СЕНСОРНЫЙ ЛЮМИНЕСЦИРУЮЩИЙ МАТЕРИАЛ, СПОСОБ ЕГО ПОЛУЧЕНИЯ И СПОСОБ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ВОДЫ В ИССЛЕДУЕМОЙ ЖИДКОСТИ Российский патент 2019 года по МПК C09K11/06 C07F5/00 G01N21/64 

Описание патента на изобретение RU2703227C1

Область техники, к которой относится изобретение

Настоящее изобретение относится к созданию аналитических приборов для определения содержания воды в тяжелой воде (D2O) и апротонных растворителях и может быть использовано для количественного определения примесной воды в различных органических растворителях и их смесях, трансформаторном масле, моторном топливе.

Уровень техники

Известны различные материалы, пригодные для определения наличия воды в смесях, композициях и т.п.

Так, определение воды в органических растворителях обычно проводят с использованием титрования по Карлу Фишеру [Mitchell, J. (1951). Karl Fischer reagent titration. Anal. Chem. 23, 1069-1075]. В этом способе используются две химические реакции: B*I2+BSO2+B+H2O=2BHI+BSO3; BSO3+ROH=BHROSO3, где В-органическое основание, обычно пиридин, а ROH - спирт, обычно метанол.

Согласно этому методу для определения примеси воды в органических растворителях отделение реакционной ячейки заполняют электролитом для определения воды согласно инструкциям изготовителя, следы влаги удаляют путем предварительного электролиза. Далее, жидкую пробу, объемом не более 10 мл (обычно от 0,5 до 5 мл) вводят в колбу прибора для амперометрического или кулонометрического титратора Фишера при помощи шприца, прокалывая резиновую пробку-септу. Реакционную смесь перемешивают при помощи магнитной мешалки в течение необходимого по инструкции времени (обычно 30 с). Далее, включают цепь прибора и ведут электролиз раствора, причем образующийся в результате электролиза молекулярный йод реагирует с водой и сернистым газом в среде электролита. Конечную точку титрования определяют кулонометрическим способом, после чего вычисляют содержание воды по протекшему через раствор току.

К недостаткам указанного метода относятся: низкая экспрессность, работа с токсичными, ду рнопахнущими и коррозионно-активными реагентами, быстро портящимися во влажном воздухе. Кроме того, указанным способом невозможно определить примесь легкой воды H2O в тяжелой воде D2O из-за их полной химической эквивалентности. Стоимость аппарата для титрования по Фишеру начинается от 300000 рублей.

Другой способ определения воды в органических растворителях - спектроскопия ЯМР на ядрах 1Н. Этот способ позволяет (при использовании внешнего стандарта) определить примесь воды не только в обычных органических растворителях - хлороформе, ацетонитриле, толуоле, диок-сане - но и в дейтерированных растворителях, включая D2O [Creasy, W.R., McGarvey, D.J., Rice, J.S., O'Connor, R., Durst, il. D. (2003). Study of detection limits and quantitation accuracy using 300 MHz NMR. ADA482893. www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA482893]. Однако стоимость ЯМР-спектрометра начинается от 1 миллиона рублей - при использовании постоянных магнитов, обеспечивающих низкую точность и воспроизводимость измерений - и от нескольких десятков миллионов при использовании сверхпроводящих магнитов. Кроме того, к работе на ЯМР-спектрометрах могут быть допущены только высококвалифицированные операторы, и в работе прибор потребляет много электричества и хладагентов - жидкого азота и жидкого гелия.

Наиболее близким аналогом настоящего изобретения является люминесцентный сенсор [Samuel G. Dunning, Ana J. Nun~ ez, Matthew D. Moore, Alexander Steiner, Vincent M. Lynch, Jonathan L. Sessler, Bradley J. Holliday, and Simon M. Humphrey. С hem 2, 579-589, April 13, 2017]. Принцип действия сенсора связан с селективным тушением люминесценции иона европия при использовании тербия как внутреннего стандарта; для улучшения сенсорного отклика выбран пористый материал типа MOF (Metal Organic Frameworks). Смесь сенсора с исследуемым объектом облучается ультрафиолетовым излучением лазера или светодиода, либо светом ксеноновой или дейтериевой лампы, пропущенным через монохроматор с длиной волны 220-395 нм. Сенсорным откликом выступает отношение интенсивностей люминесценции смешанно-металлического комплекса тербия, европия и гадолиния при длинах волн 546/615 нм после пропитки обезвоженного материала растворителем. Сенсор позволяет определять воду в D2O и различных органических растворителях. Диапазон длин волн возбуждения определяется полосой поглощения сенсора. Вне указанного диапазона интенсивность люминесценции на длинах волн 546/615 нм становится слишком малой для проведения количественных измерений.

Недостатки этого способа определяются недостатками материала, к которым можно отнести следующие: высокая стоимость выбранного трис(п-карбоксилато)трифенилфосфина, легкость окисления последнего в соответствующий фосфиноксид и, как следствие, нестабильность сенсорного отклика, сложная процедура синтеза (включающая применение смеси трех растворителей, термостатирование в течение 3-4 дней в инертной атмосфере), использование третьего лантанида - гадолиния - не демонстрирующего люминесценции.

Раскрытие изобретения

Таким образом, задача настоящего изобретения состоит в преодолении недостатков ближайшего аналога с достижением технического результата в виде расширения арсенала технических средств, а также упрощения и удешевления способа определения содержания воды в тяжелой воде и органических а протонных растворителях.

Для решения указанной задачи и достижения указанного технического результата в первом объекте настоящего изобретения предложен сенсорный люминесцентный материал, люминесцирующий при возбуждении ультрафиолетовым излучением в диапазоне 220-395 нм и являющийся смешанно-металлическим комплексом европия (Eu) и тербия (Tb) с триазолдикарбоновой кислотой (TDA) в соответствии со следующей формулой Eu(1-x)Tbx(TDA), где 0,01<х<0,50 - мольная доля тербия в смеси с европием в составе комплекса.

Особенность материала по первому объекту настоящего изобретения состоит в том, что в качестве триазолдикарбоновой кислоты может быть использована одна из следующих кислот: 3,5-пиразолдикарбоновая, 1,2,3-триазол-4,5-дикарбоновая, 3,4,5-пираюлтрикарбоновая, имидазол-4,5-дикарбоновая, 1-метил-1,2,3-триал-4,5-дикарбоновая.

Для решения той же задачи и достижения того же технического результата во втором объекте настоящего изобретения предложен способ получения сенсорного люминесцентного материала по первому объекту настоящего изобретения, в котором: готовят водный раствор производной триазолдикарбоновой кислоты; добавляют в полученный раствор заданные объемы водных растворов солей TbCl3 и EuCl3; нагревают полученную смесь в автоклаве в заданном режиме до получения суспензии; отделяют полученную суспензию, являющуюся сенсорным люминесцентным материалом.

Особенность способа по второму объекту настоящего изобретения состоит в том, что водный раствор производной триазолдикарбоновой кислоты могут кипятить до ее полного растворения.

Другая особенность способа по второму объекту настоящего изобретения состоит в том, что производная триазолдикарбоновой кислоты может содержать комплексообразующую группу, выбранную из совокупности, включающей 1,2,3-триазол, 1Н-имидазол и 1Н-пиразол.

Еще одна особенность способа по второму объекту настоящего изобретения состоит в том, что суспензию после ее отделения от раствора могут: фильтровать под вакуумом; промывать отфильтрованный осадок; нагревать промытый осадок с одновременной откачкой сосуда вакуумным насосом; охлаждать высушенный осадок в эксикаторе над Р2О5.

При этом отфильтрованный осадок могут промывать последовательно дистиллированной водой, этанолом и диэтиловым эфиром.

Для решения той же задачи и достижения того же технического результата в третьем объекте настоящего изобретения предложен способ определения содержания воды в исследуемой жидкости, в котором: отбирают образец исследуемой жидкости; смешивают отобранный образец с заданным количеством сенсорного люминесцентного материала по первому объекту настоящего изобретения; облучают смешанный образец ультрафиолетовым излучением с длиной волны в диапазоне 220-395 нм; измеряют спектр люминесценции облученного образца на длинах волн 546 и 615 нм; определяют содержание воды в образце по величине отношения интенсивности люминесценции на длине волны 546 нм к интенсивности люминесценции на длине волны 615 нм.

Особенность способа по третьему объекту настоящего изобретения состоит в том, что измеренный спектр люминесценции могут нормировать на единицу по отношению к интенсивности люминесценции на длине волны 615 нм.

Другая особенность способа по третьему объекту настоящего изобретения состоит в том, что в качестве исследуемой жидкости могут выбирать тяжелую воду или органический апротонный растворитель.

Краткое описание чертежей

На Фиг. 1 показан спектр люминесценции сенсорного люминесцентного материала по первому объекту настоящего изобретения при возбуждении ультрафиолетовым излучением.

На Фиг. 2 представлена зависимость соотношения интенсивностей люминесценции излучательных переходов европия и тербия от содержания H2O в D2O.

Подробное описание вариантов осуществления

В настоящем изобретении в качестве сенсорного люминесцентного материала предложено использовать смешанно-металлические комплексы европия (Eu) и тербия (Tb) с триазолдикарбоновой кислотой (TDA) в соответствии с формулой Eu(1-x)Tbx(TDA), где 0,01<х<0,50 - мольная доля тербия в смеси с европием в составе этого комплекса.

В качестве триазолдикарбоновой кислоты (TDA) можно использовать одну из следующих кислот: 3,5-пиразолдикарбоновая, 1,2,3-триазол-4,5-дикарбоновая, имидазол-4,5-дикарбоновая, 1-метил-1,2,3-триазол-4,5-дикарбоновая. Эти соединения синтетически доступны, дешевы, не токсичны и устойчивы при хранении.

В уровне техники известны люминесцентные материалы, содержащие европий и тербий (к примеру, патент РФ №2463304, опубл. 10.10.2012: патент РФ №2657497, опубл. 14.06.2018; патент США №9224082, опубл. 29.12.2015; заявка Китая №103881705, опубл. 25.06.2014). Однако ни в одном из указанных и иных документов не раскрыт люминесцентный материал, соответствующий указанной выше формуле, что позволяет считать его новым. Более того, никакая комбинация сведений из существующих документов не позволяет получить такой материал, что свидетельствует о его соответствии условию «изобретательский уровень».

На Фиг. 1 приведен полученный экспериментальным путем спектр люминесценции такого сенсорного люминесцентного материала. На Фиг. 1 сплошной линией отмечен спектр люминесценции предложенного материала в обычной воде, а точечной линией - в тяжелой воде.

Показанная на Фиг. 2 экспериментально полученная зависимость аналитического сигнала, т.е. соотношения интенсивностей (1) люминесценции излучательных переходов европия (Eu) и тербия (Tb) (интегральные интенсивности в областях 605-625 нм и 535-555 нм, соответственно) от содержания H2O в D2O носит линейный характер для смешанно-металлических полимерных карбоксилатов тербия и европия во всем интервале концентраций от 0 до 100%. Это позволяет определять содержание примесной воды в тяжелой воде как методом градуировочной зависимости, так и методом добавок.

Зависимость аналитического сигнала от содержания H2O в ацетонитриле, диоксане, ацетоне, метилэтилкетоне, диметилсульфоксиде и диметилформамиде носит линейный характер в области концентраций воды (H2O) от 0 до 10%, что позволяет определять содержание воды в указанных растворителях методами градуировочной зависимости и добавок. Анализ воды в растворах с большим ее содержанием возможен при предварительном построении калибровочной кривой.

Для получения предложенного сенсорного люминесцентного материала следует применять чистые химические реактивы. Так, установлено, что примесь марганца в азол-карбоновых кислотах приводит к образованию плохо люминесцирующих комплексных соединений бурого цвета, в то время как в его отсутствие получаются белые, хорошо люминесцирующие порошки. Соли европия и тербия должны содержать возможно меньшее количество примесей иных лантаноидов, особенно люминесцирующих, так как это исказит состав комплексов и приведет к снижению сенсорного отклика.

Способ получения предложенного сенсорного люминесцентного материала включает в себя следующие шаги. Сначала готовят водный раствор производной триазолдикарбоновой кислоты. Эта производная может содержать комплексообразующую группу, выбранную из совокупности, включающей 1,2,3-триазол, 1Н-имидазол и 1Н-пиразол.

В полученный раствор добавляют заданные объемы водных растворов солей TbCl3 и EuCl3 и нагревают полученную смесь в автоклаве в заданном режиме до получения суспензии. В частности, водный раствор производной триазолдикарбоновой кислоты могут кипятить до полного растворения TDA.

На последнем шаге отделяют полученную суспензию, являющуюся предлагаемым сенсорным люминесцентным материалом. При этом суспензию после ее отделения от раствора могут фильтровать под вакуумом, промывать от фильтрованный осадок, нагревать промытый осадок с одновременной от качкой сосуда вакуумным насосом, а затем охлаждать высушенный осадок в эксикаторе над Р2О5. Промывку отфильтрованного осадка могут осуществлять последовательно дистиллированной водой, этанолом и диэтиловым эфиром.

Способ получения сенсорного люминесцентного материала по настоящему изобретению иллюстрируется следующими примерами.

Пример 1

В стеклянный стакан на 100 мл помещали 1,57 г 1,2,3-триазол-4,5-дикаробоновой кислоты, 0,8 г NaOH, добавляли 10 мл дистиллированной воды и кипятили 15 минут на электрической плитке. К полученному раствору добавляли 1,00 мл 1М раствора EuCl3 в воде и 9,00 мл 1М раствора TbCl3 в воде. Смесь перемешивали 15 минут с использованием магнитной мешалки и переносили в тефлоновый контейнер на 20 мл. Контейнер закрывали и помещали в автоклав из нержавеющей стали. Автоклав герметизировали и нагревали со скоростью 10°/ ч до 165°, выдерживали при этой температуре 48 часов и охлаждали со скоростью 3°/ч до комнатной температуры. Автоклав раскрывали, извлекали тефлоновый контейнер, вскрывали его и переносили суспензию на воронку Бюхнера с бумажным фильтром. Суспензию фильтровали под вакуумом и осадок промывали 3 раза по 20 мл дистиллированной водой, 3 раза по 20 мл 96% этанолом и 3 раза по 20 мл диэтиловым эфиром, после чего сушили на фильтре в течение 20 минут. Осадок отделяли от фильтра, переносили в стеклянную пробирку и подключали последнюю к мембранному вакуумному насосу. Пробирку нагревали до 170°С с одновременной откачкой вакуумным насосом в продолжение 6 часов. После этого пробирку отключали от насоса и охлаждали в эксикаторе над P2O5. Высушенный порошок помещали в кварцевые ампулы, герметично запечатывали их и хранили в таком виде до измерения.

Пример 2

В стеклянный стакан на 100 мл помещали 1,56 г 1Н-имидазол-4,5-дикаробоновой кислоты, 0,8 г NaOH, добавляли 10 мл дистиллированной воды и кипятили 15 минут на электрической плитке. К полученному раствору добавляли 1,50 мл 1М раствора EuCl3 в воде и 8,50 мл 1М раствора TbCl3 в воде. Смесь перемешивали 15 минут с использованием магнитной мешалки и переносили в тефлоновый контейнер на 20 мл. Контейнер закрывали и помещали в автоклав из нержавеющей стали. Автоклав герметизировали и нагревали со скоростью 107 ч до 165°, выдерживали при этой температуре 72 часа и охлаждали со скоростью 37 ч до комнатной температуры. Автоклав раскрывали, извлекали тефлоновый контейнер, вскрывали его и переносили суспензию на воронку Бюхнера с бумажным фильтром. Суспензию фильтровали под вакуумом и осадок промывали 3 раза по 20 мл дистиллированной водой, 3 раза по 20 мл 96% этанолом и 3 раза по 20 мл диэтиловым эфиром, после чего сушили на фильтре в течение 20 минут. Осадок отделяли от фильтра, переносили в стеклянную пробирку и подключали последнюю к мембранному вакуумному насосу. Пробирку нагревали до 170°С с одновременной откачкой вакуумным насосом в продолжение 6 часов. После этого пробирку отключали от насоса и охлаждали в эксикаторе над Р2О5. Высушенный порошок помещали в кварцевые ампулы, герметично запечатывали их и хранили в таком виде до измерения.

Пример 3

В стеклянный стакан на 100 мл помещали 1.56 г 1Н-пиразол-3,5-дикаробоновой кислоты, 0,8 г NaOH, добавляли 10 мл дистиллированной воды и кипятили 15 минут на электрической плитке. К полученному раствору добавляли 4,00 мл 1М раствора EuCl3 в воде и 6,00 мл 1М раствора TbCl3 в воде. Смесь перемешивали 15 минут с использованием магнитной мешалки и переносили в тефлоновый контейнер на 20 мл. Контейнер закрывали и помещали в автоклав из нержавеющей стали. Автоклав герметизировали и нагревали со скоростью 10°/ч до 165°, выдерживали при этой температуре 56 часов и охлаждали со скоростью 3°/ч до комнатной температуры. Автоклав раскрывали, извлекали тефлоновый контейнер, вскрывали его и переносили суспензию на воронку Бюхнера с бумажным фильтром. Суспензию фильтровали под вакуумом и осадок промывали 3 раза по 20 мл дистиллированной водой, 3 раза по 20 мл 96% этанолом и 3 раза по 20 мл диэтиловым эфиром, после чего сушили на фильтре в течение 20 минут. Осадок отделяли от фильтра, переносили в стеклянную пробирку и подключали последнюю к мембранному вакуумному насосу. Пробирку нагревали до 170°С с одновременной откачкой вакуумным насосом в продолжение 6 часов. После этого пробирку отключали от насоса и охлаждали в эксикаторе над P2O5. Высушенный порошок помещали в кварцевые ампулы, герметично запечатывали их и хранили в таком виде до измерения.

Измерения содержания воды в исследуемой жидкости с использованием предложенного сенсорного люминесцентного материала проводятся в соответствии со способом определения содержания воды в исследуемой жидкости согласно третьему объекту настоящего изобретения. В этом способе отбирают образец исследуемой жидкости и смешивают его с заданным количеством сенсорного люминесцентного материала, полученного способом по второму объекту настоящего изобретения. Смешанный образец облучают ультрафиолетовым излучением с длиной волны в диапазоне 220-395 нм, измеряя при этом спектр люминесценции облученного образца на длинах волн 546 и 615 нм. В итоге, содержание воды в исследуемом образце определяют по величине отношения интенсивности люминесценции на длине волны 615 нм к интенсивности люминесценции на длине волны 546 нм.

Для удобства измеренный спектр люминесценции могут нормировать на единицу по отношению к интенсивности люминесценции на длине волны 615 нм.

В качестве исследуемой жидкости можно выбирать тяжелую воду или органический растворитель.

Для проведения измерений согласно способу по третьему объекту настоящего изобретения можно заранее построить градуировочную зависимость следующим образом. Сначала готовятся растворы H2O в органических растворителях или D2O с объемной долей H2O в 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90 и 100%. Аликвоты указанных растворов (200 мкл) добавляют в ампулы с сенсорным люминесцентным материалом по первому объекту настоящего изобретения, после чего ампулы снова герметично запечатывают. По истечении одного часа регистрируют спектры люминесценции в диапазоне 400-800 нм при длине волны возбуждения 254 нм. Для такой регистрации используют спектрограф Maya 2000 Pro производства компании Ocean Optics. Спектры при помощи программы Microsoft Excel, введенной в персональный компьютер, нормируют на единицу по интенсивности пика в области 605-625 нм. Интегральные интенсивности пиков определяют в области 535-555 нм и строят по ним градуировочную зависимость этой интенсивности от концентрации воды в исследуемом образце. После чего при помощи программы Microsoft Excel проводят линию тренда и определяют уравнение прямой вида у=kx+b.

В качестве примера реализации способа по третьему объекту настоящего изобретения ниже приведен пример построения калибровочной зависимости для определения концентрации воды в тяжелой воде.

Эту экспериментальную работу проводили в сухом аргоновом боксе для предотвращения попадания атмосферной влаги в сенсорный люминесцентный материал и анализируемый раствор, что может привести к снижению точности определения. Ал и квоты исследуемых растворов (200 мкл) добавляли в ампулы с сенсорным материалом, после чего ампулы снова герметично запечатывали. В кварцевые ампулы помещали навески в 10,0 мг сенсорного люминесцентного материала, полученного из 1,2,3-триазол-4,5-дикарбоновой кислоты и хлоридов европия и тербия способом по второму объекту настоящего изобретения. Этот материал содержал хлорид европия и хлорид тербия в мольном соотношении 1:9 (х=0,1 в выражении Eu(1-x)Tbx(TDA)). В ампулы добавляли по 0,1 мл растворов D2O с объемной долей H2O в 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20. 30, 40, 50, 60, 70, 80, 90 и 100%. Ампулы герметично закрывали и оставляли на 1 час. После этого ампулы облучали УФ-излучением с длиной волны 254 nm, одновременно записывая спектры люминесценции при помощи спектрометра. Спектры нормировали на единицу по интенсивности пика в области 605-625 нм. Определяли интегральные интенсивности пиков в области 535-555 нм и строили градуировочную зависимость интенсивности люминесценции от концентрации воды в исследуемом образце. Аналогичные результаты получались при длинах волн возбуждения люминесценции в интервале 220-395 нм, в том числе при возбуждении УФ светодиодами NSHU591B с длиной волны 365 нм (производство фирмы Nichia Corporation).

Следующий пример реализации способа по третьему объекту настоящего изобретения иллюстрирует определение неизвестной концентрации воды в тяжелой воде.

Али квоты исследуемых растворов (200 мкл) добавляли в ампулы с сенсорным материалом, после чего ампулы снова герметично запечатывали. По истечении часа регистрировали спектры люминесценции в диапазоне 400-800 нм при длине волны возбуждения 254 нм. Спектры при помощи персонального компьютера и программы Microsoft Excel нормировали по интенсивности пика в области 605-625 нм. Определяли интегральные интенсивности пиков в области 535-555 нм и подставляли их в качестве переменной х в полученное при градуировке уравнение прямой у=kx+b. По указанной формуле определяли у как содержание воды в исследуемом растворе в объемных процентах.

Таким образом, данное изобретение, помимо расширения арсенала технических средств, обеспечивает также упрощение и удешевление способа определения содержания воды в тяжелой воде и органических апротонных растворителях.

Похожие патенты RU2703227C1

название год авторы номер документа
Способ получения эмиссионного слоя на основе соединений редкоземельных элементов и органический светоизлучающий диод 2017
  • Уточникова Валентина Владимировна
  • Ващенко Андрей Александрович
  • Латипов Егор Викторович
  • Асландуков Андрей Николаевич
  • Горячий Дмитрий Олегович
  • Далингер Александр Игоревич
  • Вембрис Айварс
  • Петрашкевич Марек
  • Вацадзе Сергей Зурабович
  • Кузьмина Наталия Петровна
RU2657497C1
ТРИСДИКЕТОНАТНЫЕ КОМПЛЕКСЫ ЛАНТАНИДОВ С ЛИГАНДАМИ ПИРИДИНОВОГО РЯДА В КАЧЕСТВЕ ЛЮМИНОФОРОВ И СПОСОБ ИХ ПОЛУЧЕНИЯ 2011
  • Фомина Марина Викторовна
  • Ванников Анатолий Вениаминович
  • Лыпенко Дмитрий Александрович
  • Мальцев Евгений Иванович
  • Позин Сергей Игоревич
  • Дмитриев Артём Владимирович
  • Алфимов Михаил Владимирович
  • Громов Сергей Пантелеймонович
RU2463304C1
ПОЛИМЕРНЫЙ ЛИГАНД С АНТРАНИЛАМИДНЫМИ ЗВЕНЬЯМИ В ОСНОВНОЙ ЦЕПИ И МЕТАЛЛ-ПОЛИМЕРНЫЙ КОМПЛЕКС, ВКЛЮЧАЮЩИЙ ТАКОЙ ЛИГАНД 2007
  • Гойхман Михаил Яковлевич
  • Подешво Ирина Владимировна
  • Якиманский Александр Вадимович
  • Кудрявцев Владислав Владимирович
  • Ананьева Татьяна Дмитриевна
  • Некрасова Татьяна Николаевна
  • Краковяк Марк Григорьевич
  • Ануфриева Елизавета Викторовна
  • Гофман Иосиф Владимирович
  • Смыслов Руслан Юрьевич
RU2352594C2
ЛЮМИНЕСЦЕНТНЫЙ КОМПЛЕКС ЛАНТАНИДА И ИЗДЕЛИЯ И ЧЕРНИЛА, СОДЕРЖАЩИЕ ТАКОЙ ЛЮМИНЕСЦЕНТНЫЙ КОМПЛЕКС 2013
  • Томас Фредерик
  • Лапорт Сесиль
RU2632030C2
Люминесцентный композитный материал на основе комплексов Eu(III) и способ его получения 2019
  • Лобанов Андрей Николаевич
  • Коваленко Константин Васильевич
  • Тайдаков Илья Викторович
RU2789111C2
Способ создания люминесцентного красителя QR кода для маркировки изделий 2023
  • Юй Сяолинь
  • Потапов Андрей Сергеевич
  • Федин Владимир Петрович
RU2823293C1
N,N’-ДИЭТИЛ- N,N’-ДИ(2-БРОМ-4-R-ФЕНИЛ)ДИАМИДЫ 2,2’-БИПИРИДИЛ-6,6’-ДИКАРБОНОВОЙ КИСЛОТЫ И СПОСОБ ИХ ПОЛУЧЕНИЯ, ЦИКЛИЗАЦИЯ ПОЛУЧЕННЫХ АМИДОВ С ОБРАЗОВАНИЕМ 6,6’-ДИЭТИЛ-9,9’-ДИR-ДИБЕНЗО[F]-1,7-НАФТИРИДИН-5,5’(6Н,6’H)-ДИОНОВ 2016
  • Иванов Алексей Владимирович
  • Борисова Наталия Евгеньевна
  • Решетова Марина Дмитриевна
  • Харчева Анастасия Витальевна
  • Пацаева Светлана Викторовна
  • Картавова Кристина Евгеньевна
RU2647578C1
Способ определения летучих органических комплексонов ионов европия 2020
  • Ганшин Владимир Михайлович
  • Осин Николай Сергеевич
  • Соколов Александр Сергеевич
  • Аслиян Сергей Каренович
RU2732329C1
МАРКИРУЮЩАЯ КОМПОЗИЦИЯ И СПОСОБ МАРКИРОВКИ И ИДЕНТИФИКАЦИИ ЦЕННОГО ДОКУМЕНТА 2014
  • Курятников Андрей Борисович
  • Павлов Игорь Васильевич
  • Корнилов Георгий Валентинович
  • Федорова Елена Михайловна
  • Салунин Алексей Витальевич
  • Гончаров Сергей Никитович
  • Миловидов Вячеслав Николаевич
  • Суходоев Александр Александрович
RU2581882C1
ХЕМОСЕНСОРЫ НА ОСНОВЕ КАРБОКСИЛАТОДИБЕНЗОИЛМЕТАНАТОВ ЕВРОПИЯ(II) ДЛЯ ОПРЕДЕЛЕНИЯ АММИАКА И АМИНОВ 2019
  • Мирочник Анатолий Григорьевич
  • Петроченкова Наталья Владимировна
RU2734499C1

Иллюстрации к изобретению RU 2 703 227 C1

Реферат патента 2019 года СЕНСОРНЫЙ ЛЮМИНЕСЦИРУЮЩИЙ МАТЕРИАЛ, СПОСОБ ЕГО ПОЛУЧЕНИЯ И СПОСОБ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ВОДЫ В ИССЛЕДУЕМОЙ ЖИДКОСТИ

Изобретение относится к созданию аналитических приборов для определения содержания воды в тяжелой воде и апротонных растворителях. Описывается сенсорный люминесцентный материал, люминесцирующий при возбуждении ультрафиолетовым излучением в диапазоне 220-395 нм и являющийся смешанно-металлическим комплексом европия (Eu) и тербия (Tb) с азолкарбоновой кислотой. Указанный материал имеет формулу EuxTb1-x (A), где 0,1<х<0,66 - мольная доля тербия в смеси с европием в составе комплекса, A - азолкарбоновая кислота, одна из которой: 1,2,3-триазол-4,5-дикарбоновая, 1Н-имидазол-4,5-дикарбоновая, 1Н-пиразол-3,5-дикарбоновая кислота. Описываются также: способ получения указанного материала, способ определения содержания воды в исследуемой жидкости, такой как тяжелая вода. Изобретение обеспечивает упрощение и удешевление способа определения содержания воды в тяжелой воде при расширении арсенала технических средств для создания и использования сенсорного люминесцентного материала. 3 н. и 4 з.п. ф-лы, 2 ил., 3 пр.

Формула изобретения RU 2 703 227 C1

1. Сенсорный люминесцентный материал, люминесцирующий при возбуждении ультрафиолетовым излучением в диапазоне 220-395 нм и являющийся смешанно-металлическим комплексом европия (Eu) и тербия (Tb) с азолкарбоновой кислотой формулы EuxTb1-x (A), где 0,1<х<0,66 - мольная доля тербия в смеси с европием в составе упомянутого комплекса, A - азолкарбоновая кислота, одна из которой: 1,2,3-триазол-4,5-дикарбоновая, 1Н-имидазол-4,5-дикарбоновая, 1Н-пиразол-3,5-дикарбоновая кислота.

2. Способ получения сенсорного люминесцентного материала по п. 1, в котором:

готовят водный раствор производной упомянутой азолкарбоновой кислоты;

добавляют в полученный раствор заданные объемы водных растворов солей TbCl3 и EuCl3;

нагревают полученную смесь в автоклаве в заданном режиме до получения суспензии;

отделяют полученную суспензию, являющуюся упомянутым сенсорным люминесцентным материалом.

3. Способ по п. 2, в котором упомянутый водный раствор производной азолкарбоновой кислоты кипятят до ее полного растворения.

4. Способ по п. 2, в котором упомянутую суспензию после ее отделения от раствора:

фильтруют под вакуумом;

промывают отфильтрованный осадок;

нагревают промытый осадок с одновременной откачкой сосуда вакуумным насосом;

охлаждают высушенный осадок в эксикаторе над Р2О5.

5. Способ по п. 4, в котором упомянутый отфильтрованный осадок промывают последовательно дистиллированной водой, этанолом и диэтиловым эфиром.

6. Способ определения содержания воды в тяжелой воде, в котором:

отбирают образец упомянутой тяжелой воды;

смешивают отобранный образец с заданным количеством сенсорного люминесцентного материала по п. 1;

облучают смешанный образец ультрафиолетовым излучением с длиной волны в диапазоне 220-395 нм;

определяют содержание воды в упомянутом образце по величине отношения интенсивности люминесценции на длине волны 546 нм к интенсивности люминесценции на длине волны 615 нм.

7. Способ по п. 6, в котором измеренный спектр люминесценции нормируют на единицу по отношению к интенсивности люминесценции на длине волны 615 нм.

Документы, цитированные в отчете о поиске Патент 2019 года RU2703227C1

Разнолигандные фторзамещенные ароматические карбоксилаты лантанидов, проявляющие люминесцентные свойства, и органические светодиоды на их основе 2017
  • Уточникова Валентина Владимировна
  • Ващенко Андрей Александрович
  • Калякина Алена Сергеевна
  • Солодухин Николай Николаевич
  • Асландуков Андрей Николаевич
  • Штефан Брезе
  • Кузьмина Наталия Петровна
RU2657496C1

RU 2 703 227 C1

Авторы

Белоусов Юрий Александрович

Гончаренко Виктория Евгеньевна

Дроздов Евгений Анатольевич

Тайдаков Илья Викторович

Лобанов Андрей Николаевич

Даты

2019-10-15Публикация

2018-07-04Подача