СПОСОБ ФРАКТАЛЬНОГО КОНТРОЛЯ ШЕРОХОВАТОСТИ ПОВЕРХНОСТИ Российский патент 2019 года по МПК G01B11/30 G01N21/88 

Описание патента на изобретение RU2702925C2

Изобретение относится к средствам контроля микронеровностей поверхностей, полученных в результате воздействия машиностроительных технологических операций на шероховатую поверхность, например, поверхность пера лопатки ГТД на заключительных стадиях обработки.

Известен способ капиллярной дефектоскопии, включающий в различных вариантах следующие основные операции: пропитку деталей в индикаторном (ярко окрашенном или люминесцирующем) растворе с целью заполнения полостей дефектов и пространства между неровностями, удаления раствора с поверхности детали, проявления дефектов и выявления следов дефектов. Проявление дефектов осуществляется обычно порошками, наносимыми на поверхность детали и впитывающими индикаторный раствор из полостей дефектов [Назаров С.Т. Методы контроля качества сварных соединений. М.: Машиностроение. - 360 с.; Гурвич А.К. Неразрушающий контроль. Книга 1. Общие вопросы. Контроль проникающими веществами. /А.К. Гурвич, И.Н. Ермолов, С.Г. Сажин. Под ред. В.В. Сухорукова. М.: Высшая школа, 1992. - 242 с.].

Недостатком данного способа является ограничение точности контроля шероховатости поверхности, обусловленное вязкостью используемого индикаторного раствора.

Наиболее близким по технической сущности к предлагаемому изобретению является способ контроля шероховатости поверхности диэлектрических подложек по патенту RU №2331870 C2 от 17.07.2006, опубл. 20.08.2008, МПК G01N 21/88, заключающийся в том, что исследуемую поверхность подложки очищают плазмохимическим травлением в среде инертного газа при режимах, не допускающих распыление материала подложки. Сразу после очистки подложку располагают горизонтально и на ее поверхность с высоты не менее 6 мм и не более 22 мм наносят каплю жидкости фиксированного объема. Определяют время растекания капли жидкости по поверхности подложки от момента касания капли жидкости поверхности подложки до прекращения движения жидкости по поверхности. Шероховатость контролируемой поверхности подложки определяют путем сопоставления полученного значения времени растекания капли жидкости по поверхности подложки с предварительно замеренной калибровочной зависимостью.

Недостатком данного способа является ограничение точности контроля шероховатости поверхности, обусловленное вязкостью жидкости, используемой для формирования капли.

Поставлена задача: повысить точность контроля уровня шероховатости поверхности, расширив при этом диапазон исследуемых материалов.

Решение поставленной задачи достигается тем, что исследуемую поверхность очищают плазмохимическим травлением в среде инертного газа при режимах, не допускающих распыление материала исследуемой поверхности, сразу после очистки на поверхность наносят жидкость известной вязкости в виде капли фиксированного объема, посредством скоростной цифровой видеокамеры регистрируют время растекания капли жидкости по исследуемой поверхности, затем определяют шероховатость исследуемой поверхности, согласно заявляемому изобретению посредством скоростной цифровой видеокамеры регистрируют момент окончания растекания капли жидкости, после чего определяют периметр и площадь растекшейся капли и убирают скоростную цифровую видеокамеру, затем на растекшуюся на исследуемой поверхности каплю наносят каплю жидкости меньшей вязкости, при этом жидкость второй капли должна быть растворимой в жидкости первой капли, помещают в исходное положение скоростную цифровую видеокамеру, посредством которой регистрируют момент окончания растекания второй капли жидкости, растворившейся в первой капле жидкости, после чего определяют периметр и площадь обеих растекшихся капель жидкости различной вязкости после их слияния; по полученным данным определяют фрактальную размерность D исследуемой шероховатой поверхности:

D=2⋅loga(Gдлина1/Gдлина2).

Здесь а=(Gплощадь1/Gплощадь2), где Gдлина1 - периметр первой растекшейся капли; Gдлина2 - периметр обеих растекшихся капель различной вязкости после их слияния; Gплощадь1 - площадь первой растекшейся капли; Gплощадь2 - площадь обеих растекшихся капель различной вязкости после их слияния.

Сущность изобретения поясняется чертежом, где представлена блок-схема устройства для фрактального контроля шероховатости поверхности. Устройство состоит из источника света 1, регулируемого источника питания 2 источника света 1, дозатора 3 капель рабочей жидкости, направляющей иглы 4 дозатора 3 капель рабочей жидкости, скоростной видеокамеры 5, записывающего устройства 6, исследуемой поверхности 7, первой капли 8 жидкости известной вязкости и фиксированного объема, второй капли 9 жидкости меньшей вязкости, чем жидкость капли 8.

Способ осуществляется следующим образом.

Исследуемую поверхность 7 очищают плазмохимическим травлением в среде инертного газа при режимах, не допускающих распыление материала исследуемой поверхности 7, сразу после очистки на исследуемую поверхность 7 наносят каплю 8 жидкости известной вязкости и фиксированного объема, затем посредством скоростной цифровой видеокамеры 5 регистрируют время растекания капли 8 жидкости известной вязкости и фиксированного объема по исследуемой поверхности 7 и определяют шероховатость исследуемой поверхности 7. Для этого предварительно посредством скоростной цифровой видеокамеры 5 регистрируют момент окончания растекания капли 8 жидкости известной вязкости и фиксированного объема, после чего определяют периметр и площадь растекшейся капли 8 известной вязкости и фиксированного объема и убирают скоростную цифровую видеокамеру 5, затем на растекшуюся на исследуемой поверхности 7 каплю 8 жидкости известной вязкости и фиксированного объема наносят жидкость меньшей вязкости в виде капли 9, при этом жидкость капли 9 должна быть растворима в жидкости капли 8, после чего помещают в исходное положение скоростную цифровую видеокамеру 5, посредством которой регистрируют момент окончания растекания капли 9 жидкости, растворившейся в капле 8 жидкости известной вязкости и фиксированного объема. Далее определяют периметр и площадь растекшихся капель 8 и 9 жидкости различной вязкости после их слияния. По полученным данным определяют фрактальную размерность D исследуемой поверхности 7:

D=2⋅loga(Gдлинаl/Gдлина2),

где а=(Gплощадь1/Gплощадь2), где Gдлина1 - периметр растекшейся капли 8 жидкости известной вязкости и фиксированного объема; Gдлина2 - периметр растекшихся капель 8 и 9 жидкости различной вязкости после их слияния; Gплощаль1 - площадь растекшейся капли 8 жидкости известной вязкости и фиксированного объема; Gплощадь2 - площадь растекшихся капель 8 и 9 жидкости различной вязкости после их слияния.

В результате растворения капли 9 в капле 8, состоящих из жидкостей различной вязкости, происходит изменение вязкости жидкости, образовавшейся в результате слияния двух капель 8 и 9. При этом вязкость жидкости двух слившихся капель 8 и 9 будет меньше вязкости капли 8, если жидкость капли 9 была меньшей вязкости, чем жидкость капли 8 [Бретшнайдер С. Свойства газов и жидкостей. М.: Химия, 1966. - 537 с.]. Например, в случае использования дистиллированной воды в качестве жидкости капли 8, а в качестве жидкости капли 9 - этилового спирта, вязкость жидкости двух растворившихся друг в друге капель 8 и 9 уменьшится по сравнению с вязкостью дистиллированной воды.

Метод определения фрактальной размерности основан на подсчете соотношения между периметром и площадью растекшейся капли. Такое соотношение применяют для оценки размерности фрактальной кривой, ограничивающей исследуемую область. Согласно фрактальной геометрии [Мандельброт Б. Фрактальная геометрия природы. - М.: Институт компьютерных исследований, 2002. - 656 с.] такая зависимость определяется законом Мандельброта:

Здесь Gдлина - длина кривой (периметр капли), измеренная с шагом G, Gплощадь - площадь, ограниченная кривой (площадь капли), измеренная с шагом G2, D - фрактальная размерность рассматриваемой разветвленной структуры, Cη - типичный во фрактальной геометрии неопределенный множитель.

По результатам двух измерений периметра растекшихся капель 8 и 9 получаем систему двух уравнений:

Здесь Gдлина1 - периметр растекшейся капли 8 жидкости известной вязкости и фиксированного объема; Gдлина2 - периметр растекшихся капель 8 и 9 после их слияния; Gплощадь1 - площадь растекшейся капли 8 жидкости известной вязкости и фиксированного объема; Gплощадь2 - площадь растекшихся капель 8 и 9 после их слияния.

Из системы уравнений (2) следует, что

где основание логарифма а=(Gплощадь1/Gплощадь2).

В этом случае изменение вязкости вещества капли, образованной каплями 8 и 9 после их слияния, может рассматриваться как изменение шага покрытия при определении фрактальной размерности.

Геометрия растекшихся капель 8 и 9 после их слияния регистрируется посредством скоростной видеокамеры 5 и записывающего устройства 6. Затем определяется периметр и площадь растекшихся капель 8 и 9 после их слияния путем использования методов цифровой обработки изображений [Сойфер В.А. Методы компьютерной обработки изображений. М.: Физматлит, 2003. - 784 с.].

Исследуемая поверхность 7 может иметь различный угол наклона относительно линии горизонта. Наибольший угол наклона исследуемой поверхности 7 определяется экспериментально и выбирается таким образом, чтобы капля, образованная в результате слияния капель 8 и 9 и состоящая из дистиллированной воды и этилового спирта, не могла скатиться с исследуемой поверхности 7.

Световой поток, формируемый источником света 1, должен максимально близко располагаться к объективу скоростной видеокамеры 5, при этом угол между осью симметрии объектива скоростной видеокамеры 5 и осью симметрии светового потока, сформированного источником света 1, должен быть наименьшим. Это необходимо для минимизации неосвещенных (слепых) зон на исследуемой поверхности 7, т.е. для повышения точности определения периметра и площади растекшихся капель 8 и 9 после их слияния.

Используемые жидкости капель 8 и 9 должны быть смешиваемыми, их объемы - максимально близкими. Это необходимо для того, чтобы вязкость жидкости, образованной при слиянии капель 8 и 9, была меньше, чем вязкость жидкости капли 8.

Пример. В качестве исследуемой поверхности использована подложка типа СТ-50. Очистка исследуемой поверхности осуществлена плазмохимическим травлением в среде аргона на установке травления пластин УТП ПДЭ-125-008. Сразу после очистки с помощью дозатора нанесена капля дистиллированной воды на горизонтально расположенную исследуемую поверхность. Момент окончания растекания капли зарегистрирован системой скоростной цифровой видеосъемки на базе камеры VS-FAST со скоростью 1000 кадров/с. Затем на каплю дистиллированной воды нанесена капля этилового спирта. Момент окончания растекания капли, образованной в результате слияния капель дистиллированной воды и этилового спирта, также зарегистрирован системой скоростной цифровой видеосъемки на базе камеры VS-FAST со скоростью 1000 кадров/с.

Фрактальная размерность уровня шероховатости исследуемой поверхности по формуле (3) составила 1,18.

Похожие патенты RU2702925C2

название год авторы номер документа
СПОСОБ ФРАКТАЛЬНОГО КОНТРОЛЯ ШЕРОХОВАТОСТИ ПОВЕРХНОСТИ 2016
  • Абульханов Станислав Рафаелевич
  • Казанский Николай Львович
  • Ивлиев Николай Александрович
RU2710483C2
СПОСОБ ФРАКТАЛЬНОГО КОНТРОЛЯ ШЕРОХОВАТОСТИ ПОВЕРХНОСТИ 2014
  • Абульханов Станислав Рафаелевич
  • Казанский Николай Львович
  • Подлипнов Владимир Владимирович
RU2601531C2
Способ бесконтактного фрактального контроля шероховатости гидрофобной поверхности 2017
  • Абульханов Станислав Рафаелевич
  • Казанский Николай Львович
  • Скуратов Дмитрий Леонидович
  • Нехорошев Максим Владимирович
RU2672788C1
СПОСОБ КОНТРОЛЯ ШЕРОХОВАТОСТИ ПОВЕРХНОСТИ ДИЭЛЕКТРИЧЕСКИХ ПОДЛОЖЕК 2006
  • Казанский Николай Львович
  • Волков Алексей Васильевич
  • Бородин Сергей Алексеевич
RU2331870C2
УСТРОЙСТВО ДЛЯ КОНТРОЛЯ ШЕРОХОВАТОСТИ ПОВЕРХНОСТИ ДИЭЛЕКТРИЧЕСКИХ ПОДЛОЖЕК 2010
  • Изотов Павел Юрьевич
  • Глянько Марк Семенович
  • Волков Алексей Васильевич
  • Казанский Николай Львович
  • Суханов Сергей Васильевич
RU2448341C1
СПОСОБ ОПРЕДЕЛЕНИЯ ФРАКТАЛЬНОЙ РАЗМЕРНОСТИ ШЕРОХОВАТОЙ ПОВЕРХНОСТИ ТВЕРДЫХ ТЕЛ 2008
  • Григорьев Андрей Яковлевич
  • Ковалева Инна Николаевна
  • Кудрицкий Владимир Григорьевич
  • Зозуля Андрей Петрович
  • Мышкин Николай Константинович
RU2352902C1
СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ПОВЕРХНОСТНОГО НАТЯЖЕНИЯ ЖИДКОСТЕЙ МЕТОДОМ "РАСТЕКАНИЯ" 2013
  • Комаров Борис Николаевич
  • Комарова Валентина Николаевна
RU2545333C1
Стенд для исследования деформации капель аэродинамическими силами 2016
  • Архипов Владимир Афанасьевич
  • Шрагер Геннадий Рафаилович
  • Усанина Анна Сергеевна
  • Басалаев Сергей Александрович
  • Поленчук Сергей Николаевич
  • Перфильева Ксения Григорьевна
RU2638376C1
Оптический тензиометр для измерения контактного угла смачивания на препарате горной породы методом прикрепленного пузырька и способ его работы 2020
  • Галеев Ахмет Асхатович
  • Софинская Оксана Александровна
RU2744463C1
СПОСОБ ОПРЕДЕЛЕНИЯ ВЯЗКОСТИ РОТОВОЙ ЖИДКОСТИ 2019
  • Николаева Любовь Анатольевна
  • Горбачева Ирина Анатольевна
  • Антонова Ирина Николаевна
  • Владимирова Людмила Григорьевна
  • Никитин Владимир Сергеевич
RU2726920C1

Иллюстрации к изобретению RU 2 702 925 C2

Реферат патента 2019 года СПОСОБ ФРАКТАЛЬНОГО КОНТРОЛЯ ШЕРОХОВАТОСТИ ПОВЕРХНОСТИ

Изобретение относится к средствам контроля микронеровностей поверхностей, полученных в результате воздействия машиностроительных технологических операций на шероховатую поверхность, например, поверхность пера лопатки ГТД на заключительных стадиях обработки. Заявленный способ фрактального контроля шероховатости поверхности заключается в том, что исследуемую поверхность очищают плазмохимическим травлением в среде инертного газа при режимах, не допускающих распыление материала исследуемой поверхности, сразу после очистки на исследуемую поверхность наносят каплю жидкости известной вязкости и фиксированного объема, затем посредством скоростной цифровой видеокамеры регистрируют время растекания капли жидкости известной вязкости и фиксированного объема по исследуемой поверхности и определяют шероховатость исследуемой поверхности. Для этого предварительно посредством скоростной цифровой видеокамеры регистрируют момент окончания растекания капли жидкости известной вязкости и фиксированного объема, после чего определяют периметр и площадь растекшейся капли известной вязкости и фиксированного объема и убирают скоростную цифровую видеокамеру, затем на растекшуюся на исследуемой поверхности каплю жидкости известной вязкости и фиксированного объема наносят жидкость меньшей вязкости в виде второй капли, при этом жидкость второй капли должна быть растворима в жидкости первой капли, после чего помещают в исходное положение скоростную цифровую видеокамеру, посредством которой регистрируют момент окончания растекания второй капли жидкости, растворившейся в первой капле жидкости известной вязкости и фиксированного объема. Далее определяют периметр и площадь растекшейся капли, образованной в результате слияния двух капель жидкостей различной вязкости. По полученным данным определяют фрактальную размерность D исследуемой поверхности D=2⋅loga(Gдлина1/Gдлина2), где а=(Gплощадь1/Gплощадь2), где Gдлина1 - периметр растекшейся капли жидкости известной вязкости и фиксированного объема; Gдлина2 - периметр растекшейся капли, образованной в результате слияния двух капель жидкостей различной вязкости; Gплощадь1 - площадь растекшейся капли жидкости известной вязкости и фиксированного объема; Gплощадь2 - площадь растекшейся капли, образованной в результате слияния двух капель жидкостей различной вязкости. Технический результат - повышение точности контроля уровня шероховатости поверхности и расширение типоряда материалов исследуемой поверхности. 1 ил.

Формула изобретения RU 2 702 925 C2

Способ фрактального контроля шероховатости поверхности, заключающийся в том, что исследуемую поверхность очищают плазмохимическим травлением в среде инертного газа при режимах, не допускающих распыление материала исследуемой поверхности, сразу после очистки на исследуемую поверхность наносят жидкость в виде капли фиксированного объема, посредством скоростной цифровой видеосъемки фиксируют время растекания капли жидкости по поверхности, затем определяют шероховатость исследуемой поверхности, отличающийся тем, что жидкость капли имеет известную вязкость, посредством скоростной цифровой видеокамеры регистрируют момент окончания растекания капли жидкости по исследуемой поверхности, после чего определяют периметр и площадь растекшейся капли и убирают скоростную цифровую видеокамеру, затем на растекшуюся по исследуемой поверхности каплю наносят каплю жидкости меньшей вязкости и растворимой в жидкости первой капли, после этого помещают в исходное положение скоростную цифровую видеокамеру, посредством которой регистрируют момент окончания растекания капли, образованной после слияния двух капель жидкостей различной вязкости, далее определяют периметр и площадь двух растекшихся капель жидкостей различной вязкости после их слияния; по полученным данным определяется фрактальная размерность D исследуемой шероховатой поверхности:

D=2·loga(Gдлина1/Gдлина2);

здесь а=(Gплощадь1/Gплощадь2), где Gдлина1 - периметр первой растекшейся капли; Gдлина2 - периметр капли, образованной в результате слияния двух капель жидкостей различной вязкости; Gплощадь1 - площадь первой растекшейся капли; Gплощадь2 - площадь капли, образованной в результате слияния двух капель жидкостей различной вязкости.

Документы, цитированные в отчете о поиске Патент 2019 года RU2702925C2

СПОСОБ ОПРЕДЕЛЕНИЯ ФРАКТАЛЬНОЙ РАЗМЕРНОСТИ ШЕРОХОВАТОЙ ПОВЕРХНОСТИ ТВЕРДЫХ ТЕЛ 2008
  • Григорьев Андрей Яковлевич
  • Ковалева Инна Николаевна
  • Кудрицкий Владимир Григорьевич
  • Зозуля Андрей Петрович
  • Мышкин Николай Константинович
RU2352902C1
СПОСОБ КОНТРОЛЯ ШЕРОХОВАТОСТИ ПОВЕРХНОСТИ ДИЭЛЕКТРИЧЕСКИХ ПОДЛОЖЕК 2006
  • Казанский Николай Львович
  • Волков Алексей Васильевич
  • Бородин Сергей Алексеевич
RU2331870C2
JP 2005114615 A, 28.04.2005
US 4878114 A1, 31.10.1989
УСТРОЙСТВО ДЛЯ КОНТРОЛЯ ШЕРОХОВАТОСТИ ПОВЕРХНОСТИ ДИЭЛЕКТРИЧЕСКИХ ПОДЛОЖЕК 2010
  • Изотов Павел Юрьевич
  • Глянько Марк Семенович
  • Волков Алексей Васильевич
  • Казанский Николай Львович
  • Суханов Сергей Васильевич
RU2448341C1

RU 2 702 925 C2

Авторы

Абульханов Станислав Рафаелевич

Казанский Николай Львович

Даты

2019-10-14Публикация

2016-03-24Подача