принимая удар абсолютно упругим, по закону сохранения импульса:

где - масса бойка; М - масса лотка; Vл - скорость лотка; Vб – скорость бойка до удара; - скорость бойка после удара; можно вычислить скорость движения лотка и скорость движения бойка.

Уравнение (4) содержит три неизвестные: скорость бойка до удара, скорость бойка и скорость лотка после удара. Решение уравнения позволит определить неизвестные скорости:

- скорость движения лотка, позволяющую вычислить силу удара, которую необходимо приложить для его сдвига и обеспечения нужной и посчитанной выше частоты колебаний;

- начальную скорость движения бойка.

При заданной массе бойка и его известной скорости расчетом может быть определена высота подъема груза h и угол отклонения связи α, на которой закреплен боек, от вертикали.

В первую очередь, можно найти скорость лотка после соударения. Для этого, вычислим энергию сжатия пружины. Энергия движения лотка должна быть больше либо равна энергии сжатия пружины, поэтому, первое слагаемое из правой части уравнения (4) можно приравнять к значению энергии, необходимой для сжатия пружины.

По закону сохранения импульса при абсолютно упругом ударе энергия, требуемая для сжатия пружины:

где k – жесткость пружины; х-сжатие пружины, м.

Из выражения (6) получаем скорость лотка:

Далее, необходимо вычислить значение энергии, которой потребуется для сдвига лотка массой М. Такая энергия будет равна работе А, для преодоления перемещения.

где s – это величина перемещения, м; Fсдв – это сила, требуемая для преодоления силы трения и сдвига лотка массой М. Эта сила равна произведению веса перемещаемого лотка на коэффициент сопротивления движению - ω. Для стального колеса на рельсе он находится в пределах от 0,001 до 0,002.

Тогда

Приравнивая работу (энергию) для сдвига лотка к первому слагаемому уравнения (4), можно получить скорость, которую необходимо задать лотку для его сдвига.

В итоге, мы получаем два значения скорости движения лотка: первая - минимально необходимая для сжатия пружины; вторая – минимально необходимая для сдвига лотка. Для дальнейших расчетов принимается скорость лотка, равная сумме вычисленных скоростей.

Поскольку соударение бойка с лотком является кратковременным, смещение лотка в этот момент пренебрежительно мало, и сила упругости в сам момент соударения не возникает. Следовательно, суммарный импульс лотка и бойка во время соударения сохраняется:

Уравнение (4) и уравнение (12) являются системой уравнений. Уравнения можно преобразовать следующим образом соответственно:

Решая систему уравнений можно получить несколько выражений для нахождения необходимых скоростей.

Разделив равенство (13) на равенство (14), получаем выражение:

Из уравнения (15) выразим , и подставив в уравнение 14 получим:

Выражая из формулы (17) получим выражение для скорости лотка в зависимости от начальной скорости бойка:

Из того же выражения выразим начальную скорость бойка

Высота подъема груза h (фиг.3):

Угол отклонения груза:

где L – длина подвеса; α – угол отклонения груза.

Аналогично, задавшись высотой подъема груза можно наоборот, определить требуемую массу бойка.

Сейсмоплатформа работает следующим образом.

До начала испытаний с учетом приведенных выше рассуждений определяется требуемая жесткость пружин 7, задается масса бойка 10 и вычисляются высота либо угол стартового положения бойка.

Далее в грунтовый лоток 2 загружают грунт 3. Устанавливают модель сооружения 13 и требуемое по условиям испытаний количество датчиков динамических колебаний 12. При необходимости могут быть установлены датчики перемещений 14, фиксирующие перемещения модели сооружения 13 в плоскости действия нагрузки и/или тензометрические датчики для фиксации напряжений в модели сооружения. В боек 10 для придания необходимой массы укладывают соответствующий груз. Далее боек 10 отводят от положения равновесия в начальное положение и производят сброс. При ударе бойка 10 по отбойнику 9 грунтового лотка 2, грунтовый лоток выполняет колебания необходимой частоты в горизонтальном направлении. При необходимости фиксируются показания датчиков динамических колебаний 12, перемещения и датчиков 14 показывающих напряжения в испытываемой модели сооружения 13.

Далее все повторяется.

Похожие патенты RU2700833C1

название год авторы номер документа
СПОСОБ ПРОВЕДЕНИЯ СЕЙСМИЧЕСКИХ ИСПЫТАНИЙ ОПОР ЛИНИЙ ЭЛЕКТРОПЕРЕДАЧ 2014
  • Пучков Сергей Александрович
  • Баринов Кирилл Владимирович
RU2574419C1
РЫХЛИТЕЛЬ УДАРНОГО ДЕЙСТВИЯ 2021
  • Геллер Юрий Александрович
RU2764005C1
ТАРЕЛЬЧАТО-ПРУЖИННЫЙ ВИБРАЦИОННЫЙ ВАЛЕЦ 2009
  • Фигура Константин Николаевич
  • Ефремов Игорь Михайлович
RU2394121C1
СЕЙСМОПЛАТФОРМА 2018
  • Шульман Станислав Александрович
  • Уздин Александр Моисеевич
  • Нестерова Ольга Павловна
  • Лобанов Андрей Николаевич
RU2681253C1
Способ оценки устойчивости грунтового гидротехнического сооружения к динамическим воздействиям от проходящего железнодорожного транспорта 2021
  • Рубин Олег Дмитриевич
  • Антонов Антон Сергеевич
  • Караблин Никита Павлович
  • Федорова Татьяна Сергеевна
  • Баклыков Игорь Вячеславович
RU2769846C1
Устройство для образования скважин 1978
  • Власов Юрий Владимирович
  • Янцур Григорий Иванович
SU747938A1
СЕЙСМОПЛАТФОРМА 2015
  • Шульман Станислав Александрович
  • Уздин Александр Моисеевич
  • Нестерова Ольга Павловна
RU2617568C1
Рабочее оборудование рыхлителя подъемно-ударного действия 1987
  • Крылов Владимир Васильевич
  • Станевский Валерий Петрович
  • Тинченко Степан Харитонович
  • Полищук Даниил Тевьевич
  • Кисин Михаил Ильич
SU1541356A1
Устройство для исследования грунтового основания 1985
  • Константинов Алексей Алексеевич
  • Колтунова Валентина Никитична
  • Зиновьев Борис Михайлович
  • Ильичев Вячеслав Александрович
SU1315558A1
УСТРОЙСТВО ДЛЯ ИССЛЕДОВАНИЯ ФИЗИКО-МЕХАНИЧЕСКИХ ХАРАКТЕРИСТИК СЛОЯ ПОЧВОГРУНТА 2013
  • Носов Сергей Владимирович
  • Минаков Антон Юрьевич
  • Пашенцев Александр Анатольевич
  • Бачурин Виталий Юрьевич
RU2540432C1

Иллюстрации к изобретению RU 2 700 833 C1

Реферат патента 2019 года Сейсмоплатформа

Изобретение относится к области строительства, в частности к устройствам для проведения модельных испытаний строительных конструкций и их оснований, воспринимающих динамические нагрузки, и может быть использовано для оценки деформаций сооружений, их фундаментов и грунтовых оснований при строительстве в сейсмически опасных районах, либо воспринимающих динамические нагрузки иного рода (взрывы, вибрация и др.). Заявлена сейсмоплатформа, содержащая средство для размещения модели испытуемого элемента сооружения или здания и средство формирования динамических нагрузок. Средство для размещения модели испытуемого элемента сооружения или здания выполнено в виде грунтового лотка, в форме короба, основание которого выполнено в виде жесткой рамы и снабжено отбойником. При этом основание размещено на жестких направляющих неподвижной опоры с возможностью возвратно-поступательного перемещения по ним и подпружинено со стороны, противоположной отбойнику. Средство формирования динамических нагрузок выполнено как боек, в виде металлического ящика, шарнирно подвешенного на тяжах, на опорной раме с возможностью контактирования его торцом с отбойником. На дополнительной раме размещено средство отведения бойка от положения равновесия, выполненное с возможностью его зацепления-расцепления с бойком. Кроме того, средство отведения бойка от положения равновесия содержит систему полиспаст и спусковой механизм. Технический результат - создание динамических колебаний всей системы (подвижного лотка, заполненного грунтом, с установленной на грунт моделью сооружения). 1 з.п. ф-лы, 3 ил.

Формула изобретения RU 2 700 833 C1

1. Сейсмоплатформа, содержащая средство для размещения модели испытуемого элемента сооружения или здания, средство формирования динамических нагрузок, отличающаяся тем, что средство для размещения модели испытуемого элемента сооружения или здания выполнено в виде грунтового лотка, в форме короба, основание которого выполнено в виде жесткой рамы и снабжено отбойником, при этом основание размещено на жестких направляющих неподвижной опоры, с возможностью возвратно-поступательного перемещения по ним, и подпружинено со стороны, противоположной отбойнику, кроме того, средство формирования динамических нагрузок выполнено как боек, в виде металлического ящика, шарнирно подвешенного на тяжах, на опорной раме с возможностью контактирования его торцом с отбойником, причем на дополнительной раме размещено средство отведения бойка от положения равновесия, выполненное с возможностью его зацепления-расцепления с бойком.

2. Сейсмоплатформа по п.1, отличающаяся тем, что средство отведения бойка от положения равновесия содержит систему полиспаст и спусковой механизм.

Документы, цитированные в отчете о поиске Патент 2019 года RU2700833C1

СЕЙСМОПЛАТФОРМА 2015
  • Шульман Станислав Александрович
  • Уздин Александр Моисеевич
  • Нестерова Ольга Павловна
RU2617568C1
СТЕНД ДЛЯ МОДЕЛИРОВАНИЯ СЕЙСМОВОЗДЕЙСТВИЯ ЯВЛЕНИЯ ЗЕМЛЕТРЯСЕНИЯ НА МОДЕЛИ СООРУЖЕНИЙ 1991
  • Федоров А.И.
  • Смирнов М.М.
RU2024955C1
Низкочастотный вибростенд 1984
  • Чистяков Валерий Алексеевич
  • Певзнер Борис Наумович
  • Просиков Андрей Анатольевич
SU1339427A1
Сейсмостенд 1979
  • Фидаров Магомет Ибрагимович
  • Дзиов Владимир Сергеевич
SU808895A1
Съемное приспособление для прикрепления дискового фонаря к вагону 1928
  • Слепцов Л.А.
SU10171A1
CN 103106816 A, 15.05.2013.

RU 2 700 833 C1

Авторы

Цимбельман Никита Яковлевич

Кузнецов Илья Геннадьевич

Шалая Татьяна Евгеньевна

Чернова Татьяна Игоревна

Даты

2019-09-23Публикация

2019-03-20Подача