Перечень последовательностей
Настоящее изобретение зарегистрировано вместе с перечнем последовательностей в электронном формате. Перечень последовательностей представлен в виде файла под названием BIOL0252WOSEQ_ST25.txt, созданного 27 апреля 2015 года, размером около 636 Кб. Информация о перечне последовательностей в электронном формате в полном объеме включена в настоящий документ посредством ссылки.
Область техники
Предложены соединения, композиции и способы снижения экспрессии мРНК и белка прекалликреина (ПКП) плазмы человека у животного. Такие композиции и способы пригодны для лечения, предупреждения или облегчения воспалительных и тромбоэмболических состояний.
Уровень техники
Прекалликреин плазмы (ПКП) является прекурсором калликреина плазмы (РК), который кодируется геном KLKB1. ПКП представляет собой гликопротеин, участвующий в поверхностно-зависимой активации коагуляции крови, фибринолизе, генерации кинина и воспалении. Фактор ХIIа превращает ПКП в PK путем расщепления внутренней пептидной связи Arg-Ile. PK высвобождает кинины из кининогенов, а также генерирует плазмин из плазминогена. PK является членом кинин-калликреинового пути, который состоит из нескольких белков, играющих роль в воспалении, контроле кровяного давления, коагуляции и боли.
Сущность изобретения
В данном описании предложены соединения, композиции и способы модулирования экспрессии мРНК и белка ПКП. В некоторых вариантах реализации изобретения соединения, пригодные для модуляции экспрессии мРНК и белка ПКП, представляют собой антисмысловые соединения. В некоторых вариантах реализации изобретения антисмысловые соединения представляют собой антисмысловые олигонуклеотиды.
В некоторых вариантах реализации изобретения модуляция может происходить в клетке или ткани. В некоторых вариантах реализации изобретения клетки или ткани находятся в организме животного. В некоторых вариантах реализации животное представляет собой человека. В некоторых вариантах реализации изобретения уровни мРНК ПКП снижаются. В некоторых вариантах реализации изобретения уровни белка ПКП снижаются. Подобные сокращения могут возникать в зависимости от времени или в зависимости от дозы.
Также предложены соединения, композиции и способы, пригодные для предупреждения, лечения и облегчения протекания заболеваний, расстройств и состояний, связанных с ПКП. В некоторых вариантах реализации изобретения такие связанные с ПКП заболевания, расстройства и состояния представляют собой воспалительные заболевания. В некоторых вариантах реализации изобретения воспалительное заболевание может быть острым или хроническим воспалительным заболеванием. В некоторых вариантах реализации изобретения такие воспалительные заболевания могут включать наследственный ангионевротический отек (НАЕ), отек, ангионевротический отек, припухлость, ангионевротический отек век, отек глаза, отек желтого пятна и отек мозга. В некоторых вариантах реализации изобретения такие связанные с ПКП заболевания, расстройства, и состояния представляют собой тромбоэмболические заболевания. В некоторых вариантах реализации изобретения такие тромбоэмболические заболевания могут включать тромбоз, эмболию, тромбоэмболию, тромбоз глубоких вен, легочную эмболию, инфаркт миокарда, инсульт и инфаркт.
Такие заболевания, расстройства и патологические состояния могут в совокупности иметь один или несколько факторов риска, причин или последствий.
Некоторые факторы риска и причины развития воспалительного заболевания включают генетическую предрасположенность к воспалительному заболеванию и факторы внешней среды. В некоторых вариантах реализации изобретения у субъекта присутствует мутантный ген ингибитора комплемент 1 эстеразы (C1-INH) или мутантный ген Фактора 12. В некоторых вариантах реализации изобретения субъект принимал или принимает ингибиторы ангиотензин-превращающего фермента (ингибиторы АСЕ) или блокаторы рецептора ангиотензина II (ARB). В некоторых вариантах реализации изобретения у субъекта возникала аллергическая реакция, ведущая к ангионевротическому отеку. В некоторых вариантах реализации изобретения у субъекта присутствует НАЕ типа I. В некоторых вариантах реализации изобретения у субъекта присутствует НАЕ типа II. В некоторых вариантах реализации изобретения у субъекта присутствует НАЕ типа III.
Некоторые варианты исхода, связанные с развитием воспалительного заболевания, включают отек/припухлость различных частей тела, включая конечности (т.е., кисти, стопы, руки, ноги), кишечник (брюшная полость), лицо, половые органы, гортань (т.е., голосовой аппарат); сосудистую проницаемость; транссудацию; генерализованное воспаление; боль в животе; вздутие; рвоту; диарею; кожный зуд; респираторные (астматические) реакции; ринит; анафилаксию; бронхоконстрикцию; гипотензию; кому; и смерть.
Некоторые факторы риска и причины развития тромбоэмболического заболевания включают генетическую предрасположенность к тромбоэмболическому заболеванию, ограниченную подвижность, хирургическое вмешательство (особенно, ортопедическое хирургическое вмешательство), злокачественное новообразование, беременность, пожилой возраст, применение пероральных контрацептивов, мерцание предсердий, тромбоэмболическое состояние в анамнезе, хроническое воспалительное заболевание и унаследованные или приобретенные протромботические расстройства свертываемости. Некоторые варианты исхода, связанные с развитием тромбоэмболического состояния, включают уменьшение тока крови через пораженный сосуд, гибель ткани и смерть.
В некоторых вариантах реализации изобретения способы лечения включают введение антисмыслового соединения против ПКП индивидууму, который нуждается в этом. В некоторых вариантах реализации изобретения способы лечения включают введение антисмысловых олигонуклеотидов против ПКП индивидууму, нуждающемуся в этом.
Подробное описание
Следует понимать, что изложенное выше общее описание и следующее подробное описание являются лишь примерными и пояснительными, и не являются ограничивающими заявленное изобретение. В настоящем документе использование единственного числа включает множественное число, если специально не указано иное. При использовании в настоящем документе, термин «или» означает «и/или», если не указано иное. Кроме того, использование термина «включая», а также других форм, таких как «включает» и «включенный», не является ограничивающим. Также, такие термины как «элемент» или «компонент» охватывают как элементы и компоненты, содержащие одну единицу, так и элементы и компоненты, которые содержат более одной субъединицы, если специально не указано иное.
При отсутствии конкретных определений, номенклатура, используемая в связи с ними, а также в связи с приемами и методиками аналитической химии, синтетической органической химии, а также медицинской и фармацевтической химии, описанная в настоящем документе, является общеизвестной и общепринятой в данной области техники. Для химического синтеза и химического анализа могут быть использованы стандартные методики. Некоторые такие методики и приемы представлены, например, в публикациях "Carbohydrate Modifications in Antisense Research" под редакцией Sangvi и Cook, American Chemical Society, федеральный округ Вашингтон, 1994; "Remington's Pharmaceutical Sciences," Mack Publishing Co., Истон, штат Пенсильвания, 21е издание, 2005; и "Antisense Drug Technology, Principles, Strategies, and Applications" под редакцией Stanley Т. Crooke, CRC Press, Бока-Ратон, штат Флорида; а также в книге Sambrook et al., "Molecular Cloning, A laboratory Manual," 2e издание, Cold Spring Harbor Laboratory Press, 1989, которые включены в настоящий документ посредством ссылки для всех целей. Если это допустимо, все патенты, заявки, опубликованные заявки и другие публикации, а также другие данные, упоминаемые в тексте настоящего описания, включены в настоящий документ посредством ссылки в полном объеме.
Названия разделов, используемые в настоящем документе, предназначены лишь для организационных целей, и их не следует толковать как ограничение описанного объекта изобретения. Все документы или части документов, цитируемые в настоящей заявке, включая, но не ограничиваясь ими, патенты, патентные заявки, статьи, книги и трактаты, в явной форме включены в настоящий документ посредством ссылки в отношении частей документов, обсуждаемых в данном описании, а также в полном объеме.
Определения
При отсутствии конкретных определений, номенклатура, используемая в связи с ними, а также в связи с приемами и методиками аналитической химии, синтетической органической химии, а также медицинской и фармацевтической химии, описанная в настоящем документе, является общеизвестной и общепринятой в данной области техники. Для химического синтеза и химического анализа могут быть использованы стандартные методики. В допустимых случаях, все патенты, заявки, опубликованные заявки и другие публикации, инвентаризационные номера GENBANK и связанная информация о последовательностях, доступная через базы данных, такие как Национальный Центр Биотехнологической Информации (NCBI) и другие данные, на которые присутствует ссылка в данном описании, включены посредством ссылки в части документа, обсуждаемой в данном описании, а также в полном объеме.
Если не указано иное, следующие термины имеют следующие значения:
«2'-O-метоксиэтил» (также 2'-МОЕ и 2'-ОСН2СН2-ОСН3 и МОЕ) обозначает модификацию О-метоксиэтил в положении 2' фуранозного кольца. 2'-O-метоксиэтил-модифицированный сахар представляет собой модифицированный сахар.
«2'-O-метоксиэтил-модифицированный нуклеозид» (также «2'-МОЕ нуклеозид») обозначает нуклеозид, содержащий модифицированный 2'-МОЕ сахарный фрагмент.
«2'-замещенный нуклеозид» означает нуклеозид, содержащий отличный от Н или ОН заместитель в 2'-положении фуранозного кольца. В некоторых вариантах реализации 2'-замещенные нуклеозиды включают нуклеозиды с бициклическими сахарными модификациями.
«2'-Дезоксинуклеозид» обозначает нуклеозид, содержащий водород в положении 2' сахарной части нуклеозида.
«3' Сайт-мишень» обозначает нуклеотид нуклеиновой кислоты-мишени, комплементарный 3'-крайнему нуклеотиду конкретного антисмыслового соединения.
«5' Сайт-мишень» обозначает нуклеотид нуклеиновой кислоты-мишени, комплементарный 5'-крайнему нуклеотиду конкретного антисмыслового соединения.
«5-метилцитозин» означает цитозин модифицированный метальной группой в 5 положении. 5-метилцитозин представляет собой модифицированное азотистое основание.
«Около» означает в пределах ±7% от значения. Например, если указано «соединения вызывают ингибирование ПКП по меньшей мере около 70%», это означает, что уровни ПКП ингибируются в пределах диапазона от 63% до 77%.
«Вводятся совместно» относится к совместному введению двух фармацевтических агентов любым способом, при котором фармакологические эффекты обоих проявляются у пациента одновременно. Совместное применение не требует, чтобы оба фармацевтических агента вводились в одной фармацевтической композиции, в одной лекарственной форме или одним способом введения. Эффекты обоих фармацевтических агентов не обязательно должны проявляться одновременно. Эффекты должны только перекрываться в промежутке времени и не обязательно должны иметь одинаковую продолжительность.
«Введение» означает обеспечение фармацевтическим агентом животного и включает, но не ограничивается этим, введение медицинским работником и самостоятельное введение.
«Алкил» в данном контексте означает насыщенный прямой или разветвленный углеводородный радикал, содержащий до двадцати четырех атомов углерода. Примеры алкильных групп включают, без ограничения, метил, этил, пропил, бутил, изопропил, н-гексил, октил, децил, додецил и т.п. Алкильные группы обычно содержат от 1 до около 24 атомов углерода, более часто от 1 до около 12 атомов углерода (С1-С12 алкил), более предпочтительно от 1 до около 6 атомов углерода.
В данном контексте «алкенил» означает прямой или разветвленный углеводородный радикал, содержащий до двадцати четырех атомов углерода и имеющий по меньшей мере одну двойную углерод-углеродную связь. Примеры алкенильных групп включают, без ограничения, этенил, пропенил, бутенил, 1-метил-2-бутен-1-ил, диены, такие как 1,3-бутадиен и т.п. Алкенильные группы обычно содержат от 2 до около 24 атомов углерода, более часто от 2 до около 12 атомов углерода, более предпочтительно от 2 до около 6 атомов углерода. Алкенильные группы, используемые в настоящем документе, могут необязательно содержать одну или более дополнительных групп заместителей.
В данном контексте «алкинил» означает прямой или разветвленный углеводородный радикал, содержащий до двадцати четырех атомов углерода и имеющий по меньшей мере одну тройную углерод-углеродную связь. Примеры алкинильных групп включают, без ограничения, этинил, 1-пропинил, 1-бутинил и т.п. Алкинильные группы обычно содержат от 2 до около 24 атомов углерода, более часто от 2 до около 12 атомов углерода, более предпочтительно от 2 до около 6 атомов углерода. Алкинильные группы, используемые в настоящем документе, могут необязательно содержать одну или более дополнительных групп заместителей.
В данном контексте «ацил» означает радикал, образованный за счет удаления гидроксильной группы от органической кислоты, и имеет общую формулу -С(O)-Х, где X обычно является алифатическим, алициклическим или ароматическим. Примеры включают алифатические карбонилы, ароматические карбонилы, алифатические сульфонилы, ароматические сульфинилы, алифатические сульфинилы, ароматические фосфаты, алифатические фосфаты и т.п. Ацильные группы, используемые в настоящем документе, могут необязательно содержать дополнительные группы заместителей.
В данном контексте «алициклическая» означает циклическую кольцевую систему, в которой кольцо является алифатическим. Кольцевая система может содержать одно или более колец, при этом по меньшей мере одно кольцо является алифатическим. Предпочтительные алициклические системы включают кольца, имеющие от около 5 до около 9 атомов углерода в кольце. Алициклические группы, используемые в настоящем документе, могут необязательно содержать дополнительные группы заместителей.
В данном контексте «алифатический» означает прямой или разветвленный углеводородный радикал, содержащий до двадцати четырех атомов углерода, в котором насыщенность между любыми двумя атомами углерода представляет собой одинарную, двойную или тройную связь. Алифатическая группа предпочтительно содержит от 1 до около 24 атомов углерода, более часто от 1 до около 12 атомов углерода, при этом более предпочтительно от 1 до около 6 атомов углерода. Прямая или разветвленная цепь алифатической группы может быть прервана одним или более гетероатомами, которые включают азот, кислород, серу и фосфор. Такие алифатические группы, прерванные гетероатомами, включают, без ограничения, полиалкокси, такие как полиалкиленгликоли, полиамины и полиимины. Алифатические группы, используемые в настоящем документе, могут необязательно содержать дополнительные группы заместителей.
В данном контексте «алкокси» означает радикал, образованный между алкильной группой и атомом кислорода, при этом атом кислорода используется для присоединения алкокси-группы к исходной молекуле. Примеры алкокси-групп включают, без ограничения, метокси, этокси, пропокси, изопропокси, н-бутокси, втор-бутокси, трет-бутокси, н-пентокси, неопентокси, н-гексокси и т.п. Алкокси-группы, используемые в настоящем документе, могут необязательно содержать дополнительные группы заместителей.
В данном контексте «аминоалкил» означает аминозамещенный С1-С12 алкильный радикал. Алкильная часть указанного радикала образует ковалентную связь с исходной молекулой. Аминогруппа может быть расположена в любом положении, и аминоалкильная группа может быть замещена дополнительной группой заместителя в алкильной и/или амино-части.
В данном контексте «аралкил» и «арилалкил» означает ароматическую группу, которая ковалентно связана с С1-С12 алкильным радикалом. Часть алкильного радикала образовавшейся аралкильной (или арилалкильной) группы образует ковалентную связь с исходной молекулой. Примеры включают, без ограничения, бензил, фенетил и т.п. Аралкильные группы, используемые в настоящем документе, могут необязательно содержать дополнительные группы заместителей, присоединенные к алкильной, арильной или к обеим группам, которые образуют указанную радикальную группу.
В данном контексте «арил» и «ароматический» означают радикалы моно- или полициклической карбоциклической кольцевой системы, имеющие одно или более ароматических колец. Примеры арильных групп включают, без ограничения, фенил, нафтил, тетрагидронафтил, инданил, инденил и т.п. Предпочтительные арильные кольцевые системы имеют от около 5 до около 20 атомов углерода в одном или более кольцах. Арильные группы, используемые в настоящем документе, могут необязательно содержать дополнительные группы заместителей.
«Улучшение» относится к уменьшению, замедлению, остановке или инвертированному течению по меньшей мере одного показателя тяжести состояния или заболевания. Степень тяжести показателей может быть определена субъективными или объективными показателями, которые известны специалистам в данной области техники.
«Животное» относится к человеку или животному, не являющемуся человеком, включающему, но не ограничивающемуся ими, мышей, крыс, кроликов, собак, кошек, свиней и приматов, включая, но не ограничиваясь ими, обезьян и шимпанзе.
«Антисмысловая активность» означает любую обнаруживаемую или поддающуюся измерению активность, обусловленную гибридизацией антисмыслового соединения с его нуклеиновой кислотой-мишенью. В неких вариантах реализации антисмысловая активность представляет собой уменьшение количества или экспрессии нуклеиновой кислоты-мишени или белка, кодируемого такой нуклеиновой кислотой-мишенью. «Антисмысловое соединение» обозначает олигомерное соединение, которое способно к гибридизации с нуклеиновой кислотой-мишенью посредством водородной связи. Примеры антисмысловых соединений включают одноцепочечные и двухцепочечные соединения, такие как антисмысловые олигонуклеотиды, миРНК, мшРНК, оцРНК и соединения на их основе.
«Антисмысловое соединение» означает олигомерное соединение, способное к гибридизации, к целевой нуклеиновой кислоте за счет водородных связей. Примеры антисмысловых соединений включают одноцепочечные и двухцепочечные соединения, такие как антисмысловые олигонуклеотиды, миРНК, мшРНК, оцРНК и соединения на их основе.
«Антисмысловое ингибирование» означает снижение уровней целевой нуклеиновой кислоты в присутствии антисмыслового соединения комплементарного целевой нуклеиновой кислоте по сравнению с уровнями целевой нуклеиновой кислоты или в отсутствие антисмыслового соединения. «Антисмысловые механизмы» представляют собой все механизмы, принимающие участие в гибридизации соединения с нуклеиновой кислотой-мишенью, причем результат или эффект гибридизации представляет собой разложение мишени или оккупацию мишени с сопутствующей остановкой клеточного аппарата, включая, например, транскрипцию или сплайсинг.
«Антисмысловые механизмы» представляют собой все те механизмы гибридизации соединения с целевой нуклеиновой кислотой, отличающиеся тем, что результат или эффект гибридизации или целевой деградации, или целевой занятости с сопутствующей остановкой клеточных механизмов, при участии, например, транскрипции или сплайсинга.
«Антисмысловой олигонуклеотид» означает одноцепочечный олигонуклеотид, содержащий последовательности, обеспечивающие гибридизацию соответствующему сегменту целевой нуклеиновой кислоты. «Комплементарность основания» относится к способности спаривания конкретной пары азотистых оснований антисмыслового олигонуклеотида с соответствующими азотистыми основаниями в нуклеиновой кислоте-мишени (т.е. гибридизации), опосредованной уотсон-криковским, хугстиновским или обратным хугстиновским водородным связыванием между соответствующими азотистыми основаниями.
«Комплементарность основания» относится к способности спаривания конкретной пары азотистых оснований антисмыслового олигонуклеотида с соответствующими азотистыми основаниями в нуклеиновой кислоте-мишени (т.е. гибридизации), опосредованной уотсон-криковским, хугстиновским или обратным хугстиновским водородным связыванием между соответствующими азотистыми основаниями.
«Бициклический сахар» означает фуранозное кольцо, модифицированное образованием мостика между двумя атомами. Бициклический сахар представляет собой модифицированный сахар.
«Бициклический нуклеозид» (также БНК) означает нуклеозид, содержащий фрагмент сахара, содержащий мостик, соединяющий два атома углерода сахарного кольца, в результате чего образуется бициклическая кольцевая система. В некоторых вариантах реализации, мостик соединяет 4'-углерод и 2'-углерод сахарного кольца.
«Кэп-структура» или «кэп-терминальный фрагмент» означает химические модификации, которые были сделаны на любом конце антисмыслового соединения.
«Углевод» означает природный углевод, модифицированный углевод или производное углевода.
«Углеводный кластер» означает соединение, имеющее один или более углеводных остатков, присоединенных к скелету или линкерной группе, (см., например, Maier et al., "Synthesis of Antisense Oligonucleotides Conjugated to a Multivalent Carbohydrate Cluster for Cellular Targeting," Bioconjugate Chemistry, 2003, (14): 18-29, полное содержание которой включено в настоящий документ посредством ссылки, или Rensen et al., "Design and Synthesis of Novel N-Acetylgalactosamine-Terminated Glycolipids for Targeting of Lipoproteins to the Hepatic Asiaglycoprotein Receptor," J. Med. Chem. 2004, (47): 5798-5808, где представлены примеры углеводных сопряженных кластеров).
«Производное углевода» означает любое соединение, которое может быть синтезировано с использованием углевода в качестве исходного материала или промежуточного соединения.
«cEt» или «стерически затрудненный этил» означает бициклический нуклеозид, содержащий сахарный фрагмент, содержащий мостик, соединяющий 4'-углерод и 2'-углерод, причем мостик имеет формулу: 4'-СН(СН3)-O-2'.
«cEt модифицированный нуклеозид» (также «ограниченный этилнуклеозид») обозначает нуклеозид, содержащий бициклический сахарный фрагмент, который содержит мостик 4'-СН(СН3)-О-2'.
«Химически различимый участок» относится к участку антисмыслового соединения, который в некотором роде химически отличается от другого участка того же антисмыслового соединения. Например, участок, содержащий 2'-О-метоксиэтиловые нуклеозиды, является химически отличным от участка, содержащего нуклеозиды без 2'-О-метоксиэтиловых модификаций.
«Химическая модификация» означает химическое отличие в соединении, по сравнению с природным аналогом. Химические модификации олигонуклеотидов включают нуклеозидные модификации (включая модификации сахарного фрагмента и модификации азотистого основания) и модификации межнуклеозидных связей. В отношении олигонуклеотида химическая модификация включает не только отличия в последовательности азотистых оснований.
«Химерное антисмысловое соединение» означает антисмысловое соединение, которое имеет по меньшей мере два химически различных участка, каждая позиция имеет множество субъединиц.
«Расщепляемая связь» означает любую химическую связь, которая может быть расщеплена. В некоторых вариантах реализации расщепляемая связь выбрана из: амида, полиамида, сложного эфира, эфира, одного или обоих сложных эфиров фосфодиэфира, фосфатного сложного эфира, карбамата, дисульфида или пептида.
«Расщепляемый фрагмент» означает связь или группу, которая может быть расщеплена при физиологических условиях. В некоторых вариантах реализации расщепляемый фрагмент расщепляется внутри клетки или во внутриклеточных отделах, таких как лизосома. В некоторых вариантах реализации расщепляемый фрагмент расщепляется эндогенными ферментами, такими как нуклеазы. В некоторых вариантах реализации расщепляемый фрагмент содержит группу атомов, имеющую один, два, три, четыре или более четырех расщепляемых связей.
«Совместное введение» означает введение двух или более фармацевтических средств индивидууму. Два или более фармацевтических агента могут быть в одной фармацевтической композиции или могут быть в отдельных фармацевтических композициях. Каждый из двух или более фармацевтических агентов может вводиться через те же или различные пути введения. Совместное введение включает параллельное или последовательное введение.
«Комплементарность» означает способность спаривания азотистых оснований первой и второй нуклеиновых кислот.
«Включать», «включает» и «включающий» следует понимать как включение указанной стадии или элемента, или группы элементов или стадий, но не исключение любого другого элемента или стадии, или группы стадий или элементов.
«Конъюгат» или «группа конъюгата» означает атом или группу атомов, связанную с олигонуклеотидом или олигомерным соединением. Как правило, группы конъюгата модифицируют одно или более свойств соединения, к которому они присоединены, включая, но не ограничиваясь ими, свойства фармакодинамики, фармакокинетики, связывания, поглощения, клеточного распределения, клеточного захвата, заряда и/или выведения. «Линкер конъюгата» или «линкер» к контексте группы конъюгата означает часть группы конъюгата, содержащую любой атом или группу атомов и ковалентно связывающую (1) олигонуклеотид с другой частью группы конъюгата или (2) две или более частей группы конъюгата.
Группы конъюгата представлены в настоящем документе как радикалы, обеспечивающие связь для образования ковалентного присоединения к олигомерному соединению, такому как антисмысловой олигонуклеотид. В некоторых вариантах реализации точка присоединения в олигомерном соединении представляет собой 3'-атом кислорода 3'-гидроксильной группы 3'-концевого нуклеозида олигомерного соединения. В некоторых вариантах реализации точка присоединения у олигомерного соединения представляет собой 5'-атом кислорода 5'-гидроксильной группы 5'-концевого нуклеозида олигомерного соединения. В некоторых вариантах реализации связь для образования присоединения к олигомерному соединению представляет собой расщепляемую связь. В некоторых таких вариантах реализации такая расщепляемая связь составляет весь или часть расщепляемого фрагмента.
В некоторых вариантах реализации группы конъюгата содержат расщепляемый фрагмент (например, расщепляемую связь или расщепляемый нуклеозид) и часть углеводного кластера, такую как часть кластера GalNAc. Такая часть углеводного кластера содержит: направляющий фрагмент и необязательно линкер конъюгата. В некоторых вариантах реализации часть углеводного кластера определяют по количеству и сущности лиганда. Например, в некоторых вариантах реализации часть углеводного кластера содержит 3 группы GalNAc и обозначена «GalNAc3». В некоторых вариантах реализации часть углеводного кластера содержит 4 группы GalNAc и обозначена «GalNAc4». Конкретные части углеводных кластеров (имеющие конкретную связку, группы ветвления и линкера конъюгата) описаны в настоящем документе и обозначены римской цифрой с последующим нижним индексом «а». Соответственно, «GalNac3-1a» относится к конкретной части углеводного кластера группы конъюгата, имеющей 3 группы GalNAc и конкретно определенную связку, группы ветвления и линкера. Такой фрагмент углеводного кластера присоединен к олигомерному соединению через расщепляемый фрагмент, такой как расщепляемая связь или расщепляемый нуклеозид.
«Сопряженное соединение» означает любые атомы, группы атомов или группу связанных атомов, подходящую для применения в качестве группы конъюгата. В некоторых вариантах реализации сопряженные соединения могут обладать или влиять на одно или более свойств, включая, но не ограничиваясь ими, свойства фармакодинамики, фармакокинетики, связывания, абсорбции, клеточного распределения, клеточного захвата, заряда и/или выведения.
«Непрерывные азотистые основания» означают азотистые основания, непосредственно примыкающие друг к другу.
«Конструирование» или «разработка» обозначает процесс создания олигомерного соединения, которое специфично гибридизуется с выбранной молекулой нуклеиновой кислоты.
«Разбавитель» означает ингредиент в композиции, в котором отсутствует фармакологическая активность, но который является фармацевтически необходимым или желательным. Например, в препаратах, которые вводят парентерально, разбавитель может быть жидкостью, например, солевым раствором.
«Доза» означает количество указанного фармацевтического агента, предоставляемое при одном введении или в определенный период времени. В некоторых вариантах реализации доза может вводиться в одной, двух или более пилюлях, таблетках или инъекциях. Например, в определенных вариантах реализации, где необходимо подкожное введение, нужная доза требует объема, который не помещается в одной инъекции, поэтому для достижения желаемой дозы могут быть использованы две или более инъекций. В определенных вариантах реализации фармацевтический агент вводят путем инфузии в течение длительного периода времени или непрерывно. Дозы могут быть указаны как количество фармацевтического агента в час, день, неделю, или месяц.
«По ходу транскрипции» обозначает относительное направление в направлении 3' конца или С-конца нуклеиновой кислоты.
«Эффективное количество» в контексте модулирования активности или лечения или предупреждения состояния, означает введение данного количества фармацевтического агента субъекту, нуждающемуся в такой модуляции, лечении или профилактике, или в однократной дозе или как часть серии, которое является эффективным для модуляции данного эффекта, или для лечения или профилактики или улучшения данного состояния. Эффективное количество может варьировать среди индивидуумов в зависимости от здоровья и физического состояния индивидуума, подлежащего лечению, таксономической группы индивидуумов, подлежащих лечению, рецептуры композиции, оценки индивидуального состояния здоровья и других релевантных факторов.
«Эффективность» означает способность производить желаемый эффект.
«Экспрессия» включает в себя все функции, благодаря которым информация, закодированная в гене, преобразуется в структуры, присутствующие и функционирующие в клетке. Такие структуры включают, но не ограничиваются ими, продукты транскрипции и трансляции.
«Полностью комплементарный» или «100% комплементарный» означает, что каждое азотистое основание первой нуклеиновой кислоты имеет комплементарное азотистое основание во второй нуклеиновой кислоте. В некоторых вариантах реализации первая нуклеиновая кислота представляет собой антисмысловое соединение, а нуклеиновая кислота-мишень представляет собой вторую нуклеиновую кислоту.
«Гэпмер» означает химерное антисмысловое соединение, в котором внутренний участок, имеющий множество нуклеозидов, которые поддерживают расщепление РНКазой Н, располагается между внешними участками, имеющими один или несколько нуклеозидов, причем нуклеозиды, составляющие внутренние участки, химически отличаются от нуклеозида или нуклеозидов, составляющих внешние участки. Внутренняя область может быть описана как «гэп», а внешние области могут быть описаны как «крылья».
«Гало» и «галоген» означают атом, выбранный из фтора, хлора, брома и йода.
«Гетероарил» и «гетероароматический» означают радикал, содержащий моно- или полициклическое ароматическое кольцо, кольцевую систему или конденсированную кольцевую систему, в которой по меньшей мере одно из колец является ароматическим и содержит один или более гетероатомов. Гетероарил включает также конденсированные кольцевые системы, включая системы, в которых одно или более из конденсированных колец не содержат гетероатомов. Гетероарильные группы, как правило, содержат один кольцевой атом, выбранный из серы, азота или кислорода. Примеры гетероарильных групп включают, без ограничения, пиридинил, пиразинил, пиримидинил, пирролил, пиразолил, имидазолил, тиазолил, оксазолил, изоксазолил, тиадиазолил, оксадиазолил, тиофенил, фуранил, хинолинил, изохинолинил, бензимидазолил, бензоксазолил, хиноксалинил и т.п. Гетероарильные радикалы могут быть присоединены к исходной молекуле напрямую или через линкерный фрагмент, такой как алифатическая группа или гетероатом. Гетероарильные группы, используемые в настоящем документе, могут необязательно содержать дополнительные группы заместителей.
«Гибридизация» означает соединение комплементарных молекул нуклеиновых кислот. В некоторых вариантах реализации комплементарные молекулы нуклеиновых кислот включают, но не ограничиваются ими, антисмысловое соединение и нуклеиновую кислоту-мишень. В некоторых вариантах реализации комплементарные молекулы нуклеиновых кислот включают, но не ограничиваются ими, антисмысловой олигонуклеотид и нуклеиновую кислоту-мишень.
«Идентификация животного с воспалительным заболеванием» обозначает идентификацию животного, которому поставлен диагноз воспалительного заболевания, или которое предрасположено к развитию воспалительного заболевания. Индивидуумы, предрасположенные к развитию воспалительного заболевания, включают тех, у которых присутствуют один или несколько факторов риска для развития воспалительного заболевания, включая факторы окружающей среды, личный или семейный анамнез, или генетическую предрасположенность к одному или нескольким воспалительным заболеваниям. Такая идентификация может быть выполнена любым способом, включая оценку истории болезни человека и стандартными клиническими испытаниями или оценками, такими как генетическое тестирование.
«Идентификация животного со связанным с ПКП заболеванием» обозначает идентификацию животного, которому поставлен диагноз связанного с ПКП заболевания, или которое предрасположено к развитию связанного с ПКП заболевания. Индивидуумы, предрасположенные к развитию связанного с ПКП заболевания, включают тех, у кого присутствуют один или несколько факторов риска развития связанного с ПКП заболевания, включая личный или семейный анамнез или генетическую предрасположенность к одному или нескольким связанным с ПКП заболеваниям. Такая идентификация может быть выполнена любым способом, включая оценку истории болезни человека и стандартными клиническими испытаниями или оценками, такими как генетическое тестирование.
«Идентификация животного с тромбоэмболическим заболеванием» обозначает идентификацию животного, которому поставлен диагноз тромбоэмболического заболевания, или которое предрасположено к развитию тромбоэмболического заболевания. Индивидуумы, склоненные к развитию тромбоэмболического заболевания, включают тех, у кого присутствуют один или несколько факторов риска развития тромбоэмболического заболевания, включая личный или семейный анамнез или генетическую предрасположенность к одному или нескольким тромбоэмболическим заболеваниям, ограничение подвижности, хирургическое вмешательство (особенно ортопедическое хирургическое вмешательство), злокачественное новообразование, беременность, пожилой возраст, применение пероральных контрацептивов, мерцание предсердий, тромбоэмболическое состояние в анамнезе, хроническое воспалительное заболевание и унаследованные или приобретенные протромботические расстройства свертываемости. Такая идентификация может быть выполнена любым способом, включая оценку истории болезни человека и стандартными клиническими испытаниями или оценками, такими как генетическое тестирование.
«Непосредственно примыкающий» означает, что нет никаких промежуточных элементов между непосредственно примыкающими элементами. «Индивидуум» означает человека или животное, не являющееся человеком, выбранное для лечения или терапии.
«Индивидуум» означает человека или животное, не являющееся человеком, выбранное для лечения или терапии.
«Ингибирование ПКП» обозначает снижение уровня или экспрессии мРНК и/или белка ПКП. В некоторых вариантах реализации изобретения уровни мРНК и/или белка ПКП ингибируются в присутствии антисмыслового соединения, нацеленного на ПКП, включая антисмысловой олигонуклеотид, нацеленный на ПКП, по сравнению с экспрессией мРНК ПКП и/или уровнями белка в отсутствие антисмыслового соединения против ПКП, такого как антисмысловой олигонуклеотид.
«Ингибирование экспрессии или активности» означает снижение или блокаду экспрессии или активности и не обязательно говорит о полном прекращении экспрессии или активности.
«Межнуклеозидная связь» относится к химической связи между нуклеозидами.
«Межнуклеозидная нейтральная линкерная группа» означает нейтральную линкерную группу, которая напрямую связывает два нуклеозида.
«Межнуклеозидная фосфорная линкерная группа» означает фосфорную линкерную группу, которая напрямую связывает два нуклеозида.
«Линкерный мотив» означает характерный участок линкерных модификаций в олигонуклеотиде или его области. Нуклеозиды такого олигонуклеотида могут быть модифицированными или немодифицированными. Если не указано иное, мотивы, описывающие в настоящем документе только линкеры, представляют собой линкерные мотивы. Следовательно, в таких случаях нуклеозиды не ограничены.
«Связанные нуклеозиды» означают соседние нуклеозиды, связанные между собой межнуклеозидной связью.
«Заблокированная нуклеиновая кислота» или «ЗНК» или «ЗНК нуклеозид» означает, что мономеры нуклеиновой кислоты имеют мостик, соединяющий два атома углерода между 4' и 2' положениями нуклеозидной сахарной единицы, тем самым образуя бициклический сахар. Примеры такого бициклического сахара включают, но не ограничиваются ими, A) α-L-метиленокси (4'-СН2-О-2') ЗНК, (В) β-D-метиленокси (4'-СН2-O-2') ЗНК, (С) этиленокси (4'-(СН2)2-O-2') ЗНК, (D) аминоокси (4'-CH2-O-N(R)-2') ЗНК и (Е) оксиамино (4'-CH2-N(R)-O-2') LNA, как показано ниже.
В данном контексте соединения ЗНК включают, но не ограничиваются ими, соединения, имеющие по меньшей мере один мостик между 4' и 2' положениями сахара, причем каждый из мостиков независимо содержит 1 или от 2 до 4 связанных групп, независимо выбранных из -[C(R1)(R2)]n-, -C(R1)=C(R2)-, -C(R1)=N-, -C(=NR1)-, -C(=O)-, -C(=S)-, -O-, -Si(R1)2-, -S(=O)x- и -N(R1)-; где: x равен 0, 1 или 2; n равен 1, 2, 3 или 4; каждый R1 и R2 независимо представляет собой Н, защитную группу, гидроксил, C1-C12 алкил, замещенный С1-С12 алкил, С2-С12 алкенил, замещенный С2-С12 алкенил, С2-С12 алкинил, замещенный С2-С12 алкинил, С5-С20 арил, замещенный С5-С20 арил, гетероциклический радикал, замещенный гетероциклический радикал, гетероарил, замещенный гетероарил, С5-С7 алициклический радикал, замещенный С5-С7 алициклический радикал, галоген, OJ1, NJ1J2, SJ1, N3, COOJ1, ацил (С(=O)-Н), замещенный ацил, CN, сульфонил (S(=O)2-J1) или сульфоксил (S(=O)-J1); и каждый J1 и J2 независимо представляет собой Н, С1-С12 алкил, замещенный С1-С12 алкил, С2-С12 алкенил, замещенный С2-С12 алкенил, С2-С12 алкинил, замещенный C2-C12 алкинил, С5-С20 арил, замещенный С5-С20 арил, ацил (С(=O)-Н), замещенный ацил, гетероциклический радикал, замещенный гетероциклический радикал, С1-С12 аминоалкил, замещенный С1-С12 аминоалкил или защитную группу.
Примеры 4'-2' мостиковых групп, входящих в определение ЗНК, включают, но не ограничиваются ими, одну из формул: -[C(R1)(R2)]n-, -[C(R1)(R2)]n-O-, -C(R1R2)-N(R1)-O- или -C(R1R2)-O-N(R1)-. Кроме того, другие мостиковые группы, входящие в определение ЗНК, представляют собой мостики 4'-СН2-2', 4'-(СН2)2-2', 4'-(СН2)3-2', 4'-СН2-O-2', 4'-(СН2)2-O-2', 4'-CH2-O-N(R1)-2' и 4'-CH2-N(R1)-O-2'-, где каждый R1 и R2 независимо представляет собой Н, защитную группу или C1-C12 алкил.
Также в определение ЗНК согласно настоящему изобретению включены ЗНК, в которых 2'-гидроксильная группа рибозильного сахарного кольца соединена с 4' атомом углерода сахарного кольца, с образованием таким образом мостика метиленокси (4'-СН2-O-2'), формируя бициклический сахарный фрагмент. Мостик также может быть метиленовой группой (-СН2-), соединяющей атом кислорода 2' и атом углерода 4', для которой используется термин метиленокси (4'-СН2-O-2') ЗНК. Кроме того, в случае бициклического сахарного фрагмента, содержащего этиленовую мостиковую группу в данном положении, применяется термин этиленокси (4'-СН2СН2-O-2') ЗНК. α -L-метиленокси (4'-СН2-O-2'), изомер метиленокси (4'-СН2-O-2') ЗНК, также попадает под определение ЗНК в данном контексте.
«Несоответствие» или «некомплементарное азотистое основание» относится к случаю, когда азотистое основание первой нуклеиновой кислоты не способно связываться с соответствующим азотистым основанием второй или нуклеиновой кислоты-мишени.
«Модифицированная межнуклеозидная связь» обозначает замену или любое изменение природной межнуклеозидной связи (т.е. фосфодиэфирной межнуклеозидной связи).
«Модифицированное азотистое основание» обозначает любое азотистое основание, отличное от аденина, цитозина, гуанина, тимидина (также известного как 5-метилурацил) или урацила. «Немодифицированное азотистое основание» означает пуриновые основания: аденин (А) и гуанин (G), и пиримидиновые основания: тимин (Т), цитозин (С) и урацил (U).
«Модифицированный нуклеозид» обозначает нуклеозид, содержащий независимо модифицированный сахарный фрагмент и/или модифицированное азотистое основание.
«Модифицированный нуклеотид» означает нуклеотид, содержащий независимо модифицированный сахарный фрагмент, модифицированную межнуклеозидную связь и/или модифицированное азотистое основание.
«Модифицированный олигонуклеотид» обозначает олигонуклеотид, содержащий по меньшей мере одну модифицированную межнуклеозидную связь, модифицированный сахар и/или модифицированное азотистое основание.
«Модифицированный сахар» означает замещение и/или изменение любого из природных сахарных фрагментов.
«Моно- или полициклическая кольцевая система» включает все кольцевые системы, выбранные из одиночных или полициклических радикальных кольцевых систем, в которых указанные кольца конденсированы или связаны, и включает одиночные или смешанные кольцевые системы, индивидуально выбранные из алифатических, алициклических, арильных, гетероарильных, аралкильных, арилалкильных, гетероциклических, гетероарильных, гетероароматических и гетероарилалкильных. Такие моно- и полициклические структуры могут содержать кольца, каждое из которых имеет одинаковую степень насыщенности, или каждое независимо имеет переменные степени насыщенности, включая полностью насыщенные, частично насыщенные или полностью ненасыщенные. Каждое кольцо может содержать кольцевые атомы, выбранные из С, N, О и S, с образованием гетероциклических колец, а также колец, содержащих только кольцевые атомы С, которые могут быть представлены в смешанном мотиве, как, например, в бензимидазоле, в котором одно кольцо имеет только кольцевые атомы углерода, а конденсированное кольцо имеет два атома азота. Моно- или полициклическая кольцевая система может быть дополнительно замещена группами заместителей, как, например, фталимид, который имеет две группы =O, присоединенные к одному из колец. Моно- или полициклические кольцевые системы могут быть присоединены к исходным молекулам при помощи различных способов, таких как непосредственно через кольцевой атом, путем конденсации через несколько кольцевых атомов, через группу заместителя или через бифункциональный линкерный фрагмент.
«Мономер» означает одно звено олигомера. Мономеры включают, но не ограничиваются ими, нуклеозиды и нуклеотиды, природные или модифицированные.
«Мотив» означает конфигурацию из немодифицированных и модифицированных нуклеозидов в антисмысловом соединении.
«Природный сахарный фрагмент» означает фрагмент сахара, находящийся в ДНК (2'-Н) или РНК (2'-ОН).
«Природная межнуклеозидная связь» означает 3' к 5' фосфодиэфирную связь.
«Нейтральная линкерная группа» означает линкерную группу, которая не имеет заряда. Нейтральные линкерные группы включают, без ограничения, фосфотриэфиры, метилфосфонаты, MMI (-CH2-N(CH3)-O-), амид-3 (-CH2-C(=O)-N(H)-), амид-4 (-CH2-N(H)-С(=O)-), формацеталь (-О-СН2-О-) и тиоформацеталь (-S-CH2-O-). Дополнительные нейтральные группы включают неионные линкеры, содержащие силоксан (диалкилсилоксан), карбоксилатный эфир, карбоксамид, сульфид, сульфонатный эфир и амиды (см., например: Carbohydrate Modifications in Antisense Research; Y.S. Sanghvi and P.D. Cook, ред. ACS Symposium Series 580; главы 3 и 4, (cc. 40-65)). Дополнительные нейтральные линкерные группы включают неионные линкеры, содержащие смешанные составные части N, О, S и СН2.
«Некомплементарное азотистое основание» относится к паре азотистых оснований нуклеиновых кислот, которые не образуют водородных связей друг с другом или иным образом не поддерживают гибридизацию.
«Немежнуклеозидная нейтральная линкерная группа» означает нейтральную линкерную группу, которая не связывает напрямую два нуклеозида. В некоторых вариантах реализации немежнуклеозидная нейтральная линкерная группа связывает нуклеозид с группой, отличной от нуклеозида. В некоторых вариантах реализации немежнуклеозидная нейтральная линкерная группа связывает две группы, ни одна из которых не является нуклеозидом.
«Немежнуклеозидная фосфорная линкерная группа» означает фосфорную линкерную группу, которая не связывает напрямую два нуклеозида. В некоторых вариантах реализации немежнуклеозидная фосфорная линкерная группа связывает нуклеозид с группой, отличной от нуклеозида. В некоторых вариантах реализации немежнуклеозидная фосфорная линкерная группа связывает две группы, ни одна из которых не является нуклеозидом.
«Нуклеиновая кислота» означает молекулы, состоящие из мономерных нуклеотидов. Нуклеиновая кислота включает, но не ограничивается ими, рибонуклеиновые кислоты (РНК), дезоксирибонуклеиновые кислоты (ДНК), одноцепочечные нуклеиновые кислоты, двуцепочечные нуклеиновые кислоты, малые интерферирующие рибонуклеиновые кислоты (миРНК) и микроРНК.
«Азотистое основание» означает гетероциклический фрагмент, способный спариваться с основанием другой нуклеиновой кислоты.
«Комплементарность азотистого основания» относится к азотистому основанию, способному к спариванию с другим основанием. Например, в ДНК аденин (А) комплементарен тимину (Т). Например, в РНК аденин (А) комплементарен урацилу (U). В некоторых вариантах реализации комплементарное азотистое основание относится к азотистому основанию антисмыслового соединения, способному спариваться с азотистым основанием своей нуклеиновой кислоты-мишени. Например, если азотистое основание в определенном положении антисмыслового соединения способно к водородному связыванию с азотистым основанием в определенном положении нуклеиновой кислоты-мишени, то это положение водородного связывания между олигонуклеотидом и нуклеиновой кислотой-мишенью считается комплементарным по этой паре азотистых оснований.
«Мотив модификации азотистого основания» означает характерный участок модификаций азотистых оснований вдоль олигонуклеотида. Если не указано иное, то мотив модификации азотистого основания не зависит от последовательности азотистого основания.
«Последовательность азотистых оснований» означает порядок последовательных азотистых оснований, независимый от любого сахара, связи и/или модификации азотистого основания.
«Нуклеозид» означает азотистое основание, связанное с сахаром.
«Миметик нуклеозида» включает структуры, используемые для замены сахара или сахара и основания и необязательно связи в одном или нескольких положениях олигомерного соединения, например, такие как миметики нуклеозидов, содержащие морфолино, циклогексенил, циклогексил, тетрагидропиранил, бицикло или трицикло миметики сахара, например, нефуранозные сахарные фрагменты. Миметик нуклеотида включает структуры, используемые для замены нуклеозида и связи в одном или более положениях олигомерного соединения, такие как, например, пептидные нуклеиновые кислоты или морфолино (морфолино, связанные -N(H)-C(=O)-O- или другой не фосфодиэфирной связью). Заменитель сахара пересекается с более широким термином нуклеозид-миметик, но предназначен для обозначения замены только сахарной единицы (фуранозного кольца). Тетрагидропираниловые кольца, представленные в настоящем документе, иллюстрируют пример заменителя сахара, в котором сахарная фуранозная группа заменена тетрагидропираниловой кольцевой системой. «Миметик» относится к группам, которые заменяют сахар, азотистое основание и/или межнуклеозидную связь. Как правило, миметик используют вместо сахара или комбинации сахара с межнуклеозидной связью, а азотистое основание сохраняется для гибридизации с выбранной мишенью.
«Нуклеозидный мотив» означает характерный участок нуклеозидных модификаций в олигонуклеотиде или его области. Связи такого олигонуклеотида могут быть модифицированными или немодифицированными. Если не указано иное, мотивы, описывающие в настоящем документе только нуклеозиды, представляют собой нуклеозидные мотивы. Следовательно, в таких случаях связи не ограничены.
«Нуклеотид» означает нуклеозид, имеющий фосфатную группу, ковалентно связанную с сахарной частью нуклеозида.
«Нецелевой эффект» означает нежелательный или вредный биологический эффект, связанный с модуляцией экспрессии РНК или белка гена, отличного от нуклеиновой кислоты-мишени.
«Олигомерное соединение» или «олигомер» означает полимер из связанных мономерных субъединиц, которые способны к гибридизации с по меньшей мере областью молекулы нуклеиновой кислоты.
«Олигонуклеотид» означает полимер связанных нуклеозидов, каждый из которых может быть модифицированным или немодифицированным, независимо друг от друга.
«Парентеральное введение» означает введение путем инъекций (например, болюсная инъекция) или инфузии. Парентеральное введение включает подкожное введение, внутривенное введение, внутримышечное введение, внутриартериальное введение, внутрибрюшинное введение или внутричерепное введение, например, интратекальное или интрацеребровентрикулярное введение.
«Пептид» означает молекулу, образованную путем связывания по меньшей мере двух аминокислот посредством амидных связей. Без ограничений, в данном контексте пептид относится к полипептидам и белкам.
«Фармацевтический агент» означает вещество, которое обеспечивает терапевтический эффект при введении индивидууму. Например, в некоторых вариантах реализации изобретения, антисмысловой олигонуклеотид, нацеленный на ПКП, представляет собой фармацевтический агент.
«Фармацевтическая композиция» означает смесь веществ, пригодных для введения субъекту. Например, фармацевтическая композиция может содержать антисмысловой олигонуклеотид и стерильный водный раствор.
«Фармацевтически приемлемое производное» включает фармацевтически приемлемые соли, конъюгаты, пролекарства или изомеры соединений, описанных в настоящем документе.
«Фармацевтически приемлемые соли» обозначает физиологически и фармацевтически приемлемые соли антисмысловых соединений, т.е. соли, которые сохраняют желательную биологическую активность исходного олигонуклеотида и не вызывают нежелательных токсикологических эффектов.
«Тиофосфатная связь» означает связь между нуклеозидами, где фосфодиэфирные связи модифицированы путем замены одного из немостиковых атомов кислорода на атом серы. Тиофосфатная связь представляет собой модифицированную межнуклеозидную связь.
«Фосфорная линкерная группа» означает линкерную группу, содержащую атом фосфора.
Фосфорные линкерные группы включают, без ограничения, группы, имеющие формулу:
где:
Ra и Rd, каждый независимо, представляют собой О, S, CH2, NH или NJ1, где J1 представляет собой C1-С6 алкил или замещенный C1-С6 алкил;
Rb представляет собой О или S;
Rc представляет собой ОН, SH, C1-С6 алкил, замещенный C1-С6 алкил, C1-С6 алкокси, замещенный C1-С6 алкокси, амино или замещенный амино; и
J1 представляет собой Rb представляет собой О или S.
Фосфорные линкерные группы включают, без ограничения, фосфодиэфир, тиофосфат, дитиофосфат, фосфонат, фосфорамидат, фосфортиоамидат, тионоалкил-фосфонат, фосфотриэфиры, тионоалкил-фосфотриэфиры и боранофосфат.
«ПКП» обозначает прекалликреин плазмы млекопитающих, в том числе прекалликреин плазмы человека. Прекалликреин плазмы (ПКП) является прекурсором калликреина плазмы (PK), который кодируется геном KLKB1.
«Связанное с ПКП заболевание» обозначает любое заболевание, связанное с любой нуклеиновой кислотой ПКП или продуктом ее экспрессии. Такие заболевания могут включать воспалительное заболевание или тромбоэмболическое заболевание. Такие заболевания могут включать наследственный ангионевротический отек (НАЕ).
«мРНК ПКП» обозначает любой матричный РНК продукт экспрессии последовательности ДНК, кодирующей ПКП.
«Нуклеиновая кислота ПКП» обозначает любую нуклеиновую кислоту, кодирующую ПКП. Например, в некоторых вариантах реализации изобретения, нуклеиновая кислота ПКП включает последовательность ДНК, кодирующую ПКП, последовательность РНК, транскрибированную из ДНК, кодирующей ПКП (в том числе, геномной ДНК, содержащей интроны и экзоны), и последовательность мРНК, кодирующую ПКП. «мРНК ПКП» обозначает мРНК, кодирующую белок ПКП.
«Белок ПКП» обозначает полипептидный продукт экспрессии нуклеиновой кислоты ПКП.
«Часть» обозначает определенное количество смежных (т.е., связанных) азотистых оснований нуклеиновой кислоты. В некоторых вариантах реализации часть представляет собой определенное число смежных азотистых оснований нуклеиновой кислоты-мишени. В некоторых вариантах реализации фрагмент представляет собой определенное число смежных азотистых оснований антисмыслового соединения.
«Предупреждать» или «предупреждение» относится к задержке или предотвращению появления или развития заболевания, расстройства или патологического состояния в течение периода времени от нескольких минут до дней, недель или месяцев, или на неопределенный срок.
«Пролекарство» означает терапевтический агент, который получают в неактивной форме, которая преобразуется в активную форму (например, лекарство) в организме или его клетках под действием эндогенных ферментов или других химических веществ и/или условий.
«Профилактически эффективное количество» означает такое количество фармацевтического агента, которое обеспечивает профилактический или превентивный эффект для животного.
«Защитная группа» означает любое соединение или защитную группу, известную специалистам в данной области техники. Неограничивающие примеры защитных групп представлены в книге "Protective Groups in Organic Chemistry", Т.W. Greene, P.G.M. Wuts, ISBN 0-471-62301-6, John Wiley & Sons, Ink, Нью-Йорк, полное содержание которой включено в настоящий документ посредством ссылки.
«Область» определяют как фрагмент нуклеиновой кислоты-мишени, имеющий по меньшей мере одну идентифицируемую структуру, функцию или характеристику.
«Рибонуклеотид» означает нуклеотид, имеющий гидрокси-группу в 2' положении сахарного фрагмента нуклеотида. Рибонуклеотиды могут быть модифицированы с помощью любого из множества заместителей.
«Антисмысловое соединение на основе RISC» означает антисмысловое соединение, в котором по меньшей мере часть антисмысловой активности антисмыслового соединения обусловлена РНК-индуцируемым комплексом сайленсинга (RISC).
«Антисмысловое соединение на основе РНКазы Н» означает антисмысловое соединение, в котором по меньшей мере часть антисмысловой активности антисмыслового соединения обусловлена гибридизацией антисмыслового соединения с нуклеиновой кислотой-мишенью и последующим расщеплением нуклеиновой кислоты-мишени под действием РНКазы Н.
«Соли» означает физиологически и фармацевтически приемлемые соли антисмысловых соединений, т.е. соли, которые сохраняют требуемую биологическую активность исходного олигонуклеотида и не вызывают нежелательных токсикологических эффектов.
«Сегменты» определяют как меньшие или субфрагменты областей в составе нуклеиновой кислоты-мишени.
«Отдельные области» означает части олигонуклеотида, в которых химические модификации или мотив химических модификаций любой из соседних частей содержит по меньшей мере одно отличие для обеспечения возможности отличать области друг от друга.
«Мотив последовательности» означает характерный участок азотистых оснований, расположенных вдоль олигонуклеотида или его части. Если не указано иное, то мотив последовательности не зависит от химических модификаций и, следовательно, может иметь любую комбинацию химических модификаций, включая отсутствие химических модификаций.
«Побочные эффекты» означают отличающиеся от желаемых физиологические ответы, приписываемые лечению. В некоторых вариантах реализации побочные эффекты включают, без ограничения, реакции в месте инъекции, аномалии функциональных проб печени, отклонения в функциях почек, гепатотоксичность, нефротоксичность, аномалии центральной нервной системы и миопатии.
«Одноцепочечный олигонуклеотид» означает олигонуклеотид, который не гибридизирован с комплементарной цепью.
«Сайты» в данном контексте определяют как уникальные положения азотистых оснований в нуклеиновой кислоте-мишени.
«Способный к специфичной гибридизации» или «специфично гибридизуется» обозначает антисмысловое соединение, обладающее достаточной степенью комплементарности между антисмысловым олигонуклеотидом и нуклеиновой кислотой-мишенью, чтобы вызывать желательный эффект, при минимальном влиянии или при отсутствии влияния на нецелевые нуклеиновые кислоты в условиях, в которых специфическое связывание является желательным, т.е., в физиологических условиях в случае анализов in vivo и терапевтического лечения.
«Строгие условия гибридизации» или «жесткие условия» означают условия, при которых олигомерное соединение гибридизуется со своей целевой последовательностью, но с минимальным количеством других последовательностей.
«Субъект» означает человека или животного, не являющегося человеком, выбранного для лечения или терапии.
«Заместитель» и «группа заместителя» означает атом или группу, которая вытесняет атом или группу указанного исходного соединения. Например, заместитель модифицированного нуклеозида представляет собой любой атом или группу, которая отлична от атома или группы, находящейся в природном нуклеозиде (например, модифицированный 2'-заместитель представляет собой любой атом или группу в 2'-положении нуклеозида, отличную от Н или ОН). Группы заместителей могут быть защищенными или не защищенными. В некоторых вариантах реализации соединения настоящего описания имеют заместители в одном или более чем в одном положении исходного соединения. Заместители также могут быть дополнительно замещены другими группами заместителей и могут быть присоединены напрямую или через линкерную группу, такую как алкильная или углеводородная группа, к исходному соединению.
Точно так же, в данном контексте «заместитель» в отношении химической функциональной группы означает атом или группу атомов, которая отлична от атома или группы атомов, обычно содержащихся в указанной функциональной группе. В некоторых вариантах реализации заместитель вытесняет атом водорода функциональной группы (например, в некоторых вариантах реализации заместитель замещенной метальной группы представляет собой атом или группу, отличную от водорода, которая вытесняет один или более атомов водорода незамещенной метильной группы). Если не указано иное, то группы, которые могут быть использованы в качестве заместителей, включают, без ограничения, галоген, гидроксил, алкил, алкенил, алкинил, ацил (-C(O)Raa), карбоксил (-C(O)O-Raa), алифатические группы, алициклические группы, алкокси, замещенный окси (-O-Raa), арил, аралкил, гетероциклический радикал, гетероарил, гетероарилалкил, амино (-N(Rbb)(Rcc)), имино (=NRbb), амидо (-C(O)N(Rbb)(Rcc) или -N(Rbb)C(O)Raa), азидо (-N3), нитро (-NO2), циано (-CN), карбамидо (-OC(O)N(Rbb)(Rcc) или -N(Rbb)C(O)ORaa), уреидо (-N(Rbb)C(O)N(Rbb)(Rcc)), тиоуреидо (-N(Rbb)C(S)N(Rbb)(Rcc)), гуанидил (-N(Rbb)C(=NRbb)N(Rbb)(Rcc)), амидинил (-C(=NRbb)N(Rbb)(Rcc) или -N(Rbb)C(=NRbb)(Raa)), тиол (-SRbb), сульфинил (-S(O)Rbb), сульфонил (-S(O)2Rbb) и сульфонамидил (-S(O)2N(Rbb)(Rcc) или -N(Rbb)S(O)2Rbb). Где каждый Raa, Rbb и Rcc независимо представляет собой Н, необязательно связанную химическую функциональную группу или дополнительную группу заместителя, при этом предпочтительный перечень включает, без ограничения, алкил, алкенил, алкинил, алифатические, алококси, ацил, арил, аралкил, гетероарил, алициклические, гетероциклические и гетероарилалкил. Выбранные заместители в соединениях, описанных в настоящем документе, находятся в рекурсивной степени.
«Замещенный сахарный фрагмент» означает фуранозил, который не является природным сахарным фрагментом. Замещенные сахарные фрагменты включают, но не ограничиваются ими, фуранозилы, содержащие заместители в 2'-положении, 3'-положении, 5'-положении и/или 4'-положении. Некоторые замещенные сахарные фрагменты представляют собой бициклические сахарные фрагменты.
«Сахарный фрагмент» означает природный сахарный фрагмент или модифицированный сахарный фрагмент нуклеозида.
«Сахарный мотив» означает характерный участок сахарных модификаций в олигонуклеотиде или его области.
«Заменитель сахара» означает структуру, которая не содержит фуранозила и способна заменять природный сахарный фрагмент нуклеозида, так что образующиеся нуклеозидные субъединицы могут связываться вместе и/или связываться с другими нуклеозидами с образованием олигомерного соединения, которое может гибридизоваться с комплементарным олигомерным соединением. Такие структуры включают кольца, содержащие другое количество атомов, чем фуранозил (например, 4, 6 или 7-членные кольца); замену кислорода фуранозила некислородным атомом (например, углеродом, серой или азотом); или одновременное изменение количества атомов и замену кислорода. Такие структуры также могут содержать замещения, соответствующие замещениям, описанным для замещенных сахарных фрагментов (например, 6-членные карбоциклические бициклические заменители сахара, необязательно содержащие дополнительные заместители). Заменители сахара включают также более сложные сахарные замены (например, некольцевые системы пептидной нуклеиновой кислоты). Заменители сахара включают, без ограничения, морфолино, циклогексенилы и циклогекситы.
«Мишень» обозначает белок, модуляция которого является желательной.
«Ген-мишень» означает ген, кодирующий белок-мишень.
«Таргетинг» или «целевой» означает процесс конструирования и выбора антисмыслового соединения, которое будет специфически гибридизоваться с целевой нуклеиновой кислотой и вызывать желаемый эффект.
«Целевая нуклеиновая кислота», «целевая РНК», и «целевой РНК транскрипт» и «нуклеиновые кислоты-мишени» означает нуклеиновую кислоту, способную стать мишенью для антисмысловых соединений.
«Область-мишень» означает фрагмент нуклеиновой кислоты-мишени, на который нацелено одно или более антисмысловых соединений.
«Сегмент-мишень» означает последовательность нуклеотидов нуклеиновой кислоты-мишени, на которую нацелено антисмысловое соединение. «5' Сайт-мишень» относится к 5'-крайнему нуклеотиду целевого сегмента. «3' Сайт-мишень» относится к 3'-крайнему нуклеотиду целевого сегмента.
«Концевая группа» означает один или более атомов, присоединенных к любому или к обоим 3'- или 5'-концам олигонуклеотида. В некоторых вариантах реализации концевая группа представляет собой группу конъюгата. В некоторых вариантах реализации концевая группа содержит один или более нуклеозидов концевой группы.
«Концевая межнуклеозидная связь» означает связь между последними двумя нуклеозидами олигонуклеотида или его определенной области.
«Терапевтически эффективное количество» означает количество фармацевтического агента, которое обеспечивает терапевтический эффект для индивидуума.
«Лечить» или «лечение», или «терапия» обозначает введение композиции с целью достижения улучшения при заболевании или патологическом состоянии.
«Тип модификации» в отношении нуклеозида или нуклеозида определенного «типа» означает химическую модификацию нуклеозида и включает модифицированные и немодифицированные нуклеозиды. Соответственно, если не указано иное, «нуклеозид, имеющий модификацию первого типа» может быть немодифицированным нуклеозидом.
«Немодифицированные азотистые основания» означает пуриновые основания: аденин (А) и гуанин (G), и пиримидиновые основания: тимин (Т), цитозин (С), и урацил (U).
«Немодифицированный нуклеотид» означает нуклеотид, состоящий из природных азотистых оснований, сахарных фрагментов и межнуклеозидных связей. В некоторых вариантах реализации изобретения немодифицированный нуклеотид представляет собой РНК нуклеотид (например, β-D-рибонуклеозид) или ДНК нуклеотид (например, β-D-дезоксирибонуклеозид).
«Против хода транскрипции» обозначает относительное направление в сторону 5' конца или N-конца нуклеиновой кислоты.
«Сегмент крыла» означает множество нуклеозидов, модифицированных для придания олигонуклеотиду свойств, таких как усиленная ингибирующая активность, повышенная аффинность связывания с нуклеиновой кислотой-мишенью или устойчивость к разложению нуклеазами in vivo.
Некоторые варианты реализации изобретения
В некоторых вариантах реализации изобретения предложены соединения, композиции и способы ингибирования экспрессии мРНК и белка плазменного прекалликреина (ПКП). В некоторых вариантах реализации изобретения предложены соединения, композиции и способы для снижения уровней мРНК и белка ПКП.
В некоторых вариантах реализации изобретения предложены антисмысловые соединения, нацеленные на нуклеиновую кислоту плазменного прекалликреина (ПКП). В некоторых вариантах реализации нуклеиновая кислота ПКП представляет собой последовательность с номером доступа GENBANK NM_000892.3 (включенную в настоящий документ как SEQ ID NO: 1), с номером доступа GENBANK DC412984.1 (включенную в настоящий документ как SEQ ID NO: 2), с номером доступа GENBANK CN265612.1 (включенную в настоящий документ как SEQ ID NO: 3), с номером доступа GENBANK AK297672.1 (включенную в настоящий документ как SEQ ID NO: 4), с номером доступа GENBANK DC413312.1 (включенную в настоящий документ как SEQ ID NO: 5), с номером доступа GENBANK AV688858.2 (включенную в настоящий документ как SEQ ID NO: 6), с номером доступа GENBANK CD652077.1 (включенную в настоящий документ как SEQ ID NO: 7), с номером доступа GENBANK ВС143911.1 (включенную в настоящий документ как SEQ ID NO: 8), с номером доступа GENBANK CB162532.1 (включенную в настоящий документ как SEQ ID NO: 9), с номером доступа GENBANK NT_016354.19, усеченную по азотистым основаниям с 111693001 по 111730000 (включенную в настоящий документ как SEQ ID NO: 10), с номером доступа GENBANK NM_008455.2 (включенную в настоящий документ как SEQ ID NO: 11), с номером доступа GENBANK BB598673.1 (включенную в настоящий документ как SEQ ID NO: 12), с номером доступа GENBANK NT_039460.7, усеченную по азотистым основаниям с 6114001 по 6144000 (включенную в настоящий документ как SEQ ID NO: 13), с номером доступа GENBANK NM_012725.2 (включенную в настоящий документ как SEQ ID NO: 14), с номером доступа GENBANK NW_047473.1, усеченную по азотистым основаниям с 10952001 по 10982000 (включенную в настоящий документ как SEQ ID NO: 15), с номером доступа GENBANK XM_002804276.1 (включенную в настоящий документ как SEQ ID NO: 17), с номером доступа GENBANK NW_001118167.1, усеченную по азотистым основаниям с 2358000 по 2391000 (включенную в настоящий документ как SEQ ID NO: 18).
В некоторых вариантах реализации предложены соединения, содержащие модифицированный олигонуклеотид и группу конъюгата, где модифицированный олигонуклеотид состоит из 12-30 связанных нуклеозидов и имеет последовательность азотистых оснований, содержащую по меньшей мере 8, по меньшей мере 9, по меньшей мере 10, по меньшей мере 11, по меньшей мере 12, по меньшей мере 13, по меньшей мере 14, по меньшей мере 15, по меньшей мере 16, по меньшей мере 17, по меньшей мере 18, по меньшей мере 19 или по меньшей мере 20 последовательных азотистых оснований любой из последовательностей азотистых оснований SEQ ID NO: 30-2226.
В некоторых вариантах реализации предложены соединения, содержащие модифицированный олигонуклеотид и группу конъюгата, где модифицированный олигонуклеотид состоит из 12-30 связанных нуклеозидов и имеет последовательность азотистых оснований, содержащую по меньшей мере 8, по меньшей мере 9, по меньшей мере 10, по меньшей мере 11, по меньшей мере 12, по меньшей мере 13, по меньшей мере 14, по меньшей мере 15, по меньшей мере 16, по меньшей мере 17, по меньшей мере 18, по меньшей мере 19 или по меньшей мере 20 последовательных азотистых оснований последовательности азотистых оснований SEQ ID NO: 570.
В некоторых вариантах реализации предложены соединения, содержащие модифицированный олигонуклеотид и группу конъюгата, где модифицированный олигонуклеотид состоит из 12-30 связанных нуклеозидов и имеет последовательность азотистых оснований, содержащую по меньшей мере 8, по меньшей мере 9, по меньшей мере 10, по меньшей мере 11, по меньшей мере 12, по меньшей мере 13, по меньшей мере 14, по меньшей мере 15, по меньшей мере 16, по меньшей мере 17, по меньшей мере 18, по меньшей мере 19 или по меньшей мере 20 последовательных азотистых оснований последовательности азотистых оснований SEQ ID NO: 705.
В некоторых вариантах реализации предложены соединения, содержащие модифицированный олигонуклеотид и группу конъюгата, где модифицированный олигонуклеотид состоит из 12-30 связанных нуклеозидов и имеет последовательность азотистых оснований, содержащую по меньшей мере 8, по меньшей мере 9, по меньшей мере 10, по меньшей мере 11, по меньшей мере 12, по меньшей мере 13, по меньшей мере 14, по меньшей мере 15 или по меньшей мере 16 последовательных азотистых оснований последовательности азотистых оснований SEQ ID NO: 1666.
В некоторых вариантах реализации предложены соединения, содержащие модифицированный олигонуклеотид и группу конъюгата, где модифицированный олигонуклеотид состоит из 20 связанных нуклеозидов и имеет последовательность азотистых оснований SEQ ID NO: 570.
В некоторых вариантах реализации предложены соединения, содержащие модифицированный олигонуклеотид и группу конъюгата, где модифицированный олигонуклеотид состоит из 20 связанных нуклеозидов и имеет последовательность азотистых оснований SEQ ID NO: 705.
В некоторых вариантах реализации предложены соединения, содержащие модифицированный олигонуклеотид и группу конъюгата, где модифицированный олигонуклеотид состоит из 16 связанных нуклеозидов и имеет последовательность азотистых оснований SEQ ID NO: 1666.
В некоторых вариантах реализации предложены соединения, содержащие модифицированный олигонуклеотид и группу конъюгата, где модифицированный олигонуклеотид состоит из 12-30 связанных нуклеозидов и имеет последовательность азотистых оснований, содержащую по меньшей мере 8, по меньшей мере 9, по меньшей мере 10, по меньшей мере 11, по меньшей мере 12, по меньшей мере 13, по меньшей мере 14, по меньшей мере 15 или по меньшей мере 16 последовательных азотистых оснований любой из последовательностей азотистых оснований SEQ ID NO: 62, 72, 103, 213, 312, 334-339, 344, 345, 346, 348, 349, 351, 369, 373, 381, 382, 383, 385, 387-391, 399, 411, 412, 414, 416, 444, 446-449, 452, 453, 454, 459, 460, 462-472, 473, 476, 477, 479, 480, 481, 484, 489-495, 497, 500, 504, 506, 522, 526, 535, 558, 559, 560, 564, 566, 568-571, 573, 576, 577, 578, 587, 595, 597-604, 607, 608, 610, 613, 615, 618, 619, 622, 623, 624, 633, 635, 636, 638, 639, 640, 642, 643, 645, 652, 655-658, 660, 661, 670, 674-679, 684, 685, 698, 704, 705, 707, 708, 713, 716, 717, 728, 734, 736, 767, 768, 776, 797, 798, 800, 802, 810, 815, 876, 880, 882, 883, 886, 891, 901-905, 908-911, 922, 923, 924, 931, 942, 950-957, 972, 974, 978, 979, 980, 987-991, 1005, 1017-1021, 1025, 1026, 1029, 1030, 1032, 1034, 1035, 1037, 1040, 1041, 1045, 1046, 1051, 1054, 1059, 1060, 1061, 1064, 1065, 1066, 1075, 1076, 1087, 1089, 1111, 1114, 1116, 1117, 1125, 1133, 1153, 1169, 1177, 1181, 1182, 1187, 1196, 1200, 1214, 1222, 1267, 1276, 1277, 1285, 1286, 1289, 1290, 1291, 1303, 1367, 1389, 1393, 1398-1401, 1406, 1407, 1408, 1411, 1419-1422, 1426, 1430, 1431, 1432, 1434-1437, 1439, 1440, 1443, 1444, 1451, 1452, 1471, 1516, 1527, 1535, 1537, 1538, 1539, 1540, 1541, 1563, 1564, 1567, 1568, 1616, 1617, 1623, 1629, 1664, 1665, 1666, 1679, 1687, 1734, 1804, 1876, 1886, 1915, 2008, 2018, 2100, 2101, 2115 и 2116. В некоторых вариантах реализации изобретения модифицированный олигонуклеотид обеспечивает ингибирование мРНК ПКП по меньшей мере на 80%.
В некоторых вариантах реализации предложены соединения, содержащие модифицированный олигонуклеотид и группу конъюгата, где модифицированный олигонуклеотид состоит из 12-30 связанных нуклеозидов и имеет последовательность азотистых оснований, содержащую по меньшей мере 8, по меньшей мере 9, по меньшей мере 10, по меньшей мере 11, по меньшей мере 12, по меньшей мере 13, по меньшей мере 14, по меньшей мере 15 или по меньшей мере 16 последовательных азотистых оснований любой из последовательностей азотистых оснований SEQ ID NO: 62, 72, 103, 213, 334-339, 344, 346, 348, 349, 351, 381, 382, 383, 385, 389, 390, 391, 446, 448, 452, 453, 454, 466-473, 476, 481, 484, 491, 492, 494, 495, 497, 504, 526, 558, 559, 566, 568-571, 576, 578, 587, 595, 597, 598, 600-604, 607, 610, 613, 618, 619, 624, 635, 638, 639, 645, 652, 656, 657, 658, 660, 674, 675, 676, 684, 698, 704, 705, 707, 713, 716, 768, 876, 880, 901-905, 908-911, 922, 923, 924, 931, 942, 951, 954-957, 972, 974, 978, 979, 987, 988, 990, 1005, 1019, 1020, 1021, 1025, 1032, 1037, 1040, 1041, 1045, 1054, 1059, 1060, 1061, 1064, 1065, 1066, 1075, 1111, 1116, 1117, 1125, 1133, 1153, 1169, 1177, 1200, 1222, 1267, 1285, 1290, 1291, 1303, 1367, 1398, 1399, 1401, 1406, 1408, 1411, 1419, 1420, 1421, 1426, 1430, 1431, 1432, 1434-1437, 1440, 1443, 1444, 1451, 1537-1540, 1563, 1616, 1679, 1687, 1804, 2008, 2101, 2115 и 2116. В некоторых вариантах реализации изобретения модифицированный олигонуклеотид обеспечивает ингибирование мРНК ПКП по меньшей мере на 85%.
В некоторых вариантах реализации предложены соединения, содержащие модифицированный олигонуклеотид и группу конъюгата, где модифицированный олигонуклеотид состоит из 12-30 связанных нуклеозидов и имеет последовательность азотистых оснований, содержащую по меньшей мере 8, по меньшей мере 9, по меньшей мере 10, по меньшей мере 11, по меньшей мере 12, по меньшей мере 13, по меньшей мере 14, по меньшей мере 15 или по меньшей мере 16 последовательных азотистых оснований любой из последовательностей азотистых оснований SEQ ID NO: 334, 346, 351, 382, 390, 391, 446, 448, 452, 453, 468, 469, 470, 471, 472, 476, 481, 491, 495, 504, 558, 566, 568, 570, 571, 578, 587, 597, 598, 600, 604, 613, 635, 638, 645, 656, 658, 660, 674, 675, 684, 704, 705, 880, 901-905, 909, 922, 931, 951, 954, 956, 990, 1005, 1020, 1032, 1037, 1040, 1041, 1045, 1054, 1075, 1111, 1125, 1133, 1153, 1200, 1267, 1291, 1303, 1398, 1399, 1401, 1406, 1420, 1426, 1430, 1431, 1434, 1435, 1436, 1440, 1443, 1451, 1537-1540, 2115 и 2116. В некоторых вариантах реализации изобретения модифицированный олигонуклеотид обеспечивает ингибирование мРНК ПКП по меньшей мере на 90%.
В некоторых вариантах реализации предложены соединения, содержащие модифицированный олигонуклеотид и группу конъюгата, где модифицированный олигонуклеотид состоит из 12-30 связанных нуклеозидов и имеет последовательность азотистых оснований, содержащую по меньшей мере 8, по меньшей мере 9, по меньшей мере 10, по меньшей мере 11, по меньшей мере 12, по меньшей мере 13, по меньшей мере 14, по меньшей мере 15 или по меньшей мере 16 последовательных азотистых оснований любой из последовательностей азотистых оснований SEQ ID NO: 334, 391, 448, 468, 469, 568, 570, 598, 635, 658, 674, 684, 705, 901, 903, 904, 922, 990, 1267, 1291, 1420, 1430, 1431, 1434, 1435, 1436, 1537, 1538 и 1540. В некоторых вариантах реализации изобретения модифицированный олигонуклеотид обеспечивает ингибирование мРНК ПКП по меньшей мере на 95%.
В некоторых вариантах реализации предложены соединения, содержащие модифицированный олигонуклеотид и группу конъюгата, где модифицированный олигонуклеотид состоит из 12-30 связанных нуклеозидов и имеет последовательность азотистых оснований, содержащую по меньшей мере 8, по меньшей мере 9, по меньшей мере 10, по меньшей мере 11, по меньшей мере 12, по меньшей мере 13, по меньшей мере 14, по меньшей мере 15 или по меньшей мере 16 последовательных азотистых оснований любой из последовательностей азотистых оснований SEQ ID NO: 334, 338, 346, 349, 382, 383, 390, 448, 452, 453, 454, 495, 526, 559, 570, 587, 598, 635, 660, 705, 901, 903, 904, 908, 923, 931, 955, 974, 988, 990, 1020, 1039, 1040, 1111, 1117, 1267, 1291, 1349, 1352, 1367, 1389, 1393, 1399, 1401, 1408, 1411, 1426, 1499, 1516, 1535, 1544, 1548, 1563, 1564, 1568, 1569, 1598, 1616, 1617, 1623, 1624, 1643, 1661, 1665, 1666, 1673, 1679, 1695, 1720, 1804, 1817, 1876, 1881, 1886, 1940, 1947, 2008, 2018, 2019, 2031, 2044, 2100, 2101, 2115 и 2116. В некоторых вариантах реализации изобретения модифицированный олигонуклеотид обеспечивает IC50 (мкМ) 0,4 или менее.
В некоторых вариантах реализации предложены соединения, содержащие модифицированный олигонуклеотид и группу конъюгата, где модифицированный олигонуклеотид состоит из 12-30 связанных нуклеозидов и имеет последовательность азотистых оснований, содержащую по меньшей мере 8, по меньшей мере 9, по меньшей мере 10, по меньшей мере 11, по меньшей мере 12, по меньшей мере 13, по меньшей мере 14, по меньшей мере 15 или по меньшей мере 16 последовательных азотистых оснований любой из последовательностей азотистых оснований SEQ ID NO: 334, 346, 349, 382, 453, 454, 495, 526, 570, 587, 598, 635, 660, 901, 903, 904, 931, 955, 990, 1020, 1111, 1267, 1349, 1352, 1367, 1389, 1399, 1408, 1411, 1426, 1516, 1535, 1544, 1548, 1563, 1564, 1568, 1569, 1598, 1616, 1617, 1623, 1643, 1661, 1665, 1666, 1673, 1695, 1804, 1876, 1881, 2019, 2044, 2100, 2101, 2115 и 2116. В некоторых вариантах реализации изобретения модифицированный олигонуклеотид обеспечивает IC50 (мкМ) 0,3 или менее.
В некоторых вариантах реализации предложены соединения, содержащие модифицированный олигонуклеотид и группу конъюгата, где модифицированный олигонуклеотид состоит из 12-30 связанных нуклеозидов и имеет последовательность азотистых оснований, содержащую по меньшей мере 8, по меньшей мере 9, по меньшей мере 10, по меньшей мере 11, по меньшей мере 12, по меньшей мере 13, по меньшей мере 14, по меньшей мере 15 или по меньшей мере 16 последовательных азотистых оснований любой из последовательностей азотистых оснований SEQ ID NO: 334, 346, 382, 453, 495, 526, 570, 587, 598, 635, 901, 904, 931, 955, 1020, 1111, 1349, 1352, 1389, 1426, 1516, 1535, 1544, 1548, 1564, 1569, 1598, 1616, 1617, 1665, 1666, 1804, 1876, 1881, 2019, 2044, 2101 и 2116. В некоторых вариантах реализации изобретения модифицированный олигонуклеотид обеспечивает IC50 (мкМ) 0,2 или менее.
В некоторых вариантах реализации предложены соединения, содержащие модифицированный олигонуклеотид и группу конъюгата, где модифицированный олигонуклеотид состоит из 12-30 связанных нуклеозидов и имеет последовательность азотистых оснований, содержащую по меньшей мере 8, по меньшей мере 9, по меньшей мере 10, по меньшей мере 11, по меньшей мере 12, по меньшей мере 13, по меньшей мере 14, по меньшей мере 15 или по меньшей мере 16 последовательных азотистых оснований любой из последовательностей азотистых оснований SEQ ID NO: 334, 495, 587, 598, 635, 1349, 1352, 1389, 1516, 1544, 1548, 1569, 1598, 1617, 1665, 1666, 1804, 1881 и 2019. В некоторых вариантах реализации изобретения модифицированный олигонуклеотид обеспечивает IC50 (мкМ) менее чем 0,2.
В некоторых вариантах реализации предложены соединения, содержащие модифицированный олигонуклеотид и группу конъюгата, где модифицированный олигонуклеотид состоит из 12-30 связанных нуклеозидов и содержит последовательность азотистых оснований, содержащую по меньшей мере 8, по меньшей мере 9, по меньшей мере 10, по меньшей мере 11, по меньшей мере 12, по меньшей мере 13, по меньшей мере 14, по меньшей мере 15, по меньшей мере 16, по меньшей мере 17, по меньшей мере 18, по меньшей мере 19 или по меньшей мере 20 последовательных азотистых оснований, комплементарную равной по длине части азотистых оснований 27427-27466 SEQ ID NO: 10.
В некоторых вариантах реализации предложены соединения, содержащие модифицированный олигонуклеотид и группу конъюгата, где модифицированный олигонуклеотид состоит из 12-30 связанных нуклеозидов и содержит последовательность азотистых оснований, содержащую по меньшей мере 8, по меньшей мере 9, по меньшей мере 10, по меньшей мере 11, по меньшей мере 12, по меньшей мере 13, по меньшей мере 14, по меньшей мере 15, по меньшей мере 16, по меньшей мере 17, по меньшей мере 18, по меньшей мере 19 или по меньшей мере 20 последовательных азотистых оснований, комплементарную равной по длине части азотистых оснований 33183-33242 SEQ ID NO: 10.
В некоторых вариантах реализации предложены соединения, содержащие модифицированный олигонуклеотид и группу конъюгата, где модифицированный олигонуклеотид состоит из 12-30 связанных нуклеозидов и содержит последовательность азотистых оснований, содержащую по меньшей мере 8, по меньшей мере 9, по меньшей мере 10, по меньшей мере 11, по меньшей мере 12, по меньшей мере 13, по меньшей мере 14, по меньшей мере 15, по меньшей мере 16, по меньшей мере 17, по меньшей мере 18, по меньшей мере 19 или по меньшей мере 20 последовательных азотистых оснований, комплементарную равной по длине части азотистых оснований 30570-30610 SEQ ID NO: 10.
В некоторых вариантах реализации предложены соединения, содержащие модифицированный олигонуклеотид и группу конъюгата, где модифицированный олигонуклеотид состоит из 12-30 связанных нуклеозидов и содержит последовательность азотистых оснований, содержащую по меньшей мере 8, по меньшей мере 9, по меньшей мере 10, по меньшей мере 11, по меньшей мере 12, по меньшей мере 13, по меньшей мере 14, по меньшей мере 15, по меньшей мере 16, по меньшей мере 17, по меньшей мере 18, по меньшей мере 19 или по меньшей мере 20 последовательных азотистых оснований, комплементарную равной по длине части азотистых оснований 27427-27520 SEQ ID NO: 10.
В некоторых вариантах реализации предложены соединения, содержащие модифицированный олигонуклеотид и группу конъюгата, где модифицированный олигонуклеотид состоит из 12-30 связанных нуклеозидов и содержит последовательность азотистых оснований, содержащую по меньшей мере 8, по меньшей мере 9, по меньшей мере 10, по меньшей мере 11, по меньшей мере 12, по меньшей мере 13, по меньшей мере 14, по меньшей мере 15, по меньшей мере 16, по меньшей мере 17, по меньшей мере 18, по меньшей мере 19 или по меньшей мере 20 последовательных азотистых оснований, комплементарную равной по длине части азотистых оснований 33085-33247 SEQ ID NO: 10.
В некоторых вариантах реализации предложены соединения, содержащие модифицированный олигонуклеотид и группу конъюгата, где модифицированный олигонуклеотид состоит из 12-30 связанных нуклеозидов и содержит последовательность азотистых оснований, содержащую по меньшей мере 8, по меньшей мере 9, по меньшей мере 10, по меньшей мере 11, по меньшей мере 12, по меньшей мере 13, по меньшей мере 14, по меньшей мере 15, по меньшей мере 16, по меньшей мере 17, по меньшей мере 18, по меньшей мере 19 или по меньшей мере 20 последовательных азотистых оснований, комплементарную равной по длине части азотистых оснований 30475-30639 SEQ ID NO: 10.
В некоторых вариантах реализации предложены соединения, содержащие модифицированный олигонуклеотид и группу конъюгата, где модифицированный олигонуклеотид состоит из 12-30 связанных нуклеозидов и содержит последовательность азотистых оснований, содержащую по меньшей мере 8, по меньшей мере 9, по меньшей мере 10, по меньшей мере 11, по меньшей мере 12, по меньшей мере 13, по меньшей мере 14, по меньшей мере 15, по меньшей мере 16, по меньшей мере 17, по меньшей мере 18, по меньшей мере 19 или по меньшей мере 20 последовательных азотистых оснований, комплементарную равной по длине части азотистых оснований 27362-27524 SEQ ID NO: 10.
В некоторых вариантах реализации предложены соединения, содержащие модифицированный олигонуклеотид и группу конъюгата, где модифицированный олигонуклеотид состоит из 12-30 связанных нуклеозидов и содержит последовательность азотистых оснований, содержащую по меньшей мере 8, по меньшей мере 9, по меньшей мере 10, по меньшей мере 11, по меньшей мере 12, по меньшей мере 13, по меньшей мере 14, по меньшей мере 15, по меньшей мере 16, по меньшей мере 17, по меньшей мере 18, по меньшей мере 19 или по меньшей мере 20 последовательных азотистых оснований, комплементарную равной по длине части азотистых оснований 33101-33240 SEQ ID NO: 10.
В некоторых вариантах реализации предложены соединения, содержащие модифицированный олигонуклеотид и группу конъюгата, где модифицированный олигонуклеотид состоит из 12-30 связанных нуклеозидов и содержит последовательность азотистых оснований, содержащую по меньшей мере 8, по меньшей мере 9, по меньшей мере 10, по меньшей мере 11, по меньшей мере 12, по меньшей мере 13, по меньшей мере 14, по меньшей мере 15, по меньшей мере 16, по меньшей мере 17, по меньшей мере 18, по меньшей мере 19 или по меньшей мере 20 последовательных азотистых оснований, комплементарную равной по длине части азотистых оснований 30463-30638 SEQ ID NO: 10.
В некоторых вариантах реализации предложены соединения, содержащие модифицированный олигонуклеотид и группу конъюгата, где модифицированный олигонуклеотид состоит из 12-30 связанных нуклеозидов и содержит последовательность азотистых оснований, содержащую по меньшей мере 8, по меньшей мере 9, по меньшей мере 10, по меньшей мере 11, по меньшей мере 12, по меньшей мере 13, по меньшей мере 14, по меньшей мере 15, по меньшей мере 16, по меньшей мере 17, по меньшей мере 18, по меньшей мере 19 или по меньшей мере 20 последовательных азотистых оснований, комплементарную равной по длине части экзона 9, экзона 12 или экзона 14 нуклеиновой кислоты ПКП.
В некоторых вариантах реализации последовательность азотистых оснований модифицированного олигонуклеотида по меньшей мере на 80%, по меньшей мере на 81%, по меньшей мере на 82%, по меньшей мере на 83%, по меньшей мере на 84%, по меньшей мере на 85%, по меньшей мере на 86%, по меньшей мере на 87%, по меньшей мере на 88%, по меньшей мере на 89%, по меньшей мере на 90%, по меньшей мере на 91%, по меньшей мере на 92%, по меньшей мере на 93%, по меньшей мере на 94%, по меньшей мере на 95%, по меньшей мере на 96%, по меньшей мере на 97%, по меньшей мере на 98%, по меньшей мере на 99% или на 100% комплементарна SEQ ID NO: 10.
В некоторых вариантах реализации изобретения соединение состоит из одноцепочечного модифицированного олигонуклеотида.
В некоторых вариантах реализации по меньшей мере одна межнуклеозидная связь модифицированного олигонуклеотида представляет собой модифицированную межнуклеозидную связь.
В некоторых вариантах реализации изобретения по меньшей мере одна модифицированная межнуклеозидная связь в модифицированном олигонуклеотиде представляет собой тиофосфатную межнуклеозидную связь.
В некоторых вариантах реализации модифицированный олигонуклеотид содержит по меньшей мере 1, 2, 3, 4, 5, 6 или 7 фосфодиэфирных межнуклеозидных связей.
В некоторых вариантах реализации каждая межнуклеозидная связь модифицированного олигонуклеотида выбрана из фосфодиэфирной межнуклеозидной связи и тиофосфатной межнуклеозидной связи.
В некоторых вариантах реализации каждая межнуклеозидная связь в модифицированном олигонуклеотиде представляет собой тиофосфатную связь.
В некоторых вариантах реализации изобретения по меньшей мере один нуклеозид в модифицированном олигонуклеотиде содержит модифицированное азотистое основание.
В некоторых вариантах реализации модифицированное азотистое основание представляет собой 5-метилцитозин.
В некоторых вариантах реализации изобретения модифицированный олигонуклеотид содержит по меньшей мере один модифицированный сахар.
В некоторых вариантах реализации модифицированный сахар представляет собой 2' модифицированный сахар, БНК или ТГП.
В некоторых вариантах реализации модифицированный сахар имеет любую модификацию из 2'-O-метоксиэтила, 2'-O-метила, стерически затрудненного этила, ЗНК или 3'-фтор-ГНК.
В некоторых вариантах реализации изобретения соединение содержит по меньшей мере один 2'-O-метоксиэтильный нуклеозид, 2'-O-метильный нуклеозид, стерически затрудненный этильный нуклеозид, ЗНК нуклеозид или 3'-фтор-ГНК нуклеозид.
В некоторых вариантах реализации модифицированный олигонуклеотид содержит:
сегмент гэп, состоящий из 10 связанных дезоксинуклеозидов;
сегмент 5'-крыла, состоящий из 5 связанных нуклеозидов; и
сегмент 3'-крыла, состоящий из 5 связанных нуклеозидов;
причем сегмент гэп расположен между сегментом 5'-крыла и сегментом 3'-крыла и, при этом каждый нуклеозид каждого сегмента крыла содержит модифицированный сахар.
В некоторых вариантах реализации модифицированный олигонуклеотид состоит из 20 связанных нуклеозидов.
В некоторых вариантах реализации модифицированный олигонуклеотид состоит из 19 связанных нуклеозидов.
В некоторых вариантах реализации модифицированный олигонуклеотид состоит из 18 связанных нуклеозидов.
В некоторых вариантах реализации предложены соединения, состоящие из группы конъюгата и модифицированного олигонуклеотида согласно следующей формуле: Tes Ges mCes Aes Aes Gds Tds mCds Tds mCds Tds Tds Gds Gds mCds Aes Aes Aes mCes Ae; где
A = аденин,
mC = 5'-метилцитозин
G = гуанин,
Т = тимин,
e = 2'-O-метоксиэтил-модифицированный нуклеозид,
d = 2'-дезоксинуклеозид, и
s = тиофосфатная межнуклеозидная связь.
В некоторых вариантах реализации предложены соединения, состоящие из группы конъюгата и модифицированного олигонуклеотида согласно следующей формуле: mCes mCes mCes mCes mCes Tds Tds mCds Tds Tds Tds Ads Tds Ads Gds mCes mCes Aes Ges mCe;
где
A = аденин,
mC = 5'-метилцитозин;
G = гуанин,
Т = тимин,
e = 2'-O-метоксиэтил-модифицированный нуклеозид,
d = 2'-дезоксинуклеозид, и
s = тиофосфатная межнуклеозидная связь.
В некоторых вариантах реализации предложены соединения, состоящие из группы конъюгата и модифицированного олигонуклеотида согласно следующей формуле: mCes Ges Aks Tds Ads Tds mCds Ads Tds Gds Ads Tds Tds mCks mCks mCe; где
A = аденин,
mC = 5'-метилцитозин;
G = гуанин,
Т = тимин,
e = 2'-O-метоксиэтил-модифицированный нуклеозид,
k = модифицированный cEt нуклеозид,
d = 2'-дезоксинуклеозид, и
s = тиофосфатная межнуклеозидная связь.
В некоторых вариантах реализации группа конъюгата связана с модифицированным олигонуклеотидом на 5'-конце модифицированного олигонуклеотида. В некоторых вариантах реализации группа конъюгата связана с модифицированным олигонуклеотидом на 3'-конце модифицированного олигонуклеотида. В некоторых вариантах реализации группа конъюгата содержит по меньшей мере один N-ацетилгалактозамин (GalNAc), по меньшей мере два N-ацетилгалактозамина (GalNAc) или по меньшей мере три N-ацетилгалактозамина (GalNAc).
В некоторых вариантах реализации предложены соединения согласно следующей формуле:
В некоторых вариантах реализации предложены соединения согласно следующей формуле:
В некоторых вариантах реализации предложены соединения согласно следующей формуле:
В некоторых вариантах реализации соединение может содержать или состоять из любого модифицированного олигонуклеотида, описанного в настоящем документе, и группы конъюгата. В некоторых вариантах реализации соединение может содержать или состоять из модифицированного олигонуклеотида, состоящего из 12-30 связанных нуклеозидов и имеющего последовательность азотистых оснований, содержащую по меньшей мере 8, по меньшей мере 9, по меньшей мере 10, по меньшей мере 11, по меньшей мере 12, по меньшей мере 13, по меньшей мере 14, по меньшей мере 15, по меньшей мере 16, по меньшей мере 17, по меньшей мере 18, по меньшей мере 19 или по меньшей мере 20 последовательных азотистых оснований любой из последовательностей азотистых оснований SEQ ID NO: 30-2226, и группы конъюгата.
В некоторых вариантах реализации соединение, имеющее следующую химическую структуру, содержит или состоит из ISIS 721744 с 5'-Х, где Х представляет собой группу конъюгата, содержащую GalNAc, как описано в настоящем документе:
В некоторых вариантах реализации соединение, имеющее следующую химическую структуру, содержит или состоит из ISIS 546254 с 5'-Х, где Х представляет собой группу конъюгата, содержащую GalNAc, как описано в настоящем документе:
В некоторых вариантах реализации предложено соединение, содержащее или состоящее из следующей формулы:
В некоторых вариантах реализации предложено соединение, содержащее или состоящее из следующей формулы:
В некоторых вариантах реализации предложено соединение, содержащее или состоящее из следующей формулы:
где либо R1 представляет собой -OCH2CH2OCH3 (МОЕ), и R2 представляет собой Н; либо R1 и R2 вместе образуют мостик, где R1 представляет собой -O-, и R2 представляет собой -CH2-, -СН(СН3)- или -CH2CH2-, и R1 и R2 напрямую связаны так, что образующийся мостик выбран из: -O-СН2-, -О-СН(СН3)- и -O-СН2СН2-;
и для каждой пары R3 и R4 у одного кольца, независимо для каждого кольца: либо R3 выбран из H и -OCH2CH2OCH3, и R4 представляет собой Н; либо R3 и R4 вместе образуют мостик, где R3 представляет собой -O-, и R4 представляет собой -СН2-, -СН(СН3)- или -СН2СН2-, и R3 и R4 напрямую связаны так, что образующийся мостик выбран из: -О-СН2-, -О-СН(СН3)- и -O-СН2СН2-;
и R5 выбран из Н и -СН3;
и Z выбран из S- и О-.
В некоторых вариантах реализации изобретения предложены композиции, содержащие соединение по любому из предшествующих пунктов или его соль и по меньшей мере один из фармацевтически приемлемого носителя или разбавителя.
В некоторых вариантах реализации изобретения предложены способы, включающие введение животному соединения или композиции по любому из предшествующих пунктов.
В некоторых вариантах реализации животное представляет собой человека.
В некоторых вариантах реализации изобретения введение соединения обеспечивает предупреждение, лечение или облегчение заболевания, расстройства или патологического состояния, связанного с ПКП.
В некоторых вариантах реализации изобретения связанное с ПКП заболевание, расстройство или патологическое состояние представляет собой наследственный ангионевротический отек (ПАЕ), отек, ангионевротический отек, припухлость, ангионевротический отек век, отек глаза, отек желтого пятна, отек мозга, тромбоз, эмболию, тромбоэмболию, тромбоз глубоких вен, легочную эмболию, инфаркт миокарда, инсульт или инфаркт.
В некоторых вариантах реализации изобретения предложено применение соединения или композиции по любому из предшествующих пунктов для производства лекарственного средства для лечения воспалительного заболевания или тромбоэмболического заболевания.
Антисмысловые соединения
Олигомерные соединения включают, но не ограничиваются ими, олигонуклеотиды, олигонуклеозиды, аналоги олигонуклеотидов, миметики олигонуклеотидов, антисмысловые соединения, антисмысловые олигонуклеотиды и миРНК. Олигомерное соединение может быть «антисмысловым» к нуклеиновой кислоте-мишени, что означает, что оно способно подвергаться гибридизации с нуклеиновой кислотой-мишенью посредством водородного связывания.
В некоторых вариантах реализации антисмысловое соединение содержит последовательность азотистых оснований, которая при написании в 5'-3' направлении содержит обратный комплемент целевого сегмента нуклеиновой кислоты-мишени, на которую она направлена. В некоторых таких вариантах реализации антисмысловой олигонуклеотид имеет последовательность азотистых оснований, которая при написании в 5'-3' направлении содержит обратный комплемент целевого сегмента нуклеиновой кислоты-мишени, на которую она направлена.
В некоторых вариантах реализации изобретения длина антисмыслового соединения, нацеленного на нуклеиновую кислоту ПКП, составляет 12-30 субъединиц. В некоторых вариантах реализации изобретения длина антисмыслового соединения, нацеленного на нуклеиновую кислоту ПКП, составляет 12-25 субъединиц. В некоторых вариантах реализации изобретения длина антисмыслового соединения, нацеленного на нуклеиновую кислоту ПКП, составляет 12-22 субъединицы. В некоторых вариантах реализации изобретения длина антисмыслового соединения, нацеленного на нуклеиновую кислоту ПКП, составляет 14-20 субъединиц. В некоторых вариантах реализации изобретения длина антисмыслового соединения, нацеленного на нуклеиновую кислоту ПКП, составляет 15-25 субъединиц. В некоторых вариантах реализации изобретения длина антисмыслового соединения, нацеленного на нуклеиновую кислоту ПКП, составляет 18-22 субъединицы. В некоторых вариантах реализации изобретения длина антисмыслового соединения, нацеленного на нуклеиновую кислоту ПКП, составляет 19-21 субъединицу. В некоторых вариантах реализации антисмысловое соединение имеет от 8 до 80, от 12 до 50, от 13 до 30, от 13 до 50, от 14 до 30, от 14 до 50, от 15 до 30, от 15 до 50, от 16 до 30, от 16 до 50, от 17 до 30, от 17 до 50, от 18 до 30, от 18 до 50, от 19 до 30, от 19 до 50 или от 20 до 30 связанных субъединиц в длину.
В некоторых вариантах реализации изобретения длина антисмыслового соединения, нацеленного на нуклеиновую кислоту ПКП, составляет 12 субъединиц. В некоторых вариантах реализации изобретения длина антисмыслового соединения, нацеленного на нуклеиновую кислоту ПКП, составляет 13 субъединиц. В некоторых вариантах реализации изобретения длина антисмыслового соединения, нацеленного на нуклеиновую кислоту ПКП, составляет 14 субъединиц. В некоторых вариантах реализации изобретения длина антисмыслового соединения, нацеленного на нуклеиновую кислоту ПКП, составляет 15 субъединиц. В некоторых вариантах реализации изобретения длина антисмыслового соединения, нацеленного на нуклеиновую кислоту ПКП, составляет 16 субъединиц. В некоторых вариантах реализации изобретения длина антисмыслового соединения, нацеленного на нуклеиновую кислоту ПКП, составляет 17 субъединиц. В некоторых вариантах реализации изобретения длина антисмыслового соединения, нацеленного на нуклеиновую кислоту ПКП, составляет 18 субъединиц. В некоторых вариантах реализации изобретения длина антисмыслового соединения, нацеленного на нуклеиновую кислоту ПКП, составляет 19 субъединиц. В некоторых вариантах реализации изобретения длина антисмыслового соединения, нацеленного на нуклеиновую кислоту ПКП, составляет 20 субъединиц. В некоторых вариантах реализации изобретения длина антисмыслового соединения, нацеленного на нуклеиновую кислоту ПКП, составляет 21 субъединицу. В некоторых вариантах реализации изобретения длина антисмыслового соединения, нацеленного на нуклеиновую кислоту ПКП, составляет 22 субъединицы. В некоторых вариантах реализации изобретения длина антисмыслового соединения, нацеленного на нуклеиновую кислоту ПКП, составляет 23 субъединицы. В некоторых вариантах реализации изобретения длина антисмыслового соединения, нацеленного на нуклеиновую кислоту ПКП, составляет 24 субъединицы. В некоторых вариантах реализации изобретения длина антисмыслового соединения, нацеленного на нуклеиновую кислоту ПКП, составляет 25 субъединиц. В некоторых вариантах реализации изобретения длина антисмыслового соединения, нацеленного на нуклеиновую кислоту ПКП, составляет 26 субъединиц. В некоторых вариантах реализации изобретения длина антисмыслового соединения, нацеленного на нуклеиновую кислоту ПКП, составляет 27 субъединиц. В некоторых вариантах реализации изобретения длина антисмыслового соединения, нацеленного на нуклеиновую кислоту ПКП, составляет 28 субъединиц. В некоторых вариантах реализации изобретения длина антисмыслового соединения, нацеленного на нуклеиновую кислоту ПКП, составляет 29 субъединиц. В некоторых вариантах реализации изобретения длина антисмыслового соединения, нацеленного на нуклеиновую кислоту ПКП, составляет 30 субъединиц. В некоторых вариантах реализации изобретения длина антисмыслового соединения, нацеленного на нуклеиновую кислоту ПКП, составляет 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58,59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79 или 80 связанных субъединиц или находится в диапазоне, определенном любыми двумя из упомянутых выше значений. В некоторых вариантах реализации антисмысловое соединение представляет собой антисмысловой олигонуклеотид, и связанными субъединицами являются нуклеозиды.
В некоторых вариантах реализации изобретения антисмысловые олигонуклеотиды, нацеленные на нуклеиновую кислоту ПКП, могут быть укороченными или усеченными. Например, одна субъединица может быть удалена с 5' конца (5' усечение), или же с 3' конца (3' усечение). В укороченном или усеченном антисмысловом соединении, нацеленном на нуклеиновую кислоту ПКП, две субъединицы могут быть удалены на 5' конце или, в качестве альтернативы, две субъединицы могут быть удалены на 3' конце антисмыслового соединения. В альтернативном варианте удаленные нуклеозиды могут быть рассеяны по всему антисмысловому соединению, например, в антисмысловом соединении с одним нуклеозидом, удаленным с 5' конца, и одним нуклеозидом, удаленным с 3' конца.
Если в удлиненном антисмысловом соединении присутствует одна дополнительная субъединица, то дополнительная субъединица может быть расположена на 5' или 3' конце антисмыслового соединения. При наличии двух или более дополнительных субъединиц, добавленные субъединицы могут быть расположены рядом друг с другом, например, в антисмысловом соединении, имеющем две субъединицы, добавленные на 5' конце (5' присоединение) или, в альтернативном варианте, на 3' конце (3' присоединение). В альтернативном варианте присоединенные субъединицы могут быть рассеяны по всему антисмысловому соединению, например, в антисмысловом соединении, имеющем одну субъединицу, присоединенную к 5' концу, и одну субъединицу, присоединенную к 3' концу.
Длина антисмыслового соединения, такого как антисмысловой олигонуклеотид, может быть увеличена или уменьшена, и/или могут быть введены некомплементарные основания без аннулирования активности. Например, в Woolf et al. (Proc. Natl. Acad. Sci. USA 89:7305-7309, 1992) описан ряд антисмысловых олигонуклеотидов длиной 13-25 азотистых оснований, которые были испытаны на их способность индуцировать расщепление целевой РНК в модели инъекции в ооцит. Антисмысловые олигонуклеотиды длиной 25 азотистых оснований с 8 или 11 некомплементарными основаниями вблизи концов антисмысловых олигонуклеотидов были способны управлять прямым расщеплением целевой мРНК, хотя и в меньшей степени, чем антисмысловые олигонуклеотиды, которые не содержали никаких несоответствий. Аналогичным образом целевое специфическое расщепление было достигнуто с применением антисмысловых нуклеотидов из 13 азотистых оснований, включая такие, что имели 1 или 3 несоответствия.
Gautschi et al (J. Natl. Natl. Cancer Inst. 93:463-471, March 2001) продемонстрировали способность олигонуклеотида, обладающего 100% комплементарностью мРНК bcl-2 и содержащего 3 рассогласованных основания по отношению к мРНК bcl-xL, уменьшать экспрессию как bcl-2, так и bcl-xL in vitro и in vivo. Кроме того, данный олигонуклеотид продемонстрировал высокую противоопухолевую активность in vivo.
Maher и Dolnick (Nuc. Acid. Res. 16:3341-3358, 1988) провели испытания серии тандемов антисмысловых олигонуклеотидов из 14 азотистых оснований и антисмысловых олигонуклеотидов из 28 и 42 азотистых оснований, состоящих из последовательности двух или трех тандемов антисмысловых олигонуклеотидов, соответственно, на их способность к блокированию трансляции ДГФР человека в анализе на ретикулоцитах кролика. Каждый из трех антисмысловых олигонуклеотидов из 14 азотистых оснований в одиночку был способен ингибировать трансляцию, хотя и на более низком уровне, чем антисмысловые олигонуклеотиды из 28 или 42 азотистых оснований.
Мотивы антисмысловых соединений
В некоторых вариантах реализации изобретения антисмысловые соединения, нацеленные на нуклеиновую кислоту ПКП, содержат химически модифицированные субъединицы, организованные в паттерны или мотивы, для придания антисмысловым соединениям таких свойств, как например усиленная ингибирующая активность, повышенная аффинность связывания с нуклеиновой кислотой-мишенью или сопротивление разложению нуклеазами in vivo.
Химерные антисмысловые соединения обычно содержат по меньшей мере одну область, модифицированную таким образом, чтобы придать повышенную устойчивость к разложению под действием нуклеаз, усиление клеточного поглощения, повышенную аффинность связывания с целевой нуклеиновой кислотой, и/или повышенную ингибирующую активность. Второй химерный участок антисмыслового соединения может дополнительно служить в качестве субстрата для клеточной эндонуклеазы РНКазы H, которая отщепляет нить РНК в РНК:ДНК-дуплексе.
Антисмысловые соединения, имеющие гэпмерный мотив, представляют собой химерные антисмысловые соединения. В гэпмере внутренняя область, имеющая множество нуклеотидов, которые поддерживают расщепление РНКазой Н, расположена между внешними областями, имеющими множество нуклеотидов, химически отличающихся от нуклеозидов внутренней области. В случае антисмыслового олигонуклеотида, имеющего гэпмерный мотив, сегмент гэп, как правило, служит в качестве субстрата для расщепления эндонуклеазой, в то время как сегменты крыльев содержат модифицированные нуклеозиды. В некоторых вариантах реализации указанные области гэпмера различаются по типам сахарных фрагментов в составе каждой отдельной области. Типы сахарных фрагментов, которые используют для дифференциации областей гэпмера, в некоторых вариантах реализации включают β-D-рибонуклеозиды, β-D-дезоксирибонуклеозиды, 2'-модифицированные нуклеозиды (такие 2'-модифицированные нуклеозиды могут включать, среди прочего, 2'-МОЕ и 2'-O-СН3) и модифицированные бициклическими сахарами нуклеозиды (такие модифицированные бициклическими сахарами нуклеозиды могут включать те, которые имеют мостик 4'-(СН2)n-O-2', где n=1 или n=2, и 4'-СН2-O-СН2-2'). В некоторых вариантах реализации крылья могут содержат несколько модифицированных сахарных фрагментов, включая, например, 2'-МОЕ. В некоторых вариантах реализации крылья могут содержать несколько модифицированных и немодифицированных сахарных фрагментов. В некоторых вариантах реализации крылья могут содержать различные комбинации 2'-МОЕ нуклеозидов и 2'-дезоксинуклеозидов.
Каждая отдельная область может содержать одинаковые сахарные фрагменты, различные или чередующиеся сахарные фрагменты. Мотив крыло-гэп-крыло часто описывают как «X-Y-Z», где «X» обозначает длину 5' крыла, «Y» обозначает длину гэпа, а «Z» обозначает длину 3' крыла. «X» и «Z» могут содержать одинаковые, различные или чередующиеся сахарные фрагменты. В некоторых вариантах реализации «X» и «Y» могут содержать один или более 2'-дезоксинуклеозида. «Y» может содержать 2'-дезоксинуклеозиды. В данном контексте гэпмер, описанный как «X-Y-Z», имеет такую конфигурацию, что гэп расположен непосредственно возле каждого из 5' крыла и 3' крыла. Таким образом, между 5' крылом и гэп или гэп и 3' крылом нет промежуточных нуклеотидов. Любое из антисмысловых соединений, описанных в настоящем документе, может иметь гэпмерный мотив. В некоторых вариантах реализации «X» и «Z» являются одинаковыми; в других вариантах реализации они различны.
В некоторых вариантах реализации гэпмер, описанный в настоящем документе, содержит, например 20 оснований, имея 5-10-5 мотив.
Нуклеиновые кислоты-мишени, области-мишени и нуклеотидные последовательности
Нуклеотидные последовательности, которые кодируют прекалликреин (ПКП) плазмы человека, включают, без ограничения, следующие: с номером доступа GENBANK NM_000892.3 (включенную в настоящий документ как SEQ ID NO: 1), с номером доступа GENBANK DC412984.1 (включенную в настоящий документ как SEQ ID NO: 2), с номером доступа GENBANK CN265612.1 (включенную в настоящий документ как SEQ ID NO: 3), с номером доступа GENBANK AK297672.1 (включенную в настоящий документ как SEQ ID NO: 4), с номером доступа GENBANK DC413312.1 (включенную в настоящий документ как SEQ ID NO: 5), с номером доступа GENBANK AV688858.2 (включенную в настоящий документ как SEQ ID NO: 6), с номером доступа GENBANK CD652077.1 (включенную в настоящий документ как SEQ ID NO: 7), с номером доступа GENBANK ВС143911.1 (включенную в настоящий документ как SEQ ID NO: 8), с номером доступа GENBANK СВ162532.1 (включенную в настоящий документ как SEQ ID NO: 9), с номером доступа GENBANK NT_016354.19, усеченную по азотистым основаниям с 111693001 по 111730000 (включенную в настоящий документ как SEQ ID NO: 10), с номером доступа GENBANK NM_008455.2 (включенную в настоящий документ как SEQ ID NO: 11), с номером доступа GENBANK BB598673.1 (включенную в настоящий документ как SEQ ID NO: 12), с номером доступа GENBANK NT_039460.7, усеченную по азотистым основаниям с 6114001 по 6144000 (включенную в настоящий документ как SEQ ID NO: 13), с номером доступа GENBANK NM_012725.2 (включенную в настоящий документ как SEQ ID NO: 14), с номером доступа GENBANK NW_047473.1, усеченную по азотистым основаниям с 10952001 по 10982000 (включенную в настоящий документ как SEQ ID NO: 15), с номером доступа GENBANK ХМ_002804276.1 (включенную в настоящий документ как SEQ ID NO: 17), с номером доступа GENBANK NW_001118167.1, усеченную по азотистым основаниям с 2358000 по 2391000 (включенную в настоящий документ как SEQ ID NO: 18).
Понятно, что последовательность, изложенная в каждом SEQ ID NO в примерах, содержащихся в настоящем документе, является независимой от любой модификации сахарного фрагмента, межнуклеозидной связи или азотистого основания. Следовательно, антисмысловое соединение, определяемое по SEQ ID NO, может независимо содержать одну или более модификации сахарного фрагмента, межнуклеозидной связи или азотистого основания. Антисмысловые соединения, описанные по номеру Isis (Isis №) указывают сочетание последовательности азотистых оснований и мотива.
В некоторых вариантах реализации целевая область представляет собой структурно определенную область нуклеиновой кислоты-мишени. Например, целевая область может охватывать 3' UTR, 5' UTR, экзон, интрон, экзон /интронное сочленение, кодирующую область, область инициации трансляции, область терминации трансляции или другими определенные области нуклеиновой кислоты. Структурно определенные области для ПКП могут быть получены по номеру доступа из баз данных последовательностей, таких как NCBI, и такая информация включена в данное описание посредством ссылки. В некоторых вариантах реализации целевая область может охватывать последовательность от 5' сайта-мишени одного целевого сегмента в пределах области-мишени до 3' сайта-мишени другого целевого сегмента в пределах той же области-мишени.
Таргетирование включает в себя определение по меньшей мере одного целевого сегмента, с которым гибридизируется антисмысловое соединение, например, для достижения желаемого эффекта. В некоторых вариантах реализации желаемый эффект представляет собой снижение уровней мРНК нуклеиновой кислоты-мишени. В некоторых вариантах реализации желаемый эффект представляет собой снижение уровней белка, кодируемого нуклеиновой кислотой-мишенью, или фенотипическое изменение, связанное с нуклеиновой кислотой-мишенью.
Область-мишень может содержать один или более целевых сегментов. Несколько целевых сегментов в области-мишени могут быть перекрывающимися. Альтернативно, они могут быть не перекрывающимися. В некоторых вариантах реализации целевые сегменты в пределах области-мишени разделены не более чем около 300 нуклеотидами. В некоторых вариантах реализации целевые сегменты в пределах области-мишени разделены числом нуклеотидов, равным, равным около, не более чем, не более чем около 250, 200, 150, 100, 90, 80, 70, 60, 50, 40, 30, 20 или 10 нуклеотидами в нуклеиновой кислоте-мишени, или находится в пределах, определяемых любыми двумя из предшествующих значений. В некоторых вариантах реализации целевые сегменты в пределах области-мишени разделены не более чем, или не более чем около 5 нуклеотидами в нуклеиновой кислоте-мишени. В некоторых вариантах реализации целевые сегменты непрерывны. Предусмотрены области-мишени, определенные диапазоном, имеющим стартовую нуклеиновую кислоту, которая представляет собой любую из 5' сайта-мишени или 3' сайта-мишени, перечисленных в настоящем документе.
Подходящие целевые сегменты могут быть расположены в 5' UTR, кодирующем участке, в 3' UTR, интроне, экзоне или в экзон/интронном сочленении. Целевые сегменты, содержащие стартовый кодон или стоп-кодон, также представляют собой подходящие целевые сегменты. Подходящий целевой сегмент может специфически исключать некоторые структурно определенные области, такие как стартовый кодон или стоп-кодон.
Определение подходящих целевых сегментов может включать в себя сравнение последовательности нуклеиновой кислоты-мишени с другими последовательностями по всему геному. Например, для идентификации областей подобия среди различных нуклеиновых кислот может быть использован алгоритм BLAST. Это сравнение может предотвратить выбор последовательностей антисмыслового соединения, которые гибридизуются неспецифическим образом с последовательностями, отличными от выбранной нуклеиновой кислоты-мишени (например, нецелевые или побочные последовательности).
Могут быть вариации в активности (например, определенной по процентному снижению уровней нуклеиновой кислоты-мишени) антисмысловых соединений внутри активной целевой области. В некоторых вариантах реализации изобретения снижение уровней мРНК ПКП является индикатором ингибирования экспрессии ПКП. Снижение уровней белка ПКП также указывает на подавление экспрессии мРНК-мишени. Дополнительно, фенотипические изменения указывают на подавление экспрессии ПКП. Например, уменьшение выраженности или предупреждение воспаления может быть индикатором подавления экспрессии ПКП. В другом примере, уменьшение выраженности или предупреждение отека/припухлости может быть индикатором подавления экспрессии ПКП. В другом примере, уменьшение или предупреждение сосудистой проницаемости может быть индикатором подавления экспрессии ПКП. В другом примере, уменьшение или предупреждение транссудации может быть индикатором подавления экспрессии ПКП. В некоторых вариантах реализации изобретения сосудистую проницаемость измеряют путем количественного определения красителя, такого как Evans Blue.
Гибридизация
В некоторых вариантах реализации гибридизация происходит между антисмысловым соединением, раскрытым в данном описании, и нуклеиновой кислотой-мишенью. Наиболее распространенный механизм гибридизации включает водородное связывание (например, уотсон-криковское, хугстиновское или обратное хугстиновское водородное связывание) между комплементарными азотистыми основаниями молекул нуклеиновых кислот.
Гибридизация может происходить в различных условиях. Жесткие условия являются последовательность-зависимыми и определяются природой и составом гибридизуемых молекул нуклеиновых кислот.
Способ определения того, является ли последовательность специфически гибридизуемой с целевой нуклеиновой кислотой, хорошо известны в данной области техники. В некоторых вариантах реализации изобретения антисмысловые соединения, предложенные в данном описании, способны специфично гибридизоваться с нуклеиновой кислотой-мишенью.
Комплементарностъ
Антисмысловое соединение и нуклеиновая кислота-мишень комплементарны друг другу, если достаточное количество азотистых оснований антисмыслового соединения может образовывать водородную связь с соответствующими азотистыми основаниями нуклеиновой кислоты-мишени, таким образом, что будет достигаться желательный эффект (например, антисмысловое ингибирование нуклеиновой кислоты-мишени, такой как нуклеиновая кислота ПКП).
Некомплементарные азотистые основания между антисмысловым соединением и нуклеиновой кислотой ПКП могут быть допустимыми при условии, что антисмысловое соединение сохраняет способность специфично гибридизоваться с нуклеиновой кислотой-мишенью. Кроме того, антисмысловое соединение может гибридизоваться с одним или несколькими сегментами нуклеиновой кислоты ПКП таким образом, что промежуточные или смежные сегменты не участвуют в гибридизации (например, петлевая структура, рассогласование или структура шпильки).
В некоторых вариантах реализации изобретения антисмысловые соединения, предложенные в данном описании, или определенная их часть, являются или по меньшей мере на 70%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% или 100% комплементарны нуклеиновой кислоте ПКП, области-мишени, сегменту-мишени или определенной их части. Процент комплементарности антисмыслового соединения с целевой нуклеиновой кислотой может быть определен с использованием стандартных методов.
Например, антисмысловое соединение, в котором 18 из 20 азотистых оснований антисмыслового соединения являются комплементарными к области-мишени, и поэтому будут специфически гибридизоваться, имеет 90 процентов комплементарности. В данном примере оставшиеся некомплементарные азотистые основания могут быть расположены кластерно или вперемешку с комплементарных азотистыми основаниями и не обязаны быть смежными друг с другом или комплементарными азотистыми основаниям. Таким образом, антисмысловое соединение, длина которого составляет 18 азотистых оснований, содержащее четыре некомплементарных азотистых основания, фланкированных двумя участками полной комплементарности с нуклеиновой кислотой-мишенью, обладает общей комплементарностью с нуклеиновой кислотой-мишенью 77,8%, и таким образом, входит в пределы объема настоящего изобретения. Процент комплементарности антисмыслового соединения с областью нуклеиновой кислоты-мишени может быть определен с помощью программ BLAST (основное средство поиска локального выравнивания) и программ PowerBLAST, известных в данной области техники (Altschul et al., J. Mol. Biol., 1990, 215, 403 410; Zhang и Madden, Genome Res., 1997, 7, 649 656). Процент гомологии, идентичность или комплементарность последовательностей, могут быть определены, например, программой Gap (висконсинский пакет анализа последовательностей, версия 8 для Unix, Genetics Computer Group, Висконсинский Университет, Мэдисон, штат Висконсин), с использованием настроек по умолчанию, которые используют алгоритм Смита и Ватермана (Adv. Appl. Math., 1981,2, 482 489).
В некоторых вариантах реализации антисмысловые соединения, предложенные в настоящем документе, или их определенные части полностью комплементарны (т.е. на 100% комплементарны) нуклеиновой кислоте-мишени или ее определенной части. Например, антисмысловое соединение может быть полностью комплементарным нуклеиновой кислоте прекалликреина плазмы или ее области-мишени или сегменту-мишени или последовательности-мишени. В данном контексте «полностью комплементарный» означает, что каждое азотистое основание антисмыслового соединения способно точно спариваться с соответствующими азотистыми основаниями нуклеиновой кислоты-мишени. Например, антисмысловое соединение из 20 азотистых оснований полностью комплементарно целевой последовательности, которая имеет 400 азотистых оснований в длину, при условии, что существует соответствующая часть целевой нуклеиновой кислоты из 20 азотистых оснований, которая полностью комплементарна указанному антисмысловому соединению. Полностью комплементарный может также использоваться в отношении определенного фрагмента первой и/или второй нуклеиновой кислоты. Например, фрагмент из 20 азотистых оснований антисмыслового соединения, состоящего из 30 азотистых оснований, может быть «полностью комплементарным» последовательности-мишени, которая имеет 400 азотистых оснований в длину. Фрагмент из 20 азотистых оснований олигонуклеотида, состоящего из 30 азотистых оснований, полностью комплементарен целевой последовательности, если целевая последовательность имеет соответствующий фрагмент из 20 азотистых оснований, при этом каждое его азотистое основание комплементарно фрагменту из 20 азотистых оснований антисмыслового соединения. В то же время, все антисмысловое соединение из 30 азотистых оснований может быть или не быть полностью комплементарным целевой последовательности в зависимости оттого, будут ли остальные 10 азотистых оснований антисмыслового соединения также комплементарны целевой последовательности.
Некомплементарное азотистое основание может располагаться на 5' конце или 3' конце антисмыслового соединения. В альтернативном варианте некомплементарное азотистое основание или азотистые основания могут быть внутри антисмыслового соединения. Если присутствуют два или более некомплементарных азотистых оснований, они могут быть смежными (т.е. связанными) или не смежными. В одном варианте реализации некомплементарное азотистое основание располагается в сегменте крыла гэпмера антисмыслового олигонуклеотида.
В некоторых вариантах реализации изобретения антисмысловые соединения, длина которых равна или составляет до 11, 12, 13, 14, 15, 16, 17, 18, 19 или 20 азотистых оснований, содержат не более 4, не более 3, не более 2 или не более 1 некомплементарного азотистого основания относительно нуклеиновой кислоты-мишени или указанной ее части.
В некоторых вариантах реализации изобретения антисмысловые соединения, длина которых равна или составляет до 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 или 30 азотистых оснований, содержат не более 6, не более 5, не более 4, не более 3, не более 2 или не более 1 некомплементарного азотистого основания относительно нуклеиновой кислоты-мишени или определенной ее части.
Предложенные антисмысловые соединения включают также соединения, которые комплементарны части нуклеиновой кислоты-мишени. В данном контексте «часть» относится к определенному количеству смежных (т.е. связанных) азотистых оснований в пределах области или сегмента нуклеиновой кислоты-мишени. «Часть» также может относиться к определенному количеству смежных азотистых оснований антисмыслового соединения. В некоторых вариантах реализации антисмысловые соединения комплементарны части целевого сегмента из по меньшей мере 8 азотистых оснований. В некоторых вариантах реализации антисмысловые соединения комплементарны части целевого сегмента из по меньшей мере 9 азотистых оснований. В некоторых вариантах реализации антисмысловые соединения комплементарны части целевого сегмента из по меньшей мере 10 азотистых оснований. В некоторых вариантах реализации антисмысловые соединения комплементарны части целевого сегмента из по меньшей мере 11 азотистых оснований. В некоторых вариантах реализации антисмысловые соединения комплементарны части целевого сегмента из по меньшей мере 12 азотистых оснований. В некоторых вариантах реализации антисмысловые соединения комплементарны части целевого сегмента из по меньшей мере 13 азотистых оснований. В некоторых вариантах реализации антисмысловые соединения комплементарны части целевого сегмента из по меньшей мере 14 азотистых оснований. В некоторых вариантах реализации антисмысловые соединения комплементарны части целевого сегмента из по меньшей мере 15 азотистых оснований. Также предусмотрены антисмысловые соединения, которые являются комплементарными части из по меньшей мере 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 или более азотистых оснований целевого сегмента, или диапазон, определяемый любыми двумя из указанных значений.
Идентичность
Антисмысловые соединения, представленные в настоящем документе, также могут иметь определенный процент идентичности конкретной нуклеотидной последовательности, SEQ ID NO, или соединению, представленному конкретным номером Isis, или его части. В данном контексте антисмысловое соединение идентично последовательности, описанной в настоящем документе, если оно имеет такую же способность к спариванию азотистых оснований. Например, РНК, которая содержит урацил вместо тимидина в описанной последовательности ДНК, считают идентичной последовательности ДНК, поскольку и урацил, и тимидин спариваются с аденином. Предусмотрены также укороченные и удлиненные варианты антисмысловых соединений, описанных в настоящем документе, а также соединений, обладающих неидентичными основаниями по отношению к антисмысловым соединениям, предложенным в настоящем документе. Неидентичные основания могут быть смежными друг с другом или рассеянными по всему антисмысловому соединению. Процент идентичности антисмыслового соединения рассчитывают по количеству оснований, которые имеют идентичное спаривание оснований, относительно последовательности, с которой идет сравнение.
В некоторых вариантах реализации антисмысловые соединения или их части по меньшей мере на 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% или 100% идентичны одному или более антисмысловым соединениям из SEQ ID NO, или их части, как описано в настоящем документе.
В некоторых вариантах реализации фрагмент антисмыслового соединения сравнивают с равной по длине части нуклеиновой кислоты-мишени. В некоторых вариантах реализации сравнивают часть из 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 или 25 азотистых оснований с равной по длине частью нуклеиновой кислоты-мишени.
В некоторых вариантах реализации часть антисмыслового олигонуклеотида сравнивают с равной по длине частью нуклеиновой кислоты-мишени. В некоторых вариантах реализации сравнивают часть из 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 или 25 азотистых оснований с равной по длине частью нуклеиновой кислоты-мишени.
Модификации
Нуклеозид представляет собой комбинацию азотистое основание-сахар. Азотистое основание (также известное как основание) - часть нуклеозида, обычно представляющая собой фрагмент гетероциклического основания. Нуклеотиды представляют собой нуклеозиды, которые дополнительно содержат фосфатную группу, ковалентно связанную с сахарной частью нуклеозида. Для тех нуклеозидов, которые содержат пентофуранозильный сахар, фосфатная группа может быть связана с 2', 3' или 5' гидроксильным фрагментом сахара. Олигонуклеотиды образуются посредством ковалентного связывания соседних нуклеозидов друг с другом с образованием линейного полимерного олигонуклеотида. В олигонуклеотидной структуре фосфатные группы обычно называют как образующие межнуклеозидные связи олигонуклеотида.
Модификации антисмысловых соединений охватывают замещения или изменения межнуклеозидных связей, сахарных фрагментов или азотистых оснований. Модифицированные антисмысловые соединения зачастую предпочтительны по сравнению с нативными формами за счет желаемых свойств, таких как, например, улучшенное клеточное поглощение, повышенная аффинность связывания с нуклеиновой кислотой-мишенью, повышенная стабильность в присутствии нуклеаз или повышенная ингибирующая активность.
Химически модифицированные нуклеозиды также могут быть использованы для повышения аффинности связывания укороченного или усеченного антисмыслового олигонуклеотида с его нуклеиновой кислотой-мишенью. Следовательно, сопоставимые результаты часто могут быть получены с помощью более коротких антисмысловых соединений, которые имеют такие химически модифицированные нуклеозиды.
Модифицированные межнуклеозидные связи
Природная межнуклеозидная связь РНК и ДНК представляет собой 3'-5' фосфодиэфирную связь. Антисмысловые соединения, имеющие одну или более модифицированных, т.е. неприродных межнуклеозидных связей, часто предпочтительны по сравнению с антисмысловыми соединениями, имеющими природные межнуклеозидные связи, благодаря желаемым свойствам, таким как, например, улучшенное клеточное поглощение, усиленная аффинность связывания с нуклеиновыми кислотами-мишенями и повышенная стабильность в присутствии нуклеаз.
Олигонуклеотиды, имеющие модифицированные межнуклеозидные связи, включают межнуклеозидные связи, которые сохраняют атом фосфора, а также межнуклеозидные связи, которые не имеют атома фосфора. Иллюстративные фосфорсодержащие межнуклеозидные связи включают, но не ограничиваются ими, фосфодиэфиры, фосфотриэфиры, метилфосфонаты, фосфорамидаты и тиофосфаты. Способы получения фосфорсодержащих и не содержащих фосфор связей хорошо известны.
В некоторых вариантах реализации изобретения антисмысловые соединения, нацеленные на нуклеиновую кислоту прекалликреина плазмы, содержат одну или более модифицированных межнуклеозидных связей. В некоторых вариантах реализации модифицированные межнуклеозидные связи представляют собой тиофосфатные связи. В некоторых вариантах реализации каждая межнуклеозидная связь антисмыслового соединения представляет собой тиофосфатную межнуклеозидную связь.
В некоторых вариантах реализации олигонуклеотиды содержат модифицированные межнуклеозидные связи, расположенные вдоль олигонуклеотида или его области определенным образом или в виде мотива модифицированной межнуклеозидной связи. В некоторых вариантах реализации межнуклеозидные связи расположены в разорванном мотиве. В таких вариантах реализации межнуклеозидные связи в каждой из двух областей крыльев отличны от межнуклеозидных связей в области гэп. В некоторых вариантах реализации межнуклеозидные связи в крыльях являются фосфодиэфирными, а межнуклеозидные связи в гэп являются тиофосфатными. Нуклеозидный мотив выбран независимо, так что олигонуклеотид, имеющий разорванный мотив межнуклеозидных связей, может иметь или не иметь разорванный нуклеозидный мотив, и если он имеет разорванный нуклеозидный мотив, то длина крыльев и гэп может быть или не быть одинаковой.
В некоторых вариантах реализации олигонуклеотиды содержат область, имеющую мотив чередующихся межнуклеозидных связей. В некоторых вариантах реализации олигонуклеотиды согласно настоящему изобретению содержат область одинаково модифицированных межнуклеозидных связей. В некоторых таких вариантах реализации олигонуклеотид содержит область, которая равномерно связана тиофосфатными межнуклеозидными связями. В некоторых вариантах реализации олигонуклеотид равномерно связан тиофосфатными межнулеозидными связями. В некоторых вариантах реализации каждая межнуклеозидная связь олигонуклеотида выбрана из фосфодиэфира и тиофосфата. В некоторых вариантах реализации каждая межнуклеозидная связь олигонуклеотида выбрана из фосфодиэфира и тиофосфата, и по меньшей мере одна межнуклеозидная связь представляет собой тиофосфат.
В некоторых вариантах реализации олигонуклеотид содержит по меньшей мере 6 тиофосфатных межнуклеозидных связей. В некоторых вариантах реализации олигонуклеотид содержит по меньшей мере 8 тиофосфатных межнуклеозидных связей. В некоторых вариантах реализации олигонуклеотид содержит по меньшей мере 10 тиофосфатных межнуклеозидных связей. В некоторых вариантах реализации олигонуклеотид содержит по меньшей мере один блок по меньшей мере из 6 последовательных тиофосфатных межнуклеозидных связей. В некоторых вариантах реализации олигонуклеотид содержит по меньшей мере один блок по меньшей мере из 8 последовательных тиофосфатных межнуклеозидных связей. В некоторых вариантах реализации олигонуклеотид содержит по меньшей мере один блок по меньшей мере из 10 последовательных тиофосфатных межнуклеозидных связей. В некоторых вариантах реализации олигонуклеотид содержит по меньшей мере один блок по меньшей мере из 12 последовательных тиофосфатных межнуклеозидных связей. В некоторых таких вариантах реализации по меньшей мере один такой блок расположен на 3' конце олигонуклеотида. В некоторых таких вариантах реализации по меньшей мере один такой блок расположен в пределах 3 нуклеозидов от 3' конца олигонуклеотида.
В некоторых вариантах реализации олигонуклеотиды содержат одну или более метилфосфонатных связей. В некоторых вариантах реализации олигонуклеотиды, имеющие гэпмерный нуклеозидный мотив, содержат линкерный мотив, содержащий все тиофосфатные связи, за исключением одной или двух метилфосфонатных связей. В некоторых вариантах реализации одна метилфосфонатная связь находится в центральном гэпе олигонуклеотида, имеющего гэпмерный нуклеозидный мотив.
В некоторых вариантах реализации желательно распределять количество тиофосфатных межнуклеозидных связей и фосфодиэфирных межнуклеозидных связей для сохранения устойчивости к нуклеазе. В некоторых вариантах реализации желательно распределять количество и положение тиофосфатных межнуклеозидных связей, а также количество и положение фосфодиэфирных межнуклеозидных связей для сохранения устойчивости к нуклеазе. В некоторых вариантах реализации количество тиофосфатных межнуклеозидных связей может быть уменьшено, а количество фосфодиэфирных межнуклеозидных связей может быть увеличено. В некоторых вариантах реализации количество тиофосфатных межнуклеозидных связей может быть уменьшено, а количество фосфодиэфирных межнуклеозидных связей может быть увеличено при сохранении устойчивости к нуклеазе. В некоторых вариантах реализации желательно уменьшить количество тиофосфатных межнуклеозидных связей при сохранении устойчивости к нуклеазе. В некоторых вариантах реализации желательно увеличить количество фосфодиэфирных межнуклеозидных связей при сохранении устойчивости к нуклеазе.
Модифицированные сахарные фрагменты
Антисмысловые соединения могут необязательно содержать один или более нуклеозидов, в которых модифицирована сахарная группа. Такие нуклеозиды с модифицированным сахаром могут придавать антисмысловым соединениями повышенную устойчивость к нуклеазам, повышенную аффинность связывания или некоторые другие полезные биологические свойства. В некоторых вариантах реализации нуклеозиды содержат химически модифицированные фрагменты рибофуранозного кольца. Примеры химически модифицированных рибофуранозных колец включают, без ограничения, введение групп заместителей (включая 5' и 2' группы заместителей, соединение мостиком негеминальных кольцевых атомов с образованием бициклических нуклеиновых кислот (БНК), замену атома кислорода в рибозильном кольце на S, N(R) или C(R1)(R2) (R, R1 и R2, каждый независимо, представляют собой Н, С1-С12 алкил или защитную группу) и их комбинации. Примеры химически модифицированных Сахаров включают 2'-F-5'-метил-замещенный нуклеозид (см. международную заявку РСТ WO 2008/101157, опубликованную 8/21/08, где представлены другие описанные 5',2'-бис-замещенные нуклеозиды) или замену атома кислорода рибозильного кольца на S с дополнительным замещением в 2'-положении (см. опубликованную заявку на патент США US 2005-0130923, опубликованную 16 июня 2005 года), или в альтернативном варианте с 5'-замещением БНК (см. международную заявку РСТ WO 2007/134181, опубликованную 11/22/07, где ЗНК замещена, например, 5'-метильной или 5'-винильной группой).
Примеры нуклеозидов, имеющих модифицированные сахарные фрагменты, включают, без ограничения, нуклеозиды, содержащие 5'-винильные, 5'-метильные (R или S), 4'-S, 2'-F, 2'-ОСН3, 2'-ОСН2СН3, 2'-OCH2CH2F и 2'-O(СН2)2OCH3 группы заместителей.
Заместитель в 2' положении также может быть выбран из аллила, амино, азидо, тио, О-аллила, O-C1-С10 алкила, OCF3, OCH2F, O(CH2)2SCH3, O(CH2)2-O-N(Rm)(Rn), O-CH2-C(=O)- N(Rm)(Rn) и O-CH2-C(=O)-N(R1)-(CH2)2-N(Rm)(Rn), где каждый R1, Rm и Rn независимо представляет собой Н или замещенный или незамещенный C1-С10 алкил.
В данном контексте «бициклические нуклеозиды» относятся к модифицированным нуклеозидам, содержащим бициклический сахарный фрагмент. Примеры бициклических нуклеозидов включают, без ограничения, нуклеозиды, содержащие мостик между 4' и 2' атомами рибозильного кольца. В некоторых вариантах реализации антисмысловые соединения, предложенные в настоящем документе, содержат один или более бициклических нуклеозидов, содержащих мостик 4'-2'. Примеры таких бициклических нуклеозидов с 4'-2' мостиками, включают, но не ограничиваются одной из формул: 4'-(СН2)-O-2' (ЗНК); 4'-(СН2)-S-2'; 4'-(СН2)2-O-2' (ЭНК); 4'-СН(СН3)-O-2' (также упоминаемый как стерически затрудненный этил или cEt) и 4'-СН(СН2ОСН3)-O-2' (и их аналоги, см. патент США 7399845, выданный 15 июля 2008 года); 4'-С(СН3)(СН3)-O-2' (и их аналоги, см. опубликованную международную заявку WO/2009/006478, опубликованную 8 января 2009 года); 4'-СН2-N(OCH3)-2' (и их аналоги, см опубликованную международную заявку WO/2008/150729, опубликованную 11 декабря 2008 года); 4'-СН2-O-N(СН3)-2' (см. опубликованную заявку на патент США US 2004-0171570, опубликованную 2 сентября 2004 года); 4'-CH2-N(R)-O-2', где R представляет собой Н, С1-С12 алкил или защитную группу (см. патент США 7427672, выданный 23 сентября 2008 года); 4'-СН2-С(Н)(СН3)-2' (см. Zhou et al, J. Org. Chem., 2009, 74, 118-134); и 4'-CH2-C(=CH2)-2' (и их аналоги, см. опубликованную международную заявку WO 2008/154401, опубликованную 8 декабря 2008 года).
Дальнейшие сообщения, связанные с бициклическими нуклеозидами могут также быть найдены в опубликованной литературе (см., например: Singh et al, Chem. Commun., 1998, 4, 455-456; Koshkin et al, Tetrahedron, 1998, 54, 3607-3630; Wahlestedt et al, Proc. Natl. Acad. Sci. U.S.A., 2000, 97, 5633-5638; Kumar et al, Bioorg. Med. Chem. Lett., 1998, 8, 2219- 2222; Singh et al, J. Org. Chem., 1998, 63, 10035-10039; Srivastava et al, J. Am. Chem. Soc., 2007, 129(26) 8362-8379; Elayadi et al, Curr. Opinion Invest. Drugs, 2001, 2, 558-561; Braasch et al, Chem. Biol, 2001, 8, 1-7; и Orum et al, Curr. Opinion Mol. Ther., 2001, 3, 239-243; патенты США №6268490; 6525191; 6670461; 6770748; 6794499; 7034133; 7053207; 7399845; 7547684; и 7696345; публикации патентов США № US 2008-0039618; US 2009-0012281; патенты США с серийным №61/026995 и 61/097787; опубликованные международные заявки РСТ WO 1999/014226; WO 2004/106356; WO 2005/021570; WO 2007/134181; WO 2008/150729; WO 2008/154401; WO 2009/006478; WO 2010/036698; WO 2011/017521; WO 2009/067647; WO 2009/100320. Каждый из указанных бициклических нуклеозидов может быть получен с одной или более стереохимическими конфигурациями сахара, включая, например, α-L- рибофуранозу и β-D-рибофуранозу (см. международную заявку РСТ PCT/DK98/00393, опубликованную 25 марта 1999 года как WO 99/14226).
В некоторых вариантах реализации бициклические сахарные фрагменты нуклеозидов БНК включают, но не ограничиваются ими, соединения, имеющие по меньшей мере один мостик между 4' и 2' положением пентофуранозильного сахарного фрагмента, где такие мостики независимо содержат 1 или от 2 до 4 связанных групп, независимо выбранных из - [C(Ra)(Rb)]n-, -C(Ra)=C(Rb)-, -C(Ra)=N-, -С(=O)-, -C(=NRa)-, -C(=S)-, -О-, -Si(Ra)2-, -S(=O)x- и - N(Ra)-;
где:
x равен 0, 1 или 2; п равен 1, 2, 3 или 4;
каждый Ra и Rb независимо представляет собой Н, защитную группу, гидроксил, C1-С12 алкил, замещенный С1-С12 алкил, С2-С12 алкенил, замещенный С2-С12 алкенил, С2-С12 алкинил, замещенный С2-С12 алкинил, С5-С20 арил, замещенный С5-С20 арил, гетероциклический радикал, замещенный гетероциклический радикал, гетероарил, замещенный гетероарил, С5-С7 алициклический радикал, замещенный С5-С7 алициклический радикал, галоген, OJ1, NJ1J2, SJ1, N3, COOJ1, ацил (С(=O)-Н), замещенный ацил, CN, сульфонил (S(=O)2-J1) или сульфоксил (S(=O)-J1); и
каждый J1 и J2 независимо представляет собой Н, С1-С12 алкил, замещенный С1-С12 алкил, С2-С12 алкенил, замещенный С2-С12 алкенил, С2-С12 алкинил, замещенный С2-С12 алкинил, С5-С20 арил, замещенный С5-С20 арил, ацил (С(=O)-Н), замещенный ацил, гетероциклический радикал, замещенный гетероциклический радикал, С1-С12 аминоалкил, замещенный С1-С12 аминоалкил или защитную группу.
В некоторых вариантах реализации мостик бициклического сахарного фрагмента представляет собой -[C(Ra)(Rb)]n-, -[C(Ra)(Rb)]n-O-, -C(RaRb)-N(R)-O- или -C(RaRb)-O-N(R)-. В некоторых вариантах реализации мостик представляет собой 4'-СН2-2', 4'-(СН2)2-2', 4'-(СН2)3-2', 4'-СН2-O-2', 4'-(СН2)2-O-2', 4'-CH2-O-N(R)-2' и 4'-CH2-N(R)-O-2'-, где каждый R независимо представляет собой Н, защитную группу или С1-С12 алкил.
В некоторых вариантах реализации бициклические нуклеозиды дополнительно определяют по изомерной конфигурации. Например, нуклеозид, содержащий 4'-2' метиленокси-мостик, может быть в α-L конфигурации или в β-D конфигурации. Ранее α-L-метиленокси (4'-СН2-O-2') БНК были внедрены в антисмысловые олигонуклеотиды, которые демонстрировали антисмысловую активность (Frieden et ah, Nucleic Acids Research, 2003, 21, 6365-6372).
В некоторых вариантах реализации бициклические нуклеозиды включают, но не ограничиваются ими, (А) α-L-метиленокси (4'-СН2-O-2') БНК, (В) β-D-метиленокси (4'-СН2-O-2') БНК, (С) этиленокси (4'-(СН2)2-O-2') БНК, (D) аминоокси (4'-CH2-O-N(R)-2') БНК, (Е) оксиамино (4'-CH2-N(R)-O-2') БНК и (F) метил(метиленокси) (4'-СН(СН3)-O-2') БНК, (G) метилентио (4'-CH2-S-2') БНК, (Н) метиленамино (4'-CH2-N(R)-2') БНК, (I) метилкарбоциклическую (4'-СН2-СН(СН3)-2') БНК, (J) пропиленкарбоциклическую (4'- (СН2)3-2') БНК и (K) винил-БНК, как показано ниже:
где Вх представляет собой фрагмент основания, а R независимо представляет собой Н, защитную группу, C1-С12 алкил или С1-С12 алкокси.
В некоторых вариантах реализации представлены бициклические нуклеозиды,
имеющие Формулу I:
где:
Вх представляет собой фрагмент гетероциклического основания;
-Qa-Qb-Qc- представляет собой -CH2-N(Rc)-CH2-, -C(=O)-N(Rc)-CH2-, -CH2-O-N(Rc)- CH2-N(Rc)-O- или -N(Rc)-O-CH2;
Rc представляет собой C1-C12 алкил или аминозащитную группу; и
Та и Tb, каждый независимо, представляют собой Н, гидроксил-защитную группу, группу конъюгата, реакционноспособную фосфорную группу, фосфорный фрагмент или ковалентное присоединение к среде подложки.
В некоторых вариантах реализации представлены бициклические нуклеозиды, имеющие формулу II:
где:
Вх представляет собой фрагмент гетероциклического основания;
Ta и Tb, каждый независимо, представляют собой Н, гидрокси-защитную группу, группу конъюгата, реакционноспособную фосфорную группу, фосфорный фрагмент или ковалентное присоединение к среде подложки;
Za представляет собой C1-С6 алкил, С2-С6 алкенил, С2-С6 алкинил, замещенный C1-С6 алкил, замещенный С2-С6 алкенил, замещенный С2-С6 алкинил, ацил, замещенный ацил, замещенный амид, тиол или замещенный тио.
В одном из вариантов реализации каждая из замещенных групп независимо является моно или полизамещенной группами заместителей, выбранными из галогена, оксо, гидроксила, OJc, NJcJd, SJc, N3, OC(=X)Jc и NJeC(=X)NJcJd, где каждый Jc, Jd и Je независимо представляет собой Н, C1-С6 алкил ил изамещенный C1-С6 алкил, и X представляет собой О или NJc.
В некоторых вариантах реализации представлены бициклические нуклеозиды, имеющие формулу III:
где:
Вх представляет собой фрагмент гетероциклического основания;
Та и Tb, каждый независимо, представляют собой Н, гидрокси-защитную группу, группу конъюгата, реакционноспособную фосфорную группу, фосфорный фрагмент или ковалентное присоединение к среде подложки;
Zb представляет собой C1-С6 алкил, С2-С6 алкенил, C2-С6 алкинил, замещенный C1-С6 алкил, замещенный С2-С6 алкенил, замещенный С2-С6 алкинил или замещенный ацил (С(=O)-).
В некоторых вариантах реализации представлены бициклические нуклеозиды, имеющие формулу IV:
где:
Вх представляет собой фрагмент гетероциклического основания;
Та и Tb, каждый независимо, представляют собой Н, гидрокси-защитную группу, группу конъюгата, реакционноспособную фосфорную группу, фосфорный фрагмент или ковалентное присоединение к среде подложки;
Rd представляет собой C1-С6 алкил, замещенный C1-С6 алкил, С2-С6 алкенил, замещенный С2-С6 алкенил, С2-С6 алкинил или замещенный С2-С6 алкинил;
каждый qa, qb, qc и qd независимо представляет собой Н, галоген, C1-C6 алкил, замещенный C1-С6 алкил, С2-С6 алкенил, замещенный С2-С6 алкенил, С2-С6 алкинил или замещенный С2-С6 алкинил, C1-С6 алкоксил, замещенный C1-С6 алкоксил, ацил, замещенный ацил, C1-С6 аминоалкил или замещенный C1-С6 аминоалкил;
В некоторых вариантах реализации представлены бициклические нуклеозиды, имеющие формулу V:
где:
Вх представляет собой фрагмент гетероциклического основания;
Та и Tb, каждый независимо, представляют собой Н, гидрокси-защитную группу, группу конъюгата, реакционноспособную фосфорную группу, фосфорный фрагмент или ковалентное присоединение к среде подложки;
qa, qb, qe и qf, каждый независимо, представляют собой водород, галоген, С1-С12 алкил, замещенный С1-С12 алкил, С2-С12 алкенил, замещенный C2-C12 алкенил, С2-С12 алкинил, замещенный С2-С12 алкинил, С1-С12 алкокси, замещенный С1-С12 алкокси, OJj, SJj, SOJj, SO2Jj, NJjJk, N3, CN, C(=O)OJj, C(=O)NJjJk, C(=O)Jj, O-C(=O)NJjJk, N(H)C(=NH)NJjJk, N(H)C(=O)NJjJk или N(H)C(=S)NJjJk;
или qe и qf вместе представляют собой =C(qg)(qh);
qg и qh, каждый независимо, представляют собой Н, галоген, С1-С12 алкил или замещенный С1-С12 алкил.
Описаны синтез и получение метиленокси (4'-СН2-O-2') мономеров БНК: аденина, цитозина, гуанина, 5-метилцитозина, тимина и урацила, а также их олигомеризация и свойства распознавания нуклеиновых кислот (Koshkin et al., Tetrahedron, 1998, 54, 3607- 3630). БНК и их получение также описаны в WO 98/39352 и WO 99/14226.
Были также получены аналоги метиленокси (4'-СН2-O-2') БНК и 2'-тио-БНК (Kumar et al., Bioorg. Med. Chem. Lett., 1998, 8, 2219-2222). Описано также получение аналогов запертых нуклеозидов, содержащих олигодезоксирибонуклеотидные дуплексы в качестве субстратов полимераз нуклеиновых кислот (Wengel et al., WO 99/14226). Кроме того, в данной области техники описан синтез 2'-амино-БНК, нового конформационно ограниченного высокоаффинного аналога олигонуклеотида (Singh et al., J. Org. Chem., 1998, 63, 10035-10039). Кроме того, ранее были получены 2'-амино- и 2'-метиленамино БНК, и была описана термостабильность их дуплексов с комплементарными нитями РНК и ДНК.
В некоторых вариантах реализации представлены бициклические нуклеозиды, имеющие формулу VI:
где:
Вх представляет собой фрагмент гетероциклического основания;
Ta и Tb, каждый независимо, представляют собой Н, гидрокси-защитную группу, группу конъюгата, реакционноспособную фосфорную группу, фосфорный фрагмент или ковалентное присоединение к среде подложки;
каждый qi, qj, qk и ql независимо представляет собой Н, галоген, С1-С12 алкил, замещенный С1-С12 алкил, С2-С12 алкенил, замещенный С2-С12 алкенил, С2-С12 алкинил, замещенный С2-С12 алкинил, С1-С12 алкоксил, замещенный С1-С12 алкоксил, OJj, SJj, SOJj, SO2Jj, NJjJk, N3, CN, C(=O)OJj, C(=O)NJjJk, C(=O)Jj, O-C(=O)NJjJk, N(H)C(=NH)NJjJk, N(H)C(=O)NJjJk или N(H)C(=S)NJjJk; и
qi и qj или ql и qk вместе представляют собой =C(qg)(qh), где qg и qh, каждый независимо, представляют собой Н, галоген, С1-C12 алкил или замещенный С1-С12 алкил.
Описан один карбоциклический бициклический нуклеозид, имеющий мостик 4'- (СН2)3-2', и мостик из аналога алкенила 4'-СН=СН-СН2-2' (Freier et al, Nucleic Acids Research, 1997, 25(22), 4429-4443 и Albaek et al., J. Org. Chem., 2006, 71, 7731-7740). Описан также синтез и получение карбоциклических бициклических нуклеозидов вместе с их олигомеризацией и биохимическими исследованиями (Srivastava et al., J. Am. Chem. Soc, 2007,129(26), 8362-8379).
В данном контексте «4'-2' бициклический нуклеозид» или «4' к 2' бициклический нуклеозид» относится к бициклическому нуклеозиду, содержащему фуранозное кольцо, содержащее мостик, соединяющий два атома углерода фуранозного кольца, соединяющий 2' атом углерода и 4' атом углерода сахарного кольца.
В данном контексте «моноциклические нуклеозиды» относятся к нуклеозидам, содержащим модифицированные сахарные фрагменты, которые не являются бициклическими сахарными фрагментами. В некоторых вариантах реализации сахарный фрагмент или аналог сахарного фрагмента нуклеозида может быть модифицирован или замещен в любом положении.
В данном контексте «2'-модифицированный сахар» означает фуранозильный сахар, модифицированный в 2' положении. В некоторых вариантах реализации такие модификации включают заместители, выбранные из: галогенидов, включая, но не ограничиваясь ими, замещенный и незамещенный алкокси, замещенный и незамещенный тиоалкил, замещенный и незамещенный аминоалкил, замещенный и незамещенный алкил, замещенный и незамещенный аллил и замещенный и незамещенный алкинил. В некоторых вариантах реализации 2' модификации выбраны из заместителей, включающих, но не ограничиваясь ими: O[(CH2)nO]mCH3, O(CH2)nNH2, O(CH2)nCH3, O(CH2)nF, O(CH2)nONH2, OCH2C(=O)N(H)CH3 и O(CH2)nON[(CH2)nCH3]2, где n и m равны от 1 до около 10. Другие 2' группы заместителей также могут быть выбраны из: C1-С12 алкила, замещенного алкила, алкенила, алкинила, алкарила, аралкила, О-алкарила или О-аралкила, SH, SCH3, OCN, Cl, Br, CN, F, CF3, OCF3, SOCH3, SO2CH3, ONO2, NO2, N3, NH2, гетероциклоалкила, гетероциклоалкарила, аминоалкиламино, полиалкиламино, замещенного силила, РНК расщепляющей группы, репортерной группы, интеркалятора, группы для улучшения фармакокинетических свойств или группы для улучшения фармакодинамических свойств антисмыслового соединения, и других заместителей с подобными свойствами. В некоторых вариантах реализации модифицированные нуклеозиды содержат 2'-МОЕ боковую цепь (Baker et ah, J. Biol. Chem., 1997, 272, 11944-12000). Такие 2'-MOE замещения описаны как улучшающие аффинность связывания по сравнению с немодифицированными нуклеозидами и с другими модифицированными нуклеозидами, такими как 2'-О-метил, O-пропил и О-аминопропил. Было показано, что олигонуклеотиды, имеющие 2'-МОЕ заместитель, являются антисмысловыми ингибиторами экспрессии генов с перспективными возможностями для применения in vivo (Martin, Helv. Chim. Acta, 1995, 78, 486-504; Altmann et ah, Chimia, 1996, 50, 168-176; Altmann et al., Biochem. Soc. Trans., 1996, 24, 630-637; и Altmann et al., Nucleosides Nucleotides, 1997,16, 917-926).
В данном контексте «модифицированный тетрагидропирановый нуклеозид» или «модифицированный ТГП нуклеозид» означает нуклеозид, имеющий шестичленный тетрагидропирановый «сахар», заменивший пентофуранозильный остаток в обычных нуклеозидах (заменитель сахара). ТГП-модифицированные нуклеозиды включают, но не ограничиваются ими, те, которые в данной области техники называют гекситоловой нуклеиновой кислотой (ГНК), анитоловой нуклеиновой кислотой (АНК), манитоловой нуклеиновой кислотой (МНК) (см. Leumann, Bioorg. Med. Chem., 2002, 10, 841-1954) или фтор-ГНК (F-ГНК), имеющие тетрагидропирановую кольцевую систему, представленную ниже:
В некоторых вариантах реализации выбраны заменители сахара, имеющие формулу VII:
где независимо для каждого из указанного по меньшей мере одного тетрагидропиранового нуклеозидного аналога формулы VII:
Вх представляет собой фрагмент гетероциклического основания;
Та и Tb, каждый независимо, представляют собой межнуклеозидную линкерную группу, которая связывает тетрагидропирановый нуклеозидный аналог с антисмысловым соединением, или один из Та и Tb представляет собой межнуклеозидную линкерную группу, которая связывает тетрагидропирановый нуклеозидный аналог с антисмысловым соединением, а другой из Ta и Tb представляет собой Н, гидроксил-защитную группу, связанную группу конъюгата или 5' или 3'-концевую группу;
q1, q2, q3, q4, q5, q6 и q7, каждый независимо, представляют собой Н, C1-С6 алкил, замещенный C1-С6 алкил, С2-С6 алкенил, замещенный С2-С6 алкенил, С2-С6 алкинил или замещенный С2-С6 алкинил; и каждый из R1 и R2 выбран из водорода, гидроксила, галогена, замещенного или незамещенного алкокси, NJ1J2, SJ1, N3, OC(=X)J1, OC(=X)NJ1J2, NJ3C(=X)NJ1J2 и CN, где X представляет собой О, S или NJ1, и каждый J1, J2 и J3 независимо представляет собой Н или C1-С6 алкил.
В некоторых вариантах реализации предложены модифицированные ТГП нуклеозиды формулы VII, где q1, q2, q3, q4, q5, q6 и q7 представляют собой Н. В некоторых вариантах реализации по меньшей мере один из q1, q2, q3, q4, q5, q6 и q7 отличен от H. В некоторых вариантах реализации по меньшей мере один из q1, q2, q3, q4, q5, q6 и q7 представляет собой метил. В некоторых вариантах реализации предложены ТГП нуклеозиды формулы VII, где один из R1 и R2 представляет собой фтор. В некоторых вариантах реализации R1 представляет собой фтор, a R2 представляет собой Н; R1 представляет собой метокси, a R2 представляет собой Н, и R1 представляет собой метоксиэтокси, a R2 представляет собой Н.
В некоторых вариантах реализации заменители сахара содержат кольца, имеющие более 5 атомов и более одного гетероатома. Например, описаны нуклеозиды, содержащие морфолиносахарные фрагменты, и их применение в олигомерных соединениях (см., например: Braasch et al, Biochemistry, 2002, 41, 4503-4510; и патенты США 5698685; 5166315; 5185444; и 5034506). В данном контексте термин «морфолино» означает заменитель сахара, имеющий следующую формулу:
.
В некоторых вариантах реализации морфолино могут быть модифицированными, например, добавлением или изменением различных групп заместителей относительно представленной выше структуры морфолино. Такие заменители сахара в данном контексте называют «модифицированными морфолино».
Предложены также комбинации модификаций, без ограничения, такие как 2'-F-5'- метил-замещенные нуклеозиды (см. международную заявку РСТ WO 2008/101157, опубликованную 8/21/08, где описаны другие 5', 2'-бис-замещенные нуклеозиды) и замену рибозильного кольцевого атома кислорода на S с дополнительным замещением в 2'- положении (см. опубликованную заявку на патент США US 2005-0130923, опубликованную 16 июня 2005 года) или в альтернативном варианте с 5'-замещением бициклической нуклеиновой кислоты (см. международную заявку РСТ WO 2007/134181, опубликованную 11/22/07, где 4'-СН2-O-2' бициклический нуклеозид дополнительно замещен в 5' положении 5'-метильной или 5'-винильной группой). Описан также синтез и получение карбоциклических бициклических нуклеозидов вместе с их олигомеризацией и биохимическими исследованиями (см., например, Srivastava et al, J. Am. Chem. Soc. 2007, 129(26), 8362-8379).
В некоторых вариантах реализации антисмысловые соединения содержат один или более модифицированных циклогексенильных нуклеозидов, которые представляют собой нуклеозиды, имеющие шестичленный циклогексенил вместо пентофуранозильного остатка в природных нуклеозидах. Модифицированные циклогексенильные нуклеозиды включают, но не ограничиваются ими, нуклеозиды, описанные в данной области техники (см., например, параллельную опубликованную заявку РСТ WO 2010/036696, опубликованную 10 апреля, 2010, Robeyns et al, J. Am. Chem. Soc, 2008, 130(6), 1979-1984; et al, Tetrahedron Letters, 2007, 48, 3621-3623; Nauwelaerts et al, J. Am. Chem. Soc, 2007, 129(30), 9340-9348; Gu et al,, Nucleosides, Nucleotides & Nucleic Acids, 2005, 24(5-7), 993-998; Nauwelaerts et al, Nucleic Acids Research, 2005, 33(8), 2452-2463; Robeyns et al., Acta Crystallographica, Section F: Structural Biology and Crystallization Communications, 2005, F61(6), 585-586; Gu et al, Tetrahedron, 2004, 60(9), 2111-2123; Gu et al, Oligonucleotides, 2003, 13(6), 479-489; Wang et al, J. Org. Chem., 2003, 68, 4499-4505; Verbeure et al., Nucleic Acids Research, 2001, 29(24), 4941-4947; Wang et al, J. Org. Chem., 2001, 66, 8478-82; Wang et al, Nucleosides, Nucleotides & Nucleic Acids, 2001, 20(4-7), 785-788; Wang et al, J. Am. Chem., 2000, 122, 8595-8602; опубликованную заявку РСТ WO 06/047842; и опубликованную заявку РСТ WO 01/049687; полное содержание каждой из которых включено в настоящий документ посредством ссылки). Некоторые модифицированные циклогексенильные нуклеозиды имеют формулу X.
где независимо для каждого указанного по меньшей мере одного циклогексенильного нуклеозидного аналога формулы X:
Вх представляет собой фрагмент гетероциклического основания;
Т3 и Т4, каждый независимо, представляют собой межнуклеозидную линкерную группу, которая связывает циклогексенильный нуклеозидный аналог с антисмысловым соединением, или один из Т3 и Т4 представляет собой межнуклеозидную линкерную группу, которая связывает тетрагидропирановый нуклеозидный аналог с антисмысловым соединением, а другой из Т3 и Т4 представляет собой Н, гидроксил-защитную группу, связанную группу конъюгата или 5'-или 3'-концевую группу; и
q1, q2, q3, q4, q5, q6, q7, q8 и q9, каждый независимо, представляют собой Н, C1-С6 алкил, замещенный C1-С6 алкил, С2-С6 алкенил, замещенный С2-С6 алкенил, С2-С6 алкинил, замещенный С2-С6 алкинил или другие группы-заместители сахара.
В данном контексте «2'-модифицированный» или «2'-замещенный» относится к нуклеозиду, содержащему сахар, содержащий заместитель в 2' положении, отличный от Н или ОН. 2'-модифицированные нуклеозиды включают, но не ограничиваются ими, бициклические нуклеозиды, в которых мостик, соединяющий два атом углерода сахарного кольца, соединяет 2' атом углерода и другой атом углерода сахарного кольца; и нуклеозиды с немостиковыми 2' заместителями, такими как аллил, амино, азидо, тио, О-аллил, О-C1-С10 алкил, -OCF3, O-(СН2)2-O-СН3, 2'-O(CH2)2SCH3, O-(CH2)2-O-N(Rm)(Rn), or O-CH2-C(=O)- N(Rm)(Rn), где каждый Rm и Rn независимо представляет собой Н или замещенный или незамещенный C1-С10 алкил. 2'-модифицированные нуклеозиды могут также содержать другие модификации, например, в других положениях сахара и/или азотистого основания.
В данном контексте «2'-F» относится к нуклеозиду, содержащему сахар, содержащий группу фтора в 2' положении сахарного кольца.
В данном контексте «2'-ОМе» или «2'-ОСН3», или «2'-O-метил» относится к нуклеозиду, содержащему сахар, содержащий группу -ОСН3 в 2' положении сахарного кольца.
В данном контексте «МОЕ» или «2'-МОЕ», или «2'-ОСН2СН2ОСН3», или «2'-O- метоксиэтил» относится к нуклеозиду, содержащему сахар, содержащий группу - ОСН2СН2ОСН3 в 2' положении сахарного кольца.
В данном контексте «олигонуклеотид» относится к соединению, содержащему множество связанных нуклеозидов. В некоторых вариантах реализации один или более из множества нуклеозидов являются модифицированными. В некоторых вариантах реализации олигонуклеотид содержит один или более рибонуклеозидов (РНК) и/или дезоксирибонуклеозидов (ДНК).
В данной области техники известны также многие другие бициклические и трициклические кольцевые системы заменителей сахара, которые могут быть использованы для модификации нуклеозидов для внедрения в антисмысловые соединения (см., например, обзорную статью: Leumann, Bioorg. Med. Chem., 2002,10, 841-1954). Такие кольцевые системы могут подвергаться различным дополнительным замещениям для повышения активности.
Способы получения модифицированных сахаров хорошо известны специалистам в данной области техники. Некоторые иллюстративные патенты США, которые описывают получение таких модифицированных сахаров, включают, без ограничения, патенты США: 4981957;5118800; 5319080; 5359044; 5393878; 5446137; 5466786; 5514785; 5519134; 5567811; 5576427; 5591722; 5597909; 5610300; 5627053; 5639873; 5646265; 5670633; 5700920; 5792847 и 6600032, а также международную заявку PCT/US 2005/019219, поданную 2 июня 2005 года и опубликованную как WO 2005/121371 12 декабря 2005 года, полное содержание каждого из которых включено в настоящий документ посредством ссылки.
В нуклеотидах, имеющих модифицированные сахарные фрагменты, фрагменты азотистых оснований (природные, модифицированные или их комбинации) сохраняются для гибридизации с соответствующей нуклеиновой кислотой-мишенью.
В некоторых вариантах реализации антисмысловые соединения содержат один или более нуклеозидов, имеющих модифицированные сахарные фрагменты. В некоторых вариантах реализации модифицированный сахарный фрагмент представляет собой 2'-МОЕ. В некоторых вариантах реализации 2'-МОЕ модифицированные нуклеозиды расположены в гэпмерном мотиве. В некоторых вариантах реализации модифицированный сахарный фрагмент представляет собой бициклический нуклеозид, имеющий мостиковую группу (4'-СН(СН3)-O-2'). В некоторых вариантах реализации (4'-СН(СН3)-O-2') модифицированные нуклеозиды расположены в крыльях гэпмерного мотива.
Сопряженные антисмысловые соединения
В некоторых вариантах реализации настоящего описания предложены сопряженные антисмысловые соединения. В некоторых вариантах реализации настоящего описания предложены сопряженные антисмысловые соединения, содержащие антисмысловой олигонуклеотид, комплементарный транскрипту нуклеиновой кислоты. В некоторых вариантах реализации настоящего описания предложены способы, включающие приведение в контакт клетки с сопряженным антисмысловым соединением, содержащим антисмысловой олигонуклеотид, комплементарный транс крипту нуклеиновой кислоты. В некоторых вариантах реализации настоящего описания предложены способы, включающие приведение в контакт клетки с сопряженным антисмысловым соединением, содержащим антисмысловой олигонуклеотид, и уменьшение количества или активности транскрипта нуклеиновой кислоты в клетке.
Ранее был описан асиалогликопротеиновый рецептор (ASGP-R). См. например, Park et al., PNAS, том. 102, №47, cc. 17125-17129 (2005). Такие рецепторы экспрессируются на клетках печени, в частности, гепатоцитах. Кроме того, было показано, что соединения, содержащие кластеры трех N-ацетилгалактозаминовых (GalNAc) лигандов, способны связываться с ASGP-R, приводя к захвату указанного соединения в клетку. См. например, Khorev et al., Bioorganic and Medicinal Chemistry, 16, 9, cc. 5216-5231 (май, 2008). Соответственно, конъюгаты, содержащие такие кластеры GalNAc, использовали для облегчения захвата некоторых соединений в клетки печени, в частности, гепатоциты. Например, было показано, что некоторые GalNAc-содержащие конъюгаты увеличивают активность дуплексных миРНК соединений в клетках печени in vivo. В таких случаях GalNAc-содержащий конъюгат, как правило, прикрепляется к смысловой спирали дуплекса миРНК. Поскольку смысловая спираль отбрасывается перед окончательной гибридизацией антисмысловой спирали с нуклеиновой кислотой-мишенью, то маловероятно, что такой конъюгат будет влиять на активность. Как правило, конъюгат присоединяется к 3'-концу смысловой спирали миРНК. См. например, патент США 8106022. Некоторые группы конъюгата, описанные в настоящем документе, более активны и/или синтезируются легче, чем группы конъюгата, описанные ранее.
В некоторых вариантах реализации настоящего изобретения конъюгаты присоединяются к односпиральным антисмысловым соединениям, включая, но не ограничиваясь ими, антисмысловые соединения на основе РНКазы Н и антисмысловые соединения, которые изменяют сплайсинг целевой нуклеиновой кислоты пре-мРНК. В таких вариантах реализации конъюгат должен оставаться присоединенным к антисмысловому соединению достаточно долго для обеспечения преимущества (улучшенного захвата в клетки), но затем он должен либо расщепляться, либо иным образом не препятствовать последующим стадиям, необходимым для активности, таким как гибридизация с целевой нуклеиновой кислотой и взаимодействие с РНКазой Н или ферментами, связанными со сплайсингом или модулированием сплайсирования. Такой баланс свойств более важен при осаждении односпиральных антисмысловых соединений, чем соединений миРНК, где конъюгат может быть просто присоединен к смысловой спирали. В настоящем документе описаны односпиральные антисмысловые соединения, обладающие улучшенной активностью в клетках печени in vivo, по сравнению с таким же антисмысловым соединением, не имеющим конъюгата. Учитывая необходимый баланс свойств для этих соединений, такая улучшенная активность является неожиданной.
В некоторых вариантах реализации группы конъюгата согласно настоящему документу содержат расщепляемый фрагмент. Как было отмечено, не ограничиваясь каким-либо механизмом, логично, что конъюгат должен сохраняться у соединения достаточно долго для обеспечения усиления захвата, но после этого желательно, чтобы некоторая его часть или, в идеале, весь конъюгат расщеплялся, выделяя исходное соединение (например, антисмысловое соединение) в его наиболее активной форме. В некоторых вариантах реализации расщепляемый фрагмент представляет собой расщепляемый нуклеозид. Такие варианты реализации обладают преимуществом эндогенных нуклеаз в клетке за счет присоединения остальной части конъюгата (кластера) к антисмысловому олигонуклеотиду через нуклеозид при помощи одной или более расщепляемых связей, таких как фосфодиэфирная связь. В некоторых вариантах реализации кластер связан с расщепляемым нуклеозидом через фосфодиэфирную связь. В некоторых вариантах реализации расщепляемый нуклеозид присоединен к антисмысловому олигонуклеотиду (антисмысловому соединению) фосфодиэфирной связью. В некоторых вариантах реализации группа конъюгата может содержать два или три расщепляемых нуклеозида. В таких вариантах реализации указанные расщепляемые нуклеозиды связаны друг с другом, с антисмысловым соединением и/или с кластером посредством расщепляемых связей (таких как фосфодиэфирная связь). Некоторые конъюгаты по настоящему документу не содержат расщепляемый нуклеозид, а вместо этого содержат расщепляемую связь. Показано, что достаточное расщепление конъюгата из олигонуклеотида обеспечивается по меньшей мере за счет одной связи, которая легко поддается расщеплению в клетке (расщепляемая связь).
В некоторых вариантах реализации сопряженные антисмысловые соединения представляют собой пролекарства. Такие пролекарства вводят животному, и они в конечном итоге метаболизируются до более активной формы. Например, сопряженные антисмысловые соединения расщепляются с удалением всего или части конъюгата, приводя к активной (или более активной) форме антисмыслового соединения, не содержащего всего или части конъюгата.
В некоторых вариантах реализации конъюгаты присоединены на 5'-конце олигонуклеотида. Некоторые такие 5'-конъюгаты расщепляются более эффективно, чем аналоги, имеющие такую же группу конъюгата, присоединенную на 3'-конце. В некоторых вариантах реализации улучшенная активность может коррелировать с улучшенным расщеплением. В некоторых вариантах реализации олигонуклеотиды, содержащие конъюгат на 5'-конце, обладают более высокой эффективностью, чем олигонуклеотиды, содержащие конъюгат на 3'-конце (см., например, Примеры 56, 81, 83 и 84). Кроме того, 5'- присоединение обеспечивает более простой синтез олигонуклеотида. Как правило, олигонуклеотиды синтезируют на твердой подложке в направлении от 3' к 5'. Для получения 3'-сопряженного олигонуклеотида, как правило присоединяют предварительно сопряженный 3'-нуклеозид к твердой подложке, а затем обычным путем создают олигонуклеотид. Однако присоединение такого сопряженного нуклеозида к твердой подложке усложняет синтез. Кроме того, используя такой подход, конъюгат затем присутствует в ходе всего синтеза олигонуклеотида и может разрушаться во время последующих стадий или может ограничивать типы реакций и реагентов, которые можно использовать. Используя структуры и методики, описанные в настоящем документе для 5'-сопряженных олигонуклеотидов, можно синтезировать олигонуклеотид при помощи стандартных автоматизированных методик и внедрять в конъюгат последний (5'-крайний) нуклеозид или после отделения олигонуклеотида от твердой подложки.
С учетом известного уровня техники и настоящего описания, специалисты в данной области техники могут легко получить любые из конъюгатов и сопряженных олигонуклеотидов, описанных в настоящем документе. Кроме того, синтез некоторых таких конъюгатов и сопряженных олигонуклеотидов, описанных в настоящем документе, проще и/или требует меньше стадий и, следовательно, менее дорогой, чем синтез ранее описанных конъюгатов, что дает преимущество при производстве. Например, синтез некоторых групп конъюгата состоит из меньшего количества синтетических стадий, что приводит к увеличению выхода, по сравнению с ранее описанными группами конъюгата. Группы конъюгатов, такие как GalNAc3-10 в Примере 46 и GalNAc3-7 в Примере 48 гораздо проще, чем ранее описанные конъюгаты, такие как описаны в публикациях U.S. 8106022 или U.S. 7262177, для которых необходима сборка большего количества химических промежуточных соединений. Соответственно, эти и другие конъюгаты, описанные в настоящем документе, обладают преимуществом по сравнению с ранее описанными соединениями для применения с любым олигонуклеотидом, включая односпиральные олигонуклеотиды и любую спираль двухспиральных олигонуклеотидов (например, миРНК).
Точно так же, в настоящем документе описаны группы конъюгатов, имеющие только один или два лиганда GalNAc. Как показано, такие сопряженные группы усиливают активность антисмысловых соединений. Такие соединения гораздо проще получить, чем конъюгаты, содержащие три лиганда GalNAc. Группы конъюгатов, содержащие один или два лиганда GalNAc, могут быть присоединены к любым антисмысловым соединениям, включая односпиральные олигонуклеотиды и любую спираль двухспиральных олигонуклеотидов (например, миРНК).
В некоторых вариантах реализации конъюгаты, описанные в настоящем документе, существенно не изменяют некоторые показатели переносимости. Например, в настоящем документе показано, что сопряженные антисмысловые соединения являются не более иммуногенными, чем несопряженные исходные соединения. Поскольку активность улучшается, то варианты реализации, в которых переносимость остается такой же (или в действительности если даже переносимость ухудшается лишь незначительно, по сравнению с приростом активности), обладают улучшенными характеристиками для терапии.
В некоторых вариантах реализации сопряжение позволяет изменять антисмысловые соединения так, чтобы они обладали менее выраженными последствиями в отсутствие сопряжения. Например, в некоторых вариантах реализации замена одной или более тиофосфатных связей полностью тиофосфатного антисмыслового соединения на фосфодиэфирные связи приводит к улучшению некоторых показателей переносимости. Например, в некоторых случаях такие антисмысловые соединения, имеющие один или более фосфодиэфиров, являются менее иммуногенными, чем такие же соединения, в которых каждая связь представляет собой тиофосфат. Однако в некоторых случаях, как показано в Примере 26, такое же замещение одной или более тиофосфатных связей на фосфодиэфирные связи приводит также к снижению клеточного захвата и/или к снижению активности. В некоторых вариантах реализации сопряженные антисмысловые соединения, описанные в настоящем документе, допускают такое изменение связей с небольшим снижением или без снижения захвата и активности, по сравнению с сопряженным полностью тиофосфатным аналогом. В действительности, в некоторых вариантах реализации, например, в Примерах 44, 57, 59 и 86, олигонуклеотиды, содержащие конъюгат и по меньшей мере одну фосфодиэфирную межнуклеозидную связь, фактически демонстрируют повышенную активность in vivo даже по сравнению с полностью тиофосфатным аналогом, также содержащим такой же конъюгат. Более того, поскольку сопряжение приводит к значительному увеличению захвата/активности, то небольшое снижение такого существенного прироста может быть приемлемым для достижения улучшенной переносимости. Соответственно, в некоторых вариантах реализации сопряженные антисмысловые соединения содержат по меньшей мере одну фосфодиэфирную связь.
В некоторых вариантах реализации сопряжение антисмысловых соединений по настоящему документу приводит к улучшенной доставке, захвату и активности в гепатоцитах. Следовательно, в ткань печени доставляется большее количество соединения.
Однако в некоторых вариантах реализации такая улучшенная доставка сама по себе не объясняет общего увеличения активности. В некоторых таких вариантах реализации в гепатоциты поступает большее количество соединения. В некоторых вариантах реализации даже такой улучшенный захват гепатоцитов сам по себе не объясняет общего увеличения активности. В таких вариантах реализации увеличивается продуктивный захват сопряженного соединения. Например, как показано в Примере 102, некоторые варианты реализации GalNAc-содержащих конъюгатов увеличивают обогащение антисмысловых олигонуклеотидов в гепатоцитах, по сравнению с не паренхимальными клетками. Такое обогащение преимущественно для олигонуклеотидов, которые направлены на гены, экспрессируемые в гепатоцитах.
В некоторых вариантах реализации сопряженные антисмысловые соединения по настоящему документу приводят к уменьшению воздействия на почки. Например, как показано в Примере 20, концентрации антисмысловых олигонуклеотидов, содержащих некоторые варианты реализации GalNAc-содержащих конъюгатов, в почках ниже, чем концентрации антисмысловых олигонуклеотидов, не имеющих GalNAc-содержащего конъюгата. Это имеет несколько преимущественных терапевтических применений. Для терапевтических показаний, в которых не требуется проявление активности в почках, воздействие на почки подвергает их риску токсичности без соответствующей пользы. Более того, высокая концентрация в почках обычно приводит к выводу соединения с мочой, обеспечивая более быстрое выведение. Соответственно, для внепочечных мишеней накопление в почках является нежелательным.
В некоторых вариантах реализации настоящего описания предложены сопряженные антисмысловые соединения, представленные формулой:
где
А представляет собой антисмысловой олигонуклеотид;
В представляет собой расщепляемый фрагмент
С представляет собой линкер конъюгата
D представляет собой группу ветвления
каждый Е представляет собой связку;
каждый F представляет собой лиганд; и
q представляет собой целое число от 1 до 5.
На представленной выше схеме и в аналогичных схемах в настоящем документе группа ветвления «D» разветвляется такое количество раз, которое необходимо для соответствия количеству групп (E-F), указанному количеством «q». Следовательно, если q=1, то формула представляет собой:
если q=2, то формула представляет собой:
если q=3, то формула представляет собой:
если q=4, то формула представляет собой:
если q=5, то формула представляет собой:
В некоторых вариантах реализации предложены сопряженные антисмысловые соединения, имеющие структуру:
В некоторых вариантах реализации предложены сопряженные антисмысловые соединения, имеющие структуру:
В некоторых вариантах реализации предложены сопряженные антисмысловые соединения, имеющие структуру:
В некоторых вариантах реализации предложены сопряженные антисмысловые соединения, имеющие структуру:
В вариантах реализации, имеющих более одной конкретной переменной (например, более одного «m» или «n»), если не указано иное, каждая такая конкретная переменная выбрана независимо. Следовательно, для структуры, имеющей более одного n, каждый n выбран независимо, так что они могут быть или не быть одинаковыми между собой.
i. Некоторые расщепляемые фрагменты
В некоторых вариантах реализации расщепляемый фрагмент представляет собой расщепляемую связь. В некоторых вариантах реализации расщепляемый фрагмент содержит расщепляемую связь. В некоторых вариантах реализации группа конъюгата содержит расщепляемый фрагмент. В некоторых таких вариантах реализации расщепляемый фрагмент присоединен к антисмысловому олигонуклеотиду. В некоторых таких вариантах реализации расщепляемый фрагмент присоединен непосредственно к фрагменту, направляющему на клетку. В некоторых таких вариантах реализации расщепляемый фрагмент присоединен к линкеру конъюгата. В некоторых вариантах реализации расщепляемый фрагмент содержит фосфат или фосфодиэфир. В некоторых вариантах реализации расщепляемый фрагмент представляет собой расщепляемый нуклеозид или нуклеозидный аналог. В некоторых вариантах реализации нуклеозид или нуклеозидный аналог содержит необязательно защищенное гетероциклическое основание, выбранное из пурина, замещенного пурина, пиримидина или замещенного пиримидина. В некоторых вариантах реализации расщепляемый фрагмент представляет собой нуклеозид, содержащий необязательно защищенное гетероциклическое основание, выбранное из урацила, тимина, цитозина, 4-N-бензоилцитозина, 5-метилцитозина, 4-N-бензоил-5-метилцитозина, аденина, 6-N-бензоиладенина, гуанина и 2-N-изобутирилгуанина. В некоторых вариантах реализации расщепляемый фрагмент представляет собой 2'-дезоксинуклеозид, который присоединен к 3'-положению антисмыслового олигонуклеотида фосфодиэфирной связью и присоединен к линкеру фосфодиэфирной или тиофосфатной связью. В некоторых вариантах реализации расщепляемый фрагмент представляет собой 2'-дезоксиаденозин, который присоединен к 3'-положению антисмыслового олигонуклеотида фосфодиэфирной связью и присоединен к линкеру фосфодиэфирной или тиофосфатной связью. В некоторых вариантах реализации расщепляемый фрагмент представляет собой 2'-дезоксиаденозин, который присоединен к 3'-положению антисмыслового олигонуклеотида фосфодиэфирной связью и присоединен к линкеру фосфодиэфирной связью.
В некоторых вариантах реализации расщепляемый фрагмент присоединен к 3'-положению антисмыслового олигонуклеотида. В некоторых вариантах реализации расщепляемый фрагмент присоединен к 5'-положению антисмыслового олигонуклеотида. В некоторых вариантах реализации расщепляемый фрагмент присоединен к 2'-положению антисмыслового олигонуклеотида. В некоторых вариантах реализации расщепляемый фрагмент присоединен к антисмысловому олигонуклеотиду фосфодиэфирной связью. В некоторых вариантах реализации расщепляемый фрагмент присоединен к указанному линкеру либо фосфодиэфирной, либо тиофосфатной связью. В некоторых вариантах реализации расщепляемый фрагмент присоединен к указанному линкеру фосфодиэфирной связью. В некоторых вариантах реализации группа конъюгата не содержит расщепляемый фрагмент.
В некоторых вариантах реализации расщепляемый фрагмент расщепляется после введения указанного комплекса в организм животного только после его поглощения целевой клеткой. Внутри клетки расщепляемый фрагмент расщепляется, высвобождая таким образом активный антисмысловой олигонуклеотид. Не ограничиваясь теорией, предполагают, что расщепляемый фрагмент расщепляется под действием одной или более нуклеаз внутри клетки. В некоторых вариантах реализации одна или более нуклеаз расщепляют фосфодиэфирную связь между расщепляемым фрагментом и линкером. В некоторых вариантах реализации расщепляемый фрагмент имеет структуру, выбранную из следующих:
; и
где каждый из Вх, Bx1, Вх2 и Вх3 независимо представляет собой фрагмент гетероциклического основания. В некоторых вариантах реализации расщепляемый фрагмент имеет структуру, выбранную из следующих:
ii. Некоторые линкеры
В некоторых вариантах реализации группы конъюгата содержат линкер. В некоторых таких вариантах реализации линкер ковалентно связан с расщепляемым фрагментом. В некоторых таких вариантах реализации линкер ковалентно связан с антисмысловым олигонуклеотидом. В некоторых вариантах реализации линкер ковалентно связан с фрагментом, направляющим на клетку. В некоторых вариантах реализации линкер дополнительно содержит ковалентное присоединение к твердой подложке. В некоторых вариантах реализации линкер дополнительно содержит ковалентное присоединение к белковому связывающему фрагменту. В некоторых вариантах реализации линкер дополнительно содержит ковалентное присоединение к твердой подложке и дополнительно содержит ковалентное присоединение к белковому связывающему фрагменту. В некоторых вариантах реализации линкер содержит несколько положений для присоединения связанных лигандов. В некоторых вариантах реализации линкер содержит несколько положений для присоединения связанных лигандов и не присоединен к группе ветвления. В некоторых вариантах реализации линкер дополнительно содержит одну или более расщепляемых связей. В некоторых вариантах реализации группа конъюгата не содержит линкер.
В некоторых вариантах реализации линкер содержит по меньшей мере одну линейную группу, содержащую группы, выбранные из алкильных, амидных, дисульфидных, полиэтиленгликолевых, тиоэфирных (-S-) и гидроксиламино (-O-N(H)-) групп. В некоторых вариантах реализации линейная группа содержит группы, выбранные из алкильных, амидных и простых эфирных групп. В некоторых вариантах реализации линейная группа содержит группы, выбранные из алкильных и простых эфирных групп. В некоторых вариантах реализации линейная группа содержит по меньшей мере одну фосфорную линкерную группу. В некоторых вариантах реализации линейная группа содержит по меньшей мере одну фосфодиэфирную группу. В некоторых вариантах реализации линейная группа содержит по меньшей мере одну нейтральную линкерную группу. В некоторых вариантах реализации линейная группа ковалентно присоединена к фрагменту, направляющему на клетку, и к расщепляемому фрагменту. В некоторых вариантах реализации линейная группа ковалентно присоединена к фрагменту, направляющему на клетку, и к антисмысловому олигонуклеотиду. В некоторых вариантах реализации линейная группа ковалентно присоединена к фрагменту, направляющему на клетку, к расщепляемому фрагменту и к твердой подложке. В некоторых вариантах реализации линейная группа ковалентно присоединена к фрагменту, направляющему на клетку, к расщепляемому фрагменту, к твердой подложке и к белковому связывающему фрагменту. В некоторых вариантах реализации линейная группа содержит одну или более расщепляемых связей.
В некоторых вариантах реализации линкер содержит линейную группу, ковалентно присоединенную к группе скелета. В некоторых вариантах реализации скелет содержит разветвленную алифатическую группу, которая содержит группы, выбранные из алкильных, амидных, дисульфидных, полиэтиленгликолевых, простых эфирных, тиоэфирных и гидроксиламино-групп. В некоторых вариантах реализации скелет содержит разветвленную алифатическую группу, которая содержит группы, выбранные из алкильных, амидных и простых эфирных групп. В некоторых вариантах реализации скелет содержит по меньшей мере одну моно- или полициклическую кольцевую систему. В некоторых вариантах реализации скелет содержит по меньшей мере две моно- или полициклические кольцевые системы. В некоторых вариантах реализации линейная группа ковалентно присоединена к группе скелета, а группа скелета ковалентно присоединена к расщепляемому фрагменту и линкеру. В некоторых вариантах реализации линейная группа ковалентно присоединена к группе скелета, а группа скелета ковалентно присоединена к расщепляемому фрагменту, линкеру и твердой подложке. В некоторых вариантах реализации линейная группа ковалентно присоединена к группе скелета, а группа скелета ковалентно присоединена к расщепляемому фрагменту, линкеру и белковому связывающему фрагменту. В некоторых вариантах реализации линейная группа ковалентно присоединена к группе скелета, а группа скелета ковалентно присоединена к расщепляемому фрагменту, линкеру, белковому связывающему фрагменту и твердой подложке. В некоторых вариантах реализации группа скелета содержит одну или более расщепляемых связей.
В некоторых вариантах реализации линкер содержит белок-связывающий фрагмент. В некоторых вариантах реализации белок-связывающий фрагмент представляет собой липид, такой как, например, включая, но не ограничиваясь ими, холестерин, холевая кислота, адамантан-уксусная кислота, 1-пирен-масляная кислота, дигидротестостерон, 1,3-бис-O(гексадецил)глицерин, геранилоксигексиловая группа, гексадецилглицерин, борнеол, ментол, 1,3-пропандиол, гептадециловая группа, пальмитиновая кислота, миристиновая кислота, O3-(олеоил)литохолевая кислота, O3-(олеоил)холеновая кислота, диметокситритил или феноксазин, витамин (например, фолат, витамин А, витамин Е, биотин, пиридоксаль), пептид, углевод (например, моносахарид, дисахарид, трисахарид, тетрасахарид, олигосахарид, полисахарид), эндосомолитический компонент, стероид (например, уваол, гецигенин, диосгенин), терпен (например, тритерпен, например, сарсасапогенин, фриделин, литохолевая кислота, дериватизованная эпифриделанолом) или катионный липид. В некоторых вариантах реализации белок-связывающий фрагмент представляет собой насыщенную или ненасыщенную жирную кислоту с длиной цепи от С16 до С22, холестерин, холевую кислоту, витамин Е, адамантан или 1-пентафторпропил.
В некоторых вариантах реализации линкер имеет структуру, выбранную из:
и
где каждый n независимо равен от 1 до 20; и p равен от 1 до 6.
В некоторых вариантах реализации линкер имеет структуру, выбранную
и
из:
где каждый n независимо равен от 1 до 20.
В некоторых вариантах реализации линкер имеет структуру, выбранную из:
и
где n равен от 1 до 20.
В некоторых вариантах реализации линкер имеет структуру, выбранную из:
и
где каждый L независимо представляет собой фосфорную линкерную группу или нейтральную линкерную группу; и
каждый n независимо равен от 1 до 20.
В некоторых вариантах реализации линкер имеет структуру, выбранную из:
и
В некоторых вариантах реализации линкер имеет структуру, выбранную из:
и
В некоторых вариантах реализации линкер имеет структуру, выбранную из:
и
В некоторых вариантах реализации линкер имеет структуру, выбранную из:
и
где n равен от 1 до 20.
В некоторых вариантах реализации линкер имеет структуру, выбранную из:
и
В некоторых вариантах реализации линкер имеет структуру, выбранную из:
и
В некоторых вариантах реализации линкер имеет структуру, выбранную из:
и .
В некоторых вариантах реализации линкер конъюгата имеет структуру:
В некоторых вариантах реализации линкер конъюгата имеет структуру:
В некоторых вариантах реализации линкер имеет структуру, выбранную из:
и .
В некоторых вариантах реализации линкер имеет структуру, выбранную из:
и ;
где каждый n независимо равен 0, 1, 2, 3, 4, 5, 6 или 7.
iii. Некоторые фрагменты, направляющие на клетку
В некоторых вариантах реализации группы конъюгата содержат фрагменты, направляющие на клетку. Некоторые такие фрагменты, направляющие на клетку, увеличивают клеточный захват антисмысловых соединений. В некоторых вариантах реализации фрагменты, направляющие на клетку, содержат группу ветвления, одну или более связок и один или более лигандов. В некоторых вариантах реализации фрагменты, направляющие на клетку, содержат группу ветвления, одну или более связок, один или более лигандов и одну или более расщепляемых связей.
1. Некоторые группы ветвления
В некоторых вариантах реализации группы конъюгата содержат направляющий фрагмент, содержащий группу ветвления и по меньшей мере два связанных лиганда. В некоторых вариантах реализации группа ветвления присоединяет линкер конъюгата. В некоторых вариантах реализации группа ветвления присоединяет расщепляемый фрагмент. В некоторых вариантах реализации группа ветвления присоединяет антисмысловой олигонуклеотид. В некоторых вариантах реализации группа ветвления ковалентно присоединена к линкеру и каждому из связанных лигандов. В некоторых вариантах реализации группа ветвления содержит разветвленную алифатическую группу, которая содержит группы, выбранные из алкильных, амидных, дисульфидных, полиэтиленгликолевых, простых эфирных, тиоэфирных и гидроксиламино-групп. В некоторых вариантах реализации группа ветвления содержит группы, выбранные из алкильных, амидных и простых эфирных групп. В некоторых вариантах реализации группа ветвления содержит группы, выбранные из алкильных и простых эфирных групп. В некоторых вариантах реализации группа ветвления содержит моно- или полициклическую кольцевую систему. В некоторых вариантах реализации группа ветвления содержит одну или более расщепляемых связей. В некоторых вариантах реализации группа конъюгата не содержит группу ветвления.
В некоторых вариантах реализации группа ветвления имеет структуру, выбранную из:
где каждый n независимо равен от 1 до 20;
j равен от 1 до 3; и
m равен от 2 до 6.
В некоторых вариантах реализации группа ветвления имеет структуру, выбранную
и
из:
где каждый n независимо равен от 1 до 20; и
m равен от 2 до 6.
В некоторых вариантах реализации группа ветвления имеет структуру, выбранную из:
; и
В некоторых вариантах реализации группа ветвления имеет структуру, выбранную из:
и
где каждый A1 независимо представляет собой О, S, С=O или NH; и
каждый n независимо равен от 1 до 20.
В некоторых вариантах реализации группа ветвления имеет структуру, выбранную из:
и
где каждый A1 независимо представляет собой О, S, С=O или NH; и
каждый n независимо равен от 1 до 20.
В некоторых вариантах реализации группа ветвления имеет структуру, выбранную из:
и
где A1 представляет собой О, S, С=O или NH; и
каждый n независимо равен от 1 до 20.
В некоторых вариантах реализации группа ветвления имеет структуру, выбранную из:
В некоторых вариантах реализации группа ветвления имеет структуру, выбранную из:
В некоторых вариантах реализации группа ветвления имеет структуру, выбранную из:
2. Некоторые связки
В некоторых вариантах реализации группы конъюгата содержат одну или более связок, ковалентно присоединенных к группе ветвления. В некоторых вариантах реализации группы конъюгата содержат одну или более связок, ковалентно присоединенных к линкерной группе. В некоторых вариантах реализации каждая связка представляет собой линейную алифатическую группу, содержащую одну или более групп, выбранных из алкильных, простых эфирных, тиоэфирных, дисульфидных, амидных и полиэтиленгликолевых групп в любой комбинации. В некоторых вариантах реализации каждая связка представляет собой линейную алифатическую группу, содержащую одну или более групп, выбранных из алкильных, замещенных алкильных, простых эфирных, тиоэфирных, дисульфидных, амидных, фосфодиэфирных и полиэтиленгликолевых групп в любой комбинации. В некоторых вариантах реализации каждая связка представляет собой линейную алифатическую группу, содержащую одну или более групп, выбранных из алкильных, простых эфирных и амидных групп в любой комбинации. В некоторых вариантах реализации каждая связка представляет собой линейную алифатическую группу, содержащую одну или более групп, выбранных из алкильных, замещенных алкильных, фосфодиэфирных, простых эфирных и амидных групп в любой комбинации. В некоторых вариантах реализации каждая связка представляет собой линейную алифатическую группу, содержащую одну или более групп, выбранных из алкила и фосфодиэфира в любой комбинации. В некоторых вариантах реализации каждая связка содержит по меньшей мере одну фосфорную линкерную группу или нейтральную линкерную группу.
В некоторых вариантах реализации связка содержит одну или более расщепляемых связей. В некоторых вариантах реализации связка присоединена к группе ветвления либо через амидную, либо через простую эфирную группу. В некоторых вариантах реализации связка присоединена к группе ветвления через фосфордиэфирную группу. В некоторых вариантах реализации связка присоединена к группе ветвления через фосфорную линкерную группу или через нейтральную линкерную группу. В некоторых вариантах реализации связка присоединена к группе ветвления через простую эфирную группу. В некоторых вариантах реализации связка присоединена к лиганду либо через амидную, либо через простую эфирную группу. В некоторых вариантах реализации связка присоединена к лиганду через простую эфирную группу. В некоторых вариантах реализации связка присоединена к лиганду либо через амидную, либо через простую эфирную группу. В некоторых вариантах реализации связка присоединена к лиганду через простую эфирную группу.
В некоторых вариантах реализации каждая связка имеет длину от около 8 до около 20 атомов в цепи между лигандом и группой ветвления. В некоторых вариантах реализации каждая связка имеет длину от около 10 до около 18 атомов в цепи между лигандом и группой ветвления. В некоторых вариантах реализации каждая связка имеет длину около 13 атомов в цепи.
В некоторых вариантах реализации связка имеет структуру, выбранную из:
и
где каждый n независимо равен от 1 до 20; и
каждый p равен от 1 до около 6.
В некоторых вариантах реализации связка имеет структуру, выбранную из:
и
В некоторых вариантах реализации связка имеет структуру, выбранную из:
где каждый n независимо равен от 1 до 20.
В некоторых вариантах реализации связка имеет структуру, выбранную из:
и
где L представляет собой либо фосфорную линкерную группу, либо нейтральную линкерную группу;
Z1 представляет собой C(=O)O-R2;
Z2 представляет собой Н, C1-С6 алкил или замещенный C1-С6 алкил;
R2 представляет собой Н, C1-С6 алкил или замещенный C1-С6 алкил; и
каждый m1 независимо равен от 0 до 20, при этом по меньшей мере один m1 больше 0 для каждой связки.
В некоторых вариантах реализации связка имеет структуру, выбранную из:
В некоторых вариантах реализации связка имеет структуру, выбранную из:
и
где Z2 представляет собой Н или СН3; и
каждый m1 независимо равен от 0 до 20, при этом по меньшей мере один m1 больше 0 для каждой связки.
В некоторых вариантах реализации связка имеет структуру, выбранную из:
или ;
где каждый n независимо равен 0, 1, 2, 3, 4, 5, 6 или 7.
В некоторых вариантах реализации связка содержит фосфорную линкерную группу. В некоторых вариантах реализации связка не содержит ни одной амидной связи. В некоторых вариантах реализации связка содержит фосфорную линкерную группу и не содержит ни одной амидной связи.
3. Некоторые лиганды
В некоторых вариантах реализации настоящего описания представлены лиганды, при этом каждый лиганд ковалентно присоединен к связке. В некоторых вариантах реализации каждый лиганд выбран так, чтобы он обладал аффинностью по меньшей мере к одному типу рецептора на клетке-мишени. В некоторых вариантах реализации лиганды выбраны так, чтобы они обладали аффинностью по меньшей мере к одному типу рецептора на поверхности клетки печени млекопитающего. В некоторых вариантах реализации лиганды выбраны так, чтобы они обладали аффинностью к печеночному асиалогликопротеиновому рецептору (ASGP-R). В некоторых вариантах реализации каждый лиганд представляет собой углевод. В некоторых вариантах реализации каждый лиганд независимо выбран из галактозы, N-ацетилгалактозамина, маннозы, глюкозы, глюкозамина и фукозы. В некоторых вариантах реализации каждый лиганд представляет собой N-ацетилгалактозамин (GalNAc). В некоторых вариантах реализации направляющий фрагмент содержит 2-6 лигандов. В некоторых вариантах реализации направляющий фрагмент содержит 3 лиганда. В некоторых вариантах реализации направляющий фрагмент содержит 3 N-ацетилгалактозаминовых лиганда.
В некоторых вариантах реализации лиганд представляет собой углевод, углеводное производное, модифицированный углевод, поливалентный углеводный кластер, полисахарид, модифицированный полисахарид или полисахаридное производное. В некоторых вариантах реализации лиганд представляет собой аминосахар или тиосахар. Например, аминосахара могут быть выбраны из любого количества соединений, известных в данной области техники, например, глюкозамина, сиаловой кислоты, α-D-галактозамина, N-ацетилгалактозамина, 2-ацетамидо-2-дезокси-D-галактопиранозы (GalNAc), 2-амино-3-O-[(R)-1-карбоксиэтил]-2-дезокси-β-D-глюкопиранозы (β-мурамовой кислоты), 2-дезокси-2-метиламино-L-глюкопиранозы, 4,6-дидезокси-4-формамидо-2,3-ди-O-метил-D-маннопиранозы, 2-дезокси-2-сульфоамино-D-глюкопиранозы и N-сульфо-D-глюкозамина, и N-гликолоил-α-нейраминовой кислоты. Например, тиосахара могут быть выбраны из группы, состоящей из 5-тио-β-D-глюкопиранозы, метил-2,3,4-три-O-ацетил-1-тио-6-О-тритил-α-D-глюкопиранозида, 4-тио-β-D-галактопиранозы и этил-3,4,6,7-тетра-O-ацетил-2-дезокси-1,5-дитио-α-D-gluco-гептопиранозида.
В некоторых вариантах реализации «GalNac» или «Gal-NAc» относится к 2-(ацетиламино)-2-дезокси-D-галактопиранозе, обычно упоминаемой в литературе как N-ацетилгалактозамин. В некоторых вариантах реализации «N-ацетилгалактозамин» относится к 2-(ацетиламино)-2-дезокси-D-галактопиранозе. В некоторых вариантах реализации «GalNac» или «Gal-NAc» относится к 2-(ацетиламино)-2-дезокси-D-галактопиранозе. В некоторых вариантах реализации «GalNac» или «Gal-NAc» относится к 2-(ацетиламино)-2-дезокси-D-галактопиранозе, которая включает и β-форму: 2-(ацетиламино)-2-дезокси-β-D-галактопиранозу, и α-форму: 2-(ацетиламино)-2-дезокси-D-галактопиранозу. В некоторых вариантах реализации обе формы, β-форма: 2-(ацетиламино)-2-дезокси-β-D-галактопиранозу, и α-форму: 2-(ацетиламино)-2-дезокси-D-галактопираноза, могут быть использованы взаимозаменяемо. Соответственно, в структурах, в которых изображена одна форма, подразумевается, что эти структуры включают также и другую форму. Например, если показана структура для α-формы: 2-(ацетиламино)-2-дезокси-D-галактопиранозы, то подразумевается, что эта структура включает также и другую форму. В некоторых предпочтительных вариантах реализации β-форма 2-(ацетиламино)-2-дезокси-D-галактопиранозы является предпочтительным вариантом реализации.
В некоторых вариантах реализации один или более лигандов имеют структуру, выбранную из:
и
где каждый R1 выбран из ОН и NHCOOH.
В некоторых вариантах реализации один или более лигандов имеют структуру, выбранную из:
и
В некоторых вариантах реализации один или более лигандов имеют структуру, выбранную из:
В некоторых вариантах реализации один или более лигандов имеют структуру, выбранную из:
.
i. Некоторые конъюгаты
В некоторых вариантах реализации группы конъюгата содержат структурные особенности, представленные выше. В некоторых таких вариантах реализации группы конъюгата имеют следующую структуру:
где каждый n независимо равен от 1 до 20.
В некоторых таких вариантах реализации группы конъюгата имеют следующую структуру:
В некоторых таких вариантах реализации группы конъюгата имеют следующую структуру:
где каждый n независимо равен от 1 до 20;
Z представляет собой Н или связанную твердую подложку;
Q представляет собой антисмысловое соединение;
X представляет собой О или S; и
Вх представляет собой фрагмент гетероциклического основания.
В некоторых таких вариантах реализации группы конъюгата имеют следующую структуру:
В некоторых таких вариантах реализации группы конъюгата имеют следующую структуру:
В некоторых таких вариантах реализации группы конъюгата имеют следующую структуру:
В некоторых таких вариантах реализации группы конъюгата имеют следующую структуру:
В некоторых таких вариантах реализации группы конъюгата имеют следующую структуру:
В некоторых таких вариантах реализации группы конъюгата имеют следующую структуру:
В некоторых таких вариантах реализации группы конъюгата имеют следующую структуру:
В некоторых таких вариантах реализации группы конъюгата имеют следующую структуру:
В некоторых вариантах реализации конъюгаты не содержат пирролидин.
В некоторых таких вариантах реализации группы конъюгата имеют следующую структуру:
В некоторых таких вариантах реализации группы конъюгата имеют следующую структуру:
В некоторых таких вариантах реализации группы конъюгата имеют следующую структуру:
В некоторых таких вариантах реализации группы конъюгата имеют следующую структуру:
В некоторых таких вариантах реализации группы конъюгата имеют следующую структуру:
В некоторых таких вариантах реализации группы конъюгата имеют следующую структуру:
В некоторых таких вариантах реализации группы конъюгата имеют следующую структуру:
В некоторых таких вариантах реализации группы конъюгата имеют следующую структуру:
В некоторых таких вариантах реализации группы конъюгата имеют следующую структуру:
В некоторых таких вариантах реализации группы конъюгата имеют следующую структуру:
В некоторых таких вариантах реализации группы конъюгата имеют следующую структуру:
В некоторых вариантах реализации фрагмент группы конъюгата, нацеливающий на клетку, имеет следующую структуру:
где Х представляет собой замещенную или незамещенную связку из шести-одиннадцати последовательно связанных атомов.
В некоторых вариантах реализации фрагмент группы конъюгата, нацеливающий на клетку, имеет следующую структуру:
где X представляет собой замещенную или незамещенную связку из десяти последовательно связанных атомов.
В некоторых вариантах реализации фрагмент группы конъюгата, нацеливающий на клетку, имеет следующую структуру:
где Х представляет собой замещенную или незамещенную связку из четырех-одиннадцати последовательно связанных атомов, и при этом указанная связка содержит только одну амидную связь.
В некоторых вариантах реализации фрагмент группы конъюгата, нацеливающий на клетку, имеет следующую структуру:
где Y и Z независимо выбраны из C1-C12 замещенной или незамещенной алкильной, алкенильной или алкинильной группы или группы, содержащей эфир, кетон, амид, сложный эфир, карбамат, амин, пиперидин, фосфат, фосфодиэфир, тиофосфат, триазол, пирролидин, дисульфид или тиоэфир.
В некоторых таких вариантах реализации фрагмент группы конъюгата, нацеливающий на клетку, имеет следующую структуру:
где Y и Z независимо выбраны из C1-C12 замещенной или незамещенной алкильной группы или группы, содержащей только один эфир или только два эфира, амид, амин, пиперидин, фосфат, фосфодиэфир или тиофосфат.
В некоторых таких вариантах реализации фрагмент группы конъюгата, нацеливающий на клетку, имеет следующую структуру:
где Y и Z независимо выбраны из C1-C12 замещенной или незамещенной алкильной группы.
В некоторых таких вариантах реализации фрагмент группы конъюгата, нацеливающий на клетку, имеет следующую структуру:
где тип независимо выбраны из 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 и 12.
В некоторых таких вариантах реализации фрагмент группы конъюгата, нацеливающий на клетку, имеет следующую структуру:
где m равен 4, 5, 6, 7 или 8, и n равен 1, 2, 3 или 4.
В некоторых вариантах реализации фрагмент группы конъюгата, нацеливающий на клетку, имеет следующую структуру:
где Х представляет собой замещенную или незамещенную связку из четырех-тринадцати последовательно связанных атомов, и при этом Х не содержит эфирную группу.
В некоторых вариантах реализации фрагмент группы конъюгата, нацеливающий на клетку, имеет следующую структуру:
где Х представляет собой замещенную или незамещенную связку из восьми последовательно связанных атомов, и при этом Х не содержит эфирную группу.
В некоторых вариантах реализации фрагмент группы конъюгата, нацеливающий на клетку, имеет следующую структуру:
где X представляет собой замещенную или незамещенную связку из четырех-тринадцати последовательно связанных атомов, и при этом указанная связка содержит только одну амидную связь, а Х не содержит эфирную группу.
В некоторых вариантах реализации фрагмент группы конъюгата, нацеливающий на клетку, имеет следующую структуру:
где Х представляет собой замещенную или незамещенную связку из четырех-тринадцати последовательно связанных атомов, и при этом указанная связка состоит из амидной связи и замещенной или незамещенной С2-С11 алкильной группы.
В некоторых вариантах реализации фрагмент группы конъюгата, нацеливающий на клетку, имеет следующую структуру:
где Y выбран из C1-C12 замещенной или незамещенной алкильной, алкенильной или алкинильной группы или группы, содержащей эфир, кетон, амид, сложный эфир, карбамат, амин, пиперидин, фосфат, фосфодиэфир, тиофосфат, триазол, пирролидин, дисульфид или тиоэфир.
В некоторых таких вариантах реализации фрагмент группы конъюгата, нацеливающий на клетку, имеет следующую структуру:
где Y выбран из C1-C12 замещенной или незамещенной алкильной группы или группы, содержащей эфир, амин, пиперидин, фосфат, фосфодиэфир или тиофосфат.
В некоторых таких вариантах реализации фрагмент группы конъюгата, нацеливающий на клетку, имеет следующую структуру:
где Y выбран из C1-C12 замещенной или незамещенной алкильной группы.
В некоторых таких вариантах реализации фрагмент группы конъюгата, нацеливающий на клетку, имеет следующую структуру:
где n равен 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 или 12.
В некоторых таких вариантах реализации фрагмент группы конъюгата, нацеливающий на клетку, имеет следующую структуру:
где n равен 4, 5, 6, 7 или 8.
Некоторые сопряженные антисмысловые соединения
В некоторых вариантах реализации конъюгаты связаны с нуклеозидом антисмыслового олигонуклеотида в 2', 3' или 5' положении нуклеозида. В некоторых вариантах реализации сопряженное антисмысловое соединение имеет следующую структуру:
где
А представляет собой антисмысловой олигонуклеотид;
В представляет собой расщепляемый фрагмент
С представляет собой линкер конъюгата
D представляет собой группу ветвления
каждый Е представляет собой связку;
каждый F представляет собой лиганд; и
q представляет собой целое число от 1 до 5.
В некоторых вариантах реализации сопряженное антисмысловое соединение имеет следующую структуру:
где
А представляет собой антисмысловой олигонуклеотид;
С представляет собой линкер конъюгата
D представляет собой группу ветвления
каждый Е представляет собой связку;
каждый F представляет собой лиганд; и
q представляет собой целое число от 1 до 5.
В некоторых таких вариантах реализации линкер конъюгата содержит по меньшей мере одну расщепляемую связь.
В некоторых таких вариантах реализации группа ветвления содержит по меньшей мере одну расщепляемую связь.
В некоторых вариантах реализации каждая связка содержит по меньшей мере одну расщепляемую связь.
В некоторых вариантах реализации конъюгаты связаны с нуклеозидом антисмыслового олигонуклеотида в 2', 3' или 5' положении нуклеозида.
В некоторых вариантах реализации сопряженное антисмысловое соединение имеет следующую структуру:
где
А представляет собой антисмысловой олигонуклеотид;
В представляет собой расщепляемый фрагмент
С представляет собой линкер конъюгата
каждый Е представляет собой связку;
каждый F представляет собой лиганд; и
q представляет собой целое число от 1 до 5.
В некоторых вариантах реализации конъюгаты связаны с нуклеозидом антисмыслового олигонуклеотида в 2', 3' или 5' положении нуклеозида. В некоторых вариантах реализации сопряженное антисмысловое соединение имеет следующую структуру:
где
А представляет собой антисмысловой олигонуклеотид;
С представляет собой линкер конъюгата
каждый Е представляет собой связку;
каждый F представляет собой лиганд; и
q представляет собой целое число от 1 до 5.
В некоторых вариантах реализации сопряженное антисмысловое соединение имеет следующую структуру:
где
А представляет собой антисмысловой олигонуклеотид;
В представляет собой расщепляемый фрагмент
D представляет собой группу ветвления
каждый Е представляет собой связку;
каждый F представляет собой лиганд; и
q представляет собой целое число от 1 до 5.
В некоторых вариантах реализации сопряженное антисмысловое соединение имеет следующую структуру:
где
А представляет собой антисмысловой олигонуклеотид;
D представляет собой группу ветвления
каждый Е представляет собой связку;
каждый F представляет собой лиганд; и
q представляет собой целое число от 1 до 5.
В некоторых таких вариантах реализации линкер конъюгата содержит по меньшей мере одну расщепляемую связь.
В некоторых вариантах реализации каждая связка содержит по меньшей мере одну расщепляемую связь.
В некоторых вариантах реализации сопряженное антисмысловое соединение имеет структуру, выбранную из следующих:
В некоторых вариантах реализации сопряженное антисмысловое соединение имеет структуру, выбранную из следующих:
В некоторых вариантах реализации сопряженное антисмысловое соединение имеет структуру, выбранную из следующих:
Иллюстративные патенты Соединенных штатов Америки, публикации патентных заявок Соединенных штатов Америки и публикации международных патентных заявок, в которых описано получение некоторых из указанных выше конъюгатов, сопряженных антисмысловых соединений, связок, линкеров, групп ветвления, лигандов, расщепляемых фрагментов, а также других модификаций, включают, без ограничения, US 5994517, US 6300319, US 6660720, US 6906182, US 7262177, US 7491805, US 8106022, US 7723509, US 2006/0148740, US 2011/0123520, WO 2013/033230 и WO 2012/037254, каждая из которых включена в настоящий документ посредством ссылки в полном объеме.
Иллюстративные публикации, в которых описано получение некоторых из указанных выше конъюгатов, сопряженных антисмысловых соединений, связок, линкеров, групп ветвления, лигандов, расщепляемых фрагментов, а также других модификаций, включают, без ограничения, BIESSEN et al., "The Cholesterol Derivative of a Triantennary Galactoside with High Affinity for the Hepatic Asialoglycoprotein Receptor: a Potent Cholesterol Lowering Agent" J. Med. Chem. (1995) 38:1846-1852, BIESSEN et al., "Synthesis of Cluster Galactosides with High Affinity for the Hepatic Asialoglycoprotein Receptor" J. Med. Chem. (1995) 38:1538-1546, LEE et al., "New and more efficient multivalent glyco-ligands for asialoglycoprotein receptor of mammalian hepatocytes" Bioorganic & Medicinal Chemistry (2011) 19:2494-2500, RENSEN et al., "Determination of the Upper Size Limit for Uptake and Processing of Ligands by the Asialoglycoprotein Receptor on Hepatocytes in vitro and in vivo" J. Biol. Chem. (2001) 276(40):37577-37584, RENSEN et al., "Design and Synthesis of Novel N-Acetylgalactosamine-Terminated Glycolipids for Targeting of Lipoproteins to the Hepatic Asialoglycoprotein Receptor" J. Med. Chem. (2004) 47:5798-5808, SLIEDREGT et al., "Design and Synthesis of Novel Amphiphilic Dendritic Galactosides for Selective Targeting of Liposomes to the Hepatic Asialoglycoprotein Receptor" J. Med. Chem. (1999) 42:609-618, и Valentijn et al., "Solid-phase synthesis of lysine-based cluster galactosides with high affinity for the Asialoglycoprotein Receptor" Tetrahedron, 1997, 53(2), 759-770, каждый из которых включен в настоящий документ посредством ссылки в полном объеме.
В некоторых вариантах реализации сопряженные антисмысловые соединения содержат олигонуклеотид на основе РНКазы Н (такой как гэпмер) или сплайс-модулирующий олигонуклеотид (такой как полностью модифицированный олигонуклеотид) и любую группу конъюгата, содержащую по меньшей мере одну, две или три группы GalNAc. В некоторых вариантах реализации сопряженное антисмысловое соединение содержит любую группу конъюгата, описанную в любой из следующих ссылок: Lee, Carbohydr Res, 1978, 67, 509-514; Connolly et al., J Biol Chem, 1982, 257, 939-945; Pavia et al., Int J Pep Protein Res, 1983, 22, 539-548; Lee et al., Biochem, 1984, 23, 4255-4261; Lee et al., Glycoconjugate J, 1987, 4, 317-328; Toyokuni et al., Tetrahedron Lett, 1990, 31, 2673-2676; Biessen et al., J Med Chem, 1995, 38, 1538-1546; Valentijn et al., Tetrahedron, 1997, 53, 759-770; Kim et al., Tetrahedron Lett, 1997, 38, 3487-3490; Lee et al., Bioconjug Chem, 1997, 8, 762-765; Kato et al., Glycobiol, 2001, 11, 821-829; Rensen et al., J Biol Chem, 2001, 276, 37577-37584; Lee et al., Methods Enzymol, 2003, 362, 38-43; Westerlind et al., Glycoconj J, 2004, 21, 227-241; Lee et al., Bioorg Med Chem Lett, 2006, 16(19), 5132-5135; Maierhofer et al., Bioorg Med Chem, 2007, 15, 7661-7676; Khorev et al., Bioorg Med Chem, 2008, 16, 5216-5231; Lee et al., Bioorg Med Chem, 2011, 19, 2494-2500; Kornilova et al., Analyt Biochem, 2012, 425, 43-46; Pujol et al., Angew Chemie Int Ed Engl, 2012, 51, 7445-7448; Biessen et al., J Med Chem, 1995, 38, 1846-1852; Sliedregt et al., J Med Chem, 1999, 42, 609-618; Rensen et al., J Med Chem, 2004, 47, 5798-5808; Rensen et al., Arterioscler Thromb Vasc Biol, 2006, 26, 169-175; van Rossenberg et al., Gene Ther, 2004, 11, 457-464; Sato et al., J Am Chem Soc, 2004, 126, 14013-14022; Lee et al., J Org Chem, 2012, 77, 7564-7571; Biessen et al., FASEB J, 2000, 14, 1784-1792; Rajur et al., Bioconjug Chem, 1997, 8, 935-940; Duff et al., Methods Enzymol, 2000, 313, 297-321; Maier et al., Bioconjug Chem, 2003, 14, 18-29; Jayaprakash et al., Org Lett, 2010, 12, 5410-5413; Manoharan, Antisense Nucleic Acid Drug Dev, 2002, 12, 103-128; Merwin et al., Bioconjug Chem, 1994, 5, 612-620; Tomiya et al., Bioorg Med Chem, 2013, 21, 5275-5281; в международных заявках WO 1998/013381; WO 2011/038356; WO 1997/046098; WO 2008/098788; WO 2004/101619; WO 2012/037254; WO 2011/120053; WO 2011/100131; WO 2011/163121; WO 2012/177947; WO 2013/033230; WO 2013/075035; WO 2012/083185; WO 2012/083046; WO 2009/082607; WO 2009/134487; WO 2010/144740; WO 2010/148013; WO 1997/020563; WO 2010/088537; WO 2002/043771; WO 2010/129709; WO 2012/068187; WO 2009/126933; WO 2004/024757; WO 2010/054406; WO 2012/089352; WO 2012/089602; WO 2013/166121; WO 2013/165816; в патентах 4751219; 8552163; 6908903; 7262177; 5994517; 6300319; 8106022; 7491805; 7491805; 7582744; 8137695; 6383812; 6525031; 6660720; 7723509; 8541548; 8344125; 8313772; 8349308; 8450467; 8501930; 8158601; 7262177; 6906182; 6620916; 8435491; 8404862; 7851615; в опубликованных заявках на патент США US 2011/0097264; US 2011/0097265; US 2013/0004427; US 2005/0164235; US 2006/0148740; US 2008/0281044; US 2010/0240730; US 2003/0119724; US 2006/0183886; US 2008/0206869; US 2011/0269814; US 2009/0286973; US 2011/0207799; US 2012/0136042; US 2012/0165393; US 2008/0281041; US 2009/0203135; US 2012/003 5115; US 2012/0095075; US 2012/0101148; US 2012/0128760; US 2012/0157509; US 2012/0230938; US 2013/0109817; US 2013/0121954; US 2013/0178512; US 2013/0236968; US 2011/0123520; US 2003/0077829; US 2008/0108801; и US 2009/0203132; полное содержание которых включено в настоящий документ посредством ссылки.
Клеточная культура и лечение антисмысловыми соединениями
Влияние антисмысловых соединений на уровень, активность или экспрессию нуклеиновых кислот ПКП может быть испытано in vitro на различных типах клеток. Различные типы клеток, используемые для таких анализов, имеются в продаже у коммерческих поставщиков (например, Американская коллекция типов культур (АТСС), Манассас, штат Вирджиния; Zen-Bio, Inc., Research Triangle Park, штат Северная Каролина; Clonetics Corporation, Уолкерсвиль, штат Мэриленд) и культивируются согласно инструкциям производителей с применением коммерчески доступных реагентов (например. Life Technologies, Карлсбад, штат Калифорния). Иллюстративные типы клеток включают, но не ограничиваются ими, клетки HepaRG™T и первичные гепатоциты мыши.
Тестирование антисмысловых олигонуклеотидов in vitro
Описываемые в настоящем документе способы лечения клеток с помощью антисмысловых олигонуклеотидов могут быть изменены соответствующим образом для лечения другими антисмысловыми соединениями.
Клетки могут быть обработаны антисмысловыми олигонуклеотидами при 60-80% уровне конфлюентности в культуре.
Реагент, используемый для введения антисмысловых олигонуклеотидов в культивируемые клетки, включает катионный липидный трансфекционный реагент LIPOFECTIN (Life Technologies, Карлсбад, штат Калифорния). Антисмысловые олигонуклеотиды могут быть смешаны с LIPOFECTIN в OPTI-MEM 1 (Life Technologies, Карлсбад, штат Калифорния) для достижения желаемой конечной концентрации антисмысловых олигонуклеотидов и концентрации LIPOFECTIN в пределах от 2 до 12 мкг/мл при 100 нМ антисмыслового олигонуклеотида.
Другой реагент, используемый для введения антисмысловых олигонуклеотидов в культивируемые клетки, включает LIPOFECTAMINE (Life Technologies, Карлсбад, штат Калифорния). Антисмысловой олигонуклеотид смешивают с LIPOFECTAMINE в среде OPTI-MEM 1 со сниженным содержанием сыворотки (Life Technologies, Карлсбад, штат Калифорния) для достижения желаемой концентрации антисмысловых олигонуклеотидов и концентрации LIPOFECTAMINE в пределах от 2 до 12 мкг/мл при 100 нМ антисмыслового олигонуклеотида.
Другая технология, используемая для введения антисмысловых олигонуклеотидов в культивируемые клетки, включает электропорацию.
Еще одна технология, используемая для введения антисмысловых олигонуклеотидов в культивируемые клетки, включает свободный захват олигонуклеотидов клетками.
Клетки обрабатывают антисмысловыми олигонуклеотидами с помощью стандартных способов. Клетки могут быть собраны через 16-24 часов после обработки антисмысловым олигонуклеотидом, после чего уровни РНК или белков нуклеиновых кислот-мишеней измеряют методами, известными в данной области техники и описанными в настоящем документе. Как правило, если обработку проводят в нескольких повторениях, данные представляют как среднее значение для многократных обработок.
Концентрация используемого антисмыслового олигонуклеотида варьируется в зависимости от линии клеток. Способы определения оптимальной концентрации антисмыслового олигонуклеотидна для конкретной линии клеток хорошо известны в данной области техники. Антисмысловые олигонуклеотиды обычно используют в концентрациях от 1 нМ до 300 нМ, при трансфекции с использованием LIPOFECTAMINE. Антисмысловые олигонуклеотиды используют в более высоких концентрациях в диапазоне от 625 до 20000 нМ при трансфекции с использованием электропорации.
Выделение РНК
Анализ РНК может быть проведен на общей клеточной РНК или поли(А)+ мРНК. Способы выделения РНК хорошо известны в данной области техники. РНК получают с использованием способов, хорошо известных в данной области техники, например, с использованием реагента TRIZOL (Life Technologies, Карлсбад, штат Калифорния) по рекомендуемым протоколам производителя.
Анализ ингибирования целевых уровней или экспрессии
Ингибирование уровней или экспрессии нуклеиновой кислоты ПКП может быть проанализировано различными способами, известными в данной области техники. Например, уровни целевой нуклеиновой кислоты могут быть количественно измерены, например, нозерн-блоттингом, конкурентной полимеразной цепной реакцией (ПЦР) или количественной ПЦР в реальном времени. Анализ РНК может быть проведен на общей клеточной РНК или поли(А)+ мРНК. Способы выделения РНК хорошо известны в данной области техники. Нозерн-блоттинг также является общепринятым в данной области техники. Количественная ПЦР в реальном времени может быть удобно выполнена с помощью имеющихся в продаже систем обнаружения последовательностей ABI PRISM 7600, 7700, или 7900 производства компании PE-Applied Biosystems, Фостер-Сити, штат Калифорния, и используемых в соответствии с инструкциями производителя.
Количественная ПЦР в реальном времени анализ уровней целевой РНК
Количественное определение уровней целевой РНК может быть проведено путем количественной ПЦР в реальном времени с использованием систем обнаружения последовательностей ABI PRISM 7600, 7700 или 7900 (PE-Applied Biosystems, Фостер-Сити, штат Калифорния) в соответствии с инструкциями производителя. Способы количественной ПЦР в реальном времени хорошо известны в данной области техники.
Перед проведением ПЦР в реальном времени изолированную РНК подвергают реакции обратной транскрипции (ОТ), которая производит комплементарную ДНК (кДНК), которую затем используют в качестве субстрата для амплификации в ПЦР в реальном времени. Реакции ОТ и ПЦР в реальном времени проводят последовательно в одном и том же образце. Реагенты для ОТ и ПЦР в реальном времени могут быть приобретены у компании Life Technologies (Карлсбад, штат Калифорния). Реакции ОТ и ПЦР в реальном времени проводят способами, хорошо известными специалистам в данной области техники.
Количества гена-мишени (или РНК), полученные путем ПЦР в реальном времени, нормализуют с использованием либо уровня экспрессии гена, экспрессия которого постоянна, такого как циклофилин А, или на основе количественной оценки суммарной РНК с использованием реагента RIBOGREEN (Life Technologies, Inc. Карлсбад, штат Калифорния). Экспрессию циклофилина А количественно определяют с помощью ПЦР в реальном времени, которую проводят одновременно с мишенью, мультиплексно или отдельно. Общую РНК количественно определяют с помощью реагента для количественного определения РНК RIBOGREEN (Invetrogen, Inc. Юджин, штат Орегон). Способы количественного определения РНК с использованием RIBOGREEN изложены в in Jones, L.J., et al, (Analytical Biochemistry, 1998, 265, 368-374). Для измерения флуоресценции RIBOGREEN используют прибор CYTOFLUOR 4000 (РЕ Applied Biosystems).
Зонды и праймеры конструируют для гибридизации с нуклеиновой кислотой ПКП. Способы конструирования зондов и праймеров для ПЦР в реальном времени хорошо известны в данной области техники, и могут включать использование программного обеспечения, такого как PRIMER EXPRESS (Applied Biosystems, Фостер-Сити, штат Калифорния).
Анализ уровней белка
Антисмысловое ингибирование нуклеиновых кислот ПКП может быть оценено путем измерения уровней белка ПКП. Уровни белка ПКП могут быть оценены или количественно измерены различными способами, хорошо известными в данной области техники, такими как иммунопреципитация, вестерн-блоттинг (иммуноблоттинг), иммуноферментный анализ (ELISA), количественный анализ белка, анализ активности белка (например, анализ активности каспазы), иммуногистохимия, иммуноцитохимия или сортировка флуоресцентно-активированных клеток (FACS). Антитела, направленные на мишень, могут быть идентифицированы и получены из различных источников, таких как каталог антител MSRS (Aerie Corporation, Бирмингем, штат Мичиган), или могут быть получены с помощью обычных способов генерации моноклональных или поликлональных антител, хорошо известных в данной области техники.
Тестирование антисмысловых соединений in vivo
Антисмысловые соединения, например, антисмысловые олигонуклеотиды, испытывали на животных с целью оценки их способности ингибировать экспрессию ПКП и производить фенотипические изменения.
В некоторых вариантах реализации такие фенотипические изменения включают изменения, связанные с воспалительным заболеванием, например, уменьшение воспаления, отека/припухлости, сосудистой проницаемости и транссудации. В некоторых вариантах реализации воспаление оценивают путем измерения увеличения или уменьшения опухоли, температуры, боли, цвета ткани и абдоминальной функции у животного.
В некоторых вариантах реализации такие фенотипические изменения включают изменения, связанные с тромбоэмболическим заболеванием, такие как увеличенное активированное частичное тромбопластиновое время (аРТТ), увеличенное время аРТТ в сочетании с нормальным протромбиновым временем (РТ), сниженное количество тромбоцитарного фактора 4 (PF-4) и сниженное образование тромбов или увеличенное время образования тромбов.
Тестирование быть проведено на здоровых животных или в экспериментальных моделях заболеваний. Для введения животным антисмысловые олигонуклеотиды составляли с фармацевтически приемлемым разбавителем, таким как фосфатно-солевой буфер. Введение включает парентеральные пути введения, такие как внутрибрюшинное, внутривенное и подкожное. Расчет дозы и частоты введения антисмыслового олигонуклеотида известен специалистам в данной области техники и зависит от таких факторов, как способ введения и масса тела животного. После периода лечения с помощью антисмысловых олигонуклеотидов, РНК выделяют из печеночной ткани и измеряют изменения экспрессии нуклеиновой кислоты ПКП.
Некоторые показания
В некоторых вариантах реализации настоящего изобретения предложены способы лечения индивидуума, включающие введение одной или более фармацевтических композиций, описанных в настоящем документе.
В некоторых вариантах реализации индивидуум страдает воспалительным заболеванием. В некоторых вариантах реализации индивидуум имеет риск развития воспалительного состояния, включая, но не ограничиваясь ими, наследственный ангионевротический отек (НАЕ), отек, ангионевротический отек, припухлость, ангионевротический отек век, отек глаза, отек желтого пятна и отек мозга. Сюда относятся индивидуумы с приобретенным нарушением, заболеванием или расстройством, которое приводит к риску воспаления, например, генетическая предрасположенность к воспалительному состоянию, факторы окружающей среды и воздействие некоторых лекарственных средств, включая, например, ингибиторы АСЕ и ARB. В некоторых вариантах реализации у субъекта идентифицирована необходимость в противовоспалительной терапии. Примеры таких индивидуумов включают, но не ограничиваются ими, индивидуумов, имеющих мутацию в генетическом коде для ингибитора эстеразы комплемента 1 (т.е. C1-INH) или фактора 12. В некоторых вариантах реализации патологический код может приводить к дефициту C1-INH (т.е. НАЕ типа I), неспособности существующего C1-INH к надлежащему функционированию (НАЕ типа II) или гиперфункциональному фактору 12 (т.е. НАЕ типа III).
В некоторых вариантах реализации индивидуум страдает тромбоэмболическим заболеванием. В некоторых вариантах реализации индивидуум имеет риск расстройства свертываемости крови, включая, но не ограничиваясь ими, инфаркт, тромбоз, эмболию, тромбоэмболию, такую как тромбоз глубокой вены, легочную эмболию, инфаркт миокарда и инсульт. Сюда относятся индивидуумы с приобретенным нарушением, заболеванием или расстройством, которое приводит к риску тромбоза, например, хирургическое вмешательство, рак, ограничение подвижности, сепсис, атеросклероз, мерцание предсердий, а также с генетической предрасположенностью, например, антифосфолипидным синдромом и аутосомальным доминирующим состоянием, Фактором V Ляйдена. В некоторых вариантах реализации у субъекта идентифицирована необходимость в антикоагуляционной терапии. Примеры таких индивидуумов включают, но не ограничиваются ими, тех, кто подвергается обширному ортопедическому хирургическому вмешательству (например, замена тазобедренного/коленного сустава или хирургическое лечение перелома бедра), и пациентов, нуждающихся в хроническом лечении, например, страдающих от мерцания предсердий, для предупреждения инсульта.
В некоторых вариантах реализации настоящего изобретения предложены способы профилактического снижения экспрессии ПКП у индивидуума. Некоторые варианты реализации включают лечение индивидуума, нуждающегося в этом, путем введения индивидууму терапевтически эффективного количества антисмыслового соединения к нуклеиновой кислоте ПКП.
В одном варианте реализации введение терапевтически эффективного количества антисмыслового соединения к нуклеиновой кислоте ПКП сопровождается мониторингом уровней ПКП в сыворотке индивидуума для определения индивидуальной реакции на введение антисмыслового соединения. Реакцию индивидуума на введение антисмыслового соединения врач использует для определения объема и продолжительности терапевтического вмешательства.
В некоторых вариантах реализации введение антисмыслового соединения, направленного на нуклеиновую кислоту ПКП, приводит к снижению экспрессии ПКП на по меньшей мере 15, 20, 25, 30, 35, 40, 45, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98 или 99%, или на значение в диапазоне между любыми двумя из указанных значений. В некоторых вариантах реализации фармацевтические композиции, содержащие антисмысловое соединение, направленное на ПКП, используют для получения лекарственного средства для лечения пациента, страдающего или предрасположенного к воспалительному заболеванию или тромбоэмболическому заболеванию.
Некоторые композиции
1. ISIS 546254
В некоторых вариантах реализации ISIS 546254 охарактеризован как 5-10-5 МОЕ гэпмер, имеющий последовательность (от 5' к 3') TGCAAGTCTCTTGGCAAACA (включенную в настоящий документ как SEQ ID NO: 570), где каждая межнуклеозидная связь представляет собой тиофосфатную связь, каждый цитозин представляет собой 5'-метилцитозин, каждый из нуклеозидов 1-5 и 16-20 представляет собой 2'-O-метоксиэтил-модифицированный нуклеозид, и каждый из нуклеозидов 6-15 представляет собой 2'-дезоксинуклеозид.
В некоторых вариантах реализации ISIS 546254 описан следующей химической записью: Tes Ges mCes Aes Aes Gds Tds mCds Tds mCds Tds Tds Gds Gds mCds Aes Aes Aes mCes Ae; где
A = аденин,
mC = 5'-метилцитозин
G = гуанин,
T = тимин,
e = 2'-O-метоксиэтил-модифицированный нуклеозид,
d = 2'-дезоксинуклеозид, и
s = тиофосфатная межнуклеозидная связь.
В некоторых вариантах реализации ISIS 546254 описан следующей химической структурой:
В некоторых вариантах реализации, как показано в Примере 2 (далее), ISIS 546254 обеспечивает достижение 95% ингибирования мРНК человеческого ПКП в культивированных клетках HepaRG™ (плотность 20000 клеток на лунку) при трансфекции с использованием электропорации с 5000 нМ антисмыслового олигонуклеотида после 24-часового периода обработки, измеренное с помощью количественной ПЦР в реальном времени с использованием набора человеческих праймерных зондов RTS3454 и скорректированное в соответствии с общим содержанием РНК, измеренным с помощью RIBOGREEN®.
В некоторых вариантах реализации, как показано в Примере 5 (см. таблицы 34 и 41, далее), ISIS 546254 обеспечивает достижение IC50 0,2 мкМ и 0,3 мкМ на 4-точечной кривой зависимости ответа от дозы (0,19 мкМ, 0,56 мкМ, 1,67 мкМ и 5,0 мкМ) в культивированных клетках HepaRG™ (плотность 20000 клеток на лунку) при трансфекции с использованием электропорации после 16-часового периода обработки, измеренное с помощью количественной ПЦР в реальном времени с использованием набора человеческих праймерных зондов RTS3454 и скорректированное в соответствии с общим содержанием РНК, измеренным с помощью RIBOGREEN®.
В некоторых вариантах реализации изобретения, как описано в Примере 7 (ниже), ISIS 546254 обеспечивает ингибирование мРНК ПКП человека на 31%, 55%, 84% и 83% и ингибирование белка ПКП человека на 0%, 36%, 51% и 76% у трансгенных мышей, несущих последовательность гена ПКП человека, после подкожной инъекции ISIS 546254 два раза в неделю в течение 3 недель в дозе 2,5 мг/кг/неделю, 5,0 мг/кг/неделю, 10 мг/кг/неделю или 20 мг/кг/неделю.
В некоторых вариантах реализации, как показано в Примере 8 (ниже), ISIS 546254 является эффективным для ингибирования мРНК ПКП и экспрессии белка, и является переносимым у приматов.
2. ISIS 546343
В некоторых вариантах реализации ISIS 546343 охарактеризован как 5-10-5 МОЕ гэпмер, имеющий последовательность (от 5' к 3') CCCCCTTCTTTATAGCCAGC (включенную в настоящий документ как SEQ ID NO: 705), где каждая межнуклеозидная связь представляет собой тиофосфатную связь, каждый цитозин представляет собой 5'-метилцитозин, каждый из нуклеозидов 1-5 и 16-20 представляет собой 2'-O-метоксиэтил-модифицированный нуклеозид, и каждый из нуклеозидов 6-15 представляет собой 2'-дезоксинуклеозид.
В некоторых вариантах реализации ISIS 546343 описан следующей химической записью: mCes mCes mCes mCes mCes Tds Tds mCds Tds Tds Tds Ads Tds Ads Gds mCes mCes Aes Ges mCe; где
A = аденин,
mC = 5'-метилцитозин;
G = гуанин,
T = тимин,
e = 2'-O-метоксиэтил-модифицированный нуклеозид,
d = 2'-дезоксинуклеозид, и
s = тиофосфатная межнуклеозидная связь.
В некоторых вариантах реализации ISIS 546343 описан следующей химической структурой:
В некоторых вариантах реализации, как показано в Примере 2 (см таблицы 9 и 10, далее), ISIS 546343 обеспечивает достижение 97% и 91% ингибирования мРНК человеческого ПКП в культивированных клетках HepaRG™ (плотность 20000 клеток на лунку) при трансфекции с использованием электропорации с 5000 нМ антисмыслового олигонуклеотида после 24-часового периода обработки, измеренное с помощью количественной ПЦР в реальном времени с использованием набора человеческих праймерных зондов RTS3454 и скорректированное в соответствии с общим содержанием РНК, измеренным с помощью RIBOGREEN®.
В некоторых вариантах реализации, как дважды показано в Примере 5 (см. таблицы 34 и 41, далее), ISIS 546343 обеспечивает достижение IC50 0,4 мкМ на 4-точечной кривой зависимости ответа от дозы (0,19 мкМ, 0,56 мкМ, 1,67 мкМ и 5,0 мкМ) в культивированных клетках HepaRG™ (плотность 20000 клеток на лунку) при трансфекции с использованием электропорации после 16-часового периода обработки, измеренное с помощью количественной ПЦР в реальном времени с использованием набора человеческих праймерных зондов RTS3454 и скорректированное в соответствии с общим содержанием РНК, измеренным с помощью RIBOGREEN®.
В некоторых вариантах реализации изобретения, как описано в Примере 7 (ниже), ISIS 546343 обеспечивает ингибирование мРНК ПКП человека на 46%, 66% и 86% и ингибирование белка ПКП человека на 0%, 38% и 79% у трансгенных мышей, несущих последовательность гена ПКП человека, после подкожной инъекции ISIS 546343 два раза в неделю в течение 3 недель в дозе 2,5 мг/кг/неделю, 5,0 мг/кг/неделю, 10 мг/кг/неделю или 20 мг/кг/неделю.
В некоторых вариантах реализации, как показано в Примере 8 (ниже), ISIS 546343 является эффективным для ингибирования мРНК ПКП и экспрессии белка, и является переносимым у приматов.
3. ISIS 548048
В некоторых вариантах реализации ISIS 548048 охарактеризован как модифицированный антисмысловой олигонуклеотид, имеющий последовательность азотистых оснований (от 5' к 3') CGATATCATGATTCCC (включенную в настоящий документ как SEQ ID NO: 1666), состоящий из комбинации шестнадцати 2'-дезоксинуклеозидов, 2'-O-метоксиэтил-модифицированных нуклеозидов и модифицированных cEt нуклеозидов, причем каждый из нуклеозидов 1, 2 и 16 представляет собой 2'-O-метоксиэтил-модифицированный нуклеозид, и при этом каждый из нуклеозидов 3, 14 и 15 представляет собой модифицированный cEt нуклеозид, причем каждый из нуклеозидов 4-13 представляет собой 2'-дезоксинуклеозид, и каждая межнуклеозидная связь представляет собой тиофосфатную межнуклеозидную связь, и каждый цитозин представляет собой 5'-метилцитозин.
В некоторых вариантах реализации ISIS 548048 описан следующей химической записью: mCes Ges Aks Tds Ads Tds mCds Ads Tds Gds Ads Tds Tds mCks mCks mCe; где
A = аденин,
mC = 5'-метилцитозин;
G = гуанин,
T = тимин,
е = 2'-O-метоксиэтил-модифицированный нуклеозид,
k = модифицированный cEt нуклеозид,
d = 2'-дезоксинуклеозид, и
s = тиофосфатная межнуклеозидная связь.
В некоторых вариантах реализации ISIS 548048 описан следующей химической структурой:
В некоторых вариантах реализации, как показано в Примере 3 (далее), ISIS 548048 обеспечивает достижение 84% ингибирования мРНК в культивированных клетках HepaRG™ (плотность 20000 клеток на лунку) при трансфекции с использованием электропорации с 1000 нМ антисмыслового олигонуклеотида после 24-часового периода обработки, измеренное с помощью количественной ПЦР в реальном времени с использованием набора человеческих праймерных зондов RTS3454 и скорректированное в соответствии с общим содержанием РНК, измеренным с помощью RIBOGREEN®.
В некоторых вариантах реализации, как показано в Примере 6 (далее), ISIS 548048 обеспечивает достижение IC50 0,1 мкМ на 4-точечной кривой зависимости ответа от дозы (0,11 мкМ, 0,33 мкМ, 1,00 мкМ и 3,00 мкМ) в культивированных клетках HepaRG™ (плотность 20000 клеток на лунку) при трансфекции с использованием электропорации после 16-часового периода обработки, измеренное с помощью количественной ПЦР в реальном времени с использованием набора человеческих праймерных зондов RTS3454 и скорректированное в соответствии с общим содержанием РНК, измеренным с помощью RIBOGREEN®.
В некоторых вариантах реализации изобретения, как описано в Примере 7 (ниже), ISIS 548048 обеспечивает ингибирование мРНК ПКП человека на 7%, 77%, 72% и 80% и ингибирование белка ПКП человека на 23%, 70%, 89% и 98% у трансгенных мышей, несущих последовательность гена ПКП человека, после подкожной инъекции ISIS 548048 два раза в неделю в течение 3 недель в дозе 2,5 мг/кг/неделю, 5,0 мг/кг/неделю, 10 мг/кг/неделю или 20 мг/кг/неделю.
В некоторых вариантах реализации, как показано в Примере 8 (ниже), ISIS 548048 является эффективным для ингибирования мРНК ПКП и экспрессии белка, и является переносимым у приматов.
4. ISIS 721744
В некоторых вариантах реализации ISIS 721744 охарактеризован как 5-10-5 МОЕ гэпмер, имеющий последовательность (от 5' к 3') TGCAAGTCTCTTGGCAAACA (включенную в настоящий документ как SEQ ID NO: 570), где межнуклеозидные связи между нуклеозидами 3 и 4, 4 и 5, 16 и 17, и 17 и 18 представляют собой фосфодиэфирные связи, и межнуклеозидные связи между нуклеозидами 1 и 2, 2 и 3, 5 и 6, 6 и 7, 7 и 8, 8 и 9, 9 и 10, 10 и 11, 11 и 12, 12 и 13, 13 и 14, 14 и 15, 15 и 16, 18 и 19, и 19 и 20 представляют собой тиофосфатные связи, каждый цитозин представляет собой 5'-метилцитозин, каждый из нуклеозидов 1-5 и 16-20 представляет собой 2'-O-метоксиэтил-модифицированный нуклеозид, и каждый из нуклеозидов 6-15 представляет собой 2'-дезоксинуклеозид.
В некоторых вариантах реализации ISIS 721744 описан следующей химической записью: GalNAc3-7a-o' Tes Ges mCeo Aeo Aes Gds Tds mCds Tds mCds Tds Tds Gds Gds mCds Aeo Aeo Aes mCes Ae; где
A = аденин,
mC = 5'-метилцитозин
G = гуанин,
T = тимин,
e = 2'-O-метоксиэтил-модифицированный нуклеозид,
d = 2'-дезоксинуклеозид,
о = фосфодиэфирная межнуклеозидная связь,
s = тиофосфатная межнуклеозидная связь, и
В некоторых вариантах реализации ISIS 721744 описан следующей химической структурой:
Некоторые горячие точки мутагенеза
1. Азотистые основания 27427-27466 SEQ ID NO: 10
В некоторых вариантах реализации изобретения антисмысловые олигонуклеотиды сконструированы таким образом, что они нацелены на азотистые основания 27427-27466 SEQ ID NO: 10 (номер доступа GENBANK NT_016354.19, усеченная по азотистым основаниям с 111693001 по 111730000). В некоторых вариантах реализации изобретения азотистые основания 27427-27466 SEQ ID NO: 10 представляют собой горячую точку мутагенеза. В некоторых вариантах реализации изобретения азотистые основания 27427-27466 SEQ ID NO: 10 представляют собой мишень для антисмысловых олигонуклеотидов. В некоторых вариантах реализации изобретения длина антисмысловых олигонуклеотидов составляет 15, 16, 17, 18, 19 или 20 азотистых оснований. В некоторых вариантах реализации антисмысловые олигонуклеотиды представляют собой гэпмеры. В некоторых вариантах реализации изобретения гэпмеры представляют собой 5-10-5 МОЕ гэпмеры, 4-9-4 МОЕ гэпмеры, 4-10-4 МОЕ гэпмеры, 4-10-3 МОЕ гэпмеры, 3-10-4 МОЕ гэпмеры или 3-10-3 МОЕ гэпмеры. В некоторых вариантах реализации изобретения гэпмеры представляют собой 5-10-5 МОЕ и cEt гэпмеры, 4-9-4 МОЕ и cEt гэпмеры, 4-10-4 МОЕ и cEt гэпмеры, 4-10-3 МОЕ и cEt гэпмеры, 3-10-4 МОЕ и cEt гэпмеры или 3-10-3 МОЕ и cEt гэпмеры. В некоторых вариантах реализации изобретения нуклеозиды антисмысловых олигонуклеотидов связаны тиофосфатными межнуклеозидными связями.
В некоторых вариантах реализации изобретения азотистые основания 27427-27466 SEQ ID NO: 10 представляют собой мишень для следующих номеров ISIS: 530993, 530994, 530995,546251, 546252, 546253, 546254, 546255, 546256, 547410, 547411, 547978, 547979, 547980 и 547981.
В некоторых вариантах реализации изобретения нуклеиновые основания 27427-27466 SEQ ID NO: 10 представляют собой мишень для следующих SEQ ID NO: 94, 95, 96, 566, 567, 568, 569, 570, 571, 572, 573, 1597, 1598, 1599 и 1600.
В некоторых вариантах реализации изобретения антисмысловые олигонуклеотиды, нацеленные на азотистые основания 27427-27466 SEQ ID NO: 10, обеспечивают по меньшей мере 30%, по меньшей мере 31%, по меньшей мере 32%, по меньшей мере 33%, по меньшей мере 34%, по меньшей мере 35%, по меньшей мере 36%, по меньшей мере 37%, по меньшей мере 38%, по меньшей мере 39%, по меньшей мере 40%, по меньшей мере 41%, по меньшей мере 42%, по меньшей мере 43%, по меньшей мере 44%, по меньшей мере 45%, по меньшей мере 46%, по меньшей мере 47%, по меньшей мере 48%, по меньшей мере 49%, по меньшей мере 50%, по меньшей мере 51%, по меньшей мере 52%, по меньшей мере 53%, по меньшей мере 54%, по меньшей мере 55%, по меньшей мере 56%, по меньшей мере 57%, по меньшей мере 58%, по меньшей мере 59%, по меньшей мере 60%, по меньшей мере 61%, по меньшей мере 62%, по меньшей мере 63%, по меньшей мере 64%, по меньшей мере 65%, по меньшей мере 66%, по меньшей мере 67%, по меньшей мере 68%, по меньшей мере 69%, по меньшей мере 70%, по меньшей мере 71%, по меньшей мере 72%, по меньшей мере 73%, по меньшей мере 74%, по меньшей мере 75%, по меньшей мере 76%, по меньшей мере 77%, по меньшей мере 78%, по меньшей мере 79%, по меньшей мере 80%, по меньшей мере 81%, по меньшей мере 82%, по меньшей мере 83%, по меньшей мере 84%, по меньшей мере 85%, по меньшей мере 86%, по меньшей мере 87%, по меньшей мере 88%, по меньшей мере 89%, по меньшей мере 90%, по меньшей мере 91%, по меньшей мере 92%, по меньшей мере 93%, по меньшей мере 94%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 98% или по меньшей мере 99% снижение уровней ПКП и/или белка in vitro и/или in vivo.
2. Азотистые основания 33183-33242 SEQ ID NO: 10
В некоторых вариантах реализации изобретения антисмысловые олигонуклеотиды сконструированы таким образом, что они нацелены на азотистые основания 33183-33242 SEQ ID NO: 10 (номер доступа GENBANK NT_016354.19, усеченная по азотистым основаниям с 111693001 по 111730000). В некоторых вариантах реализации изобретения азотистые основания 33183-33242 SEQ ID NO: 10 представляют собой горячую точку мутагенеза. В некоторых вариантах реализации изобретения азотистые основания 33183-33242 SEQ ID NO: 10 представляют собой мишень для антисмысловых олигонуклеотидов. В некоторых вариантах реализации изобретения длина антисмысловых олигонуклеотидов составляет 15, 16, 17, 18, 19 или 20 азотистых оснований. В некоторых вариантах реализации антисмысловые олигонуклеотиды представляют собой гэпмеры. В некоторых вариантах реализации изобретения гэпмеры представляют собой 5-10-5 МОЕ гэпмеры, 4-9-4 МОЕ гэпмеры, 4-10-4 МОЕ гэпмеры, 4-10-3 МОЕ гэпмеры, 3-10-4 МОЕ гэпмеры или 3-10-3 МОЕ гэпмеры. В некоторых вариантах реализации изобретения гэпмеры представляют собой 5-10-5 МОЕ и cEt гэпмеры, 4-9-4 МОЕ и cEt гэпмеры, 4-10-4 МОЕ и cEt гэпмеры, 4-10-3 МОЕ и cEt гэпмеры, 3-10-4 МОЕ и cEt гэпмеры или 3-10-3 МОЕ и cEt гэпмеры. В некоторых вариантах реализации изобретения нуклеозиды антисмысловых олигонуклеотидов связаны тиофосфатными межнуклеозидными связями.
В некоторых вариантах реализации изобретения азотистые основания 33183-33242 SEQ ID NO: 10 представляют собой мишень для следующих номеров ISIS: 531052, 531053, 531054, 531055, 531056, 531057, 531158, 546343, 546345, 547480, 547481, 547482 и 547483.
В некоторых вариантах реализации изобретения азотистые основания 33183-33242 SEQ ID NO: 10 представляют собой мишень для следующих SEQ ID NO: 155, 156, 157, 158, 159, 160, 261, 702, 703, 704, 705 706 и 707.
В некоторых вариантах реализации изобретения антисмысловые олигонуклеотиды, нацеленные на азотистые основания 33183-33242 SEQ ID NO: 10, обеспечивают по меньшей мере 30%, по меньшей мере 31%, по меньшей мере 32%, по меньшей мере 33%, по меньшей мере 34%, по меньшей мере 35%, по меньшей мере 36%, по меньшей мере 37%, по меньшей мере 38%, по меньшей мере 39%, по меньшей мере 40%, по меньшей мере 41%, по меньшей мере 42%, по меньшей мере 43%, по меньшей мере 44%, по меньшей мере 45%, по меньшей мере 46%, по меньшей мере 47%, по меньшей мере 48%, по меньшей мере 49%, по меньшей мере 50%, по меньшей мере 51%, по меньшей мере 52%, по меньшей мере 53%, по меньшей мере 54%, по меньшей мере 55%, по меньшей мере 56%, по меньшей мере 57%, по меньшей мере 58%, по меньшей мере 59%, по меньшей мере 60%, по меньшей мере 61%, по меньшей мере 62%, по меньшей мере 63%, по меньшей мере 64%, по меньшей мере 65%, по меньшей мере 66%, по меньшей мере 67%, по меньшей мере 68%, по меньшей мере 69%, по меньшей мере 70%, по меньшей мере 71%, по меньшей мере 72%, по меньшей мере 73%, по меньшей мере 74%, по меньшей мере 75%, по меньшей мере 76%, по меньшей мере 77%, по меньшей мере 78%, по меньшей мере 79%, по меньшей мере 80%, по меньшей мере 81%, по меньшей мере 82%, по меньшей мере 83%, по меньшей мере 84%, по меньшей мере 85%, по меньшей мере 86%, по меньшей мере 87%, по меньшей мере 88%, по меньшей мере 89%, по меньшей мере 90%, по меньшей мере 91%, по меньшей мере 92%, по меньшей мере 93%, по меньшей мере 94%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 98% или по меньшей мере 99% снижение уровней мРНК и/или белка ПКП in vitro и/или in vivo.
3. Азотистые основания 30570-30610 SEQ ID NO: 10
В некоторых вариантах реализации изобретения сконструированы антисмысловые олигонуклеотиды, нацеленные на азотистые основания 30570-30610 SEQ ID NO: 10 (номер доступа GENBANK NT_016354.19, усеченная по азотистым основаниям с 111693001 по 111730000). В некоторых вариантах реализации изобретения азотистые основания 30570-30610 SEQ ID NO: 10 представляют собой горячую точку мутагенеза. В некоторых вариантах реализации изобретения азотистые основания 30570-30610 SEQ ID NO: 10 представляют собой мишень для антисмысловых олигонуклеотидов. В некоторых вариантах реализации изобретения длина антисмысловых олигонуклеотидов составляет 15, 16, 17, 18, 19 или 20 азотистых оснований. В некоторых вариантах реализации антисмысловые олигонуклеотиды представляют собой гэпмеры. В некоторых вариантах реализации изобретения гэпмеры представляют собой 5-10-5 МОЕ гэпмеры, 4-9-4 МОЕ гэпмеры, 4-10-4 МОЕ гэпмеры, 4-10-3 МОЕ гэпмеры, 3-10-4 МОЕ гэпмеры или 3-10-3 МОЕ гэпмеры. В некоторых вариантах реализации изобретения гэпмеры представляют собой 5-10-5 МОЕ и cEt гэпмеры, 4-9-4 МОЕ и cEt гэпмеры, 4-10-4 МОЕ и cEt гэпмеры, 4-10-3 МОЕ и cEt гэпмеры, 3-10-4 МОЕ и cEt гэпмеры или 3-10-3 МОЕ и cEt гэпмеры. В некоторых вариантах реализации изобретения нуклеозиды антисмысловых олигонуклеотидов связаны тиофосфатными межнуклеозидными связями.
В некоторых вариантах реализации изобретения азотистые основания 30570-30610 SEQ ID NO: 10 представляют собой мишень для следующих номеров ISIS: 531026, 546309, 546310, 546311, 546313, 547453, 547454, 547455, 547456, 547457, 547458, 548046, 548047, 548048, 548049 и 548050.
В некоторых вариантах реализации изобретения азотистые основания 30570-30610 SEQ ID NO: 10 представляют собой мишень для следующих SEQ ID NO: 129, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 1664, 1665, 1666, 1667 и 1668.
В некоторых вариантах реализации изобретения антисмысловые олигонуклеотиды, нацеленные на азотистые основания 30570-30610 SEQ ID NO: 10, обеспечивают по меньшей мере 30%, по меньшей мере 31%, по меньшей мере 32%, по меньшей мере 33%, по меньшей мере 34%, по меньшей мере 35%, по меньшей мере 36%, по меньшей мере 37%, по меньшей мере 38%, по меньшей мере 39%, по меньшей мере 40%, по меньшей мере 41%, по меньшей мере 42%, по меньшей мере 43%, по меньшей мере 44%, по меньшей мере 45%, по меньшей мере 46%, по меньшей мере 47%, по меньшей мере 48%, по меньшей мере 49%, по меньшей мере 50%, по меньшей мере 51%, по меньшей мере 52%, по меньшей мере 53%, по меньшей мере 54%, по меньшей мере 55%, по меньшей мере 56%, по меньшей мере 57%, по меньшей мере 58%, по меньшей мере 59%, по меньшей мере 60%, по меньшей мере 61%, по меньшей мере 62%, по меньшей мере 63%, по меньшей мере 64%, по меньшей мере 65%, по меньшей мере 66%, по меньшей мере 67%, по меньшей мере 68%, по меньшей мере 69%, по меньшей мере 70%, по меньшей мере 71%, по меньшей мере 72%, по меньшей мере 73%, по меньшей мере 74%, по меньшей мере 75%, по меньшей мере 76%, по меньшей мере 77%, по меньшей мере 78%, по меньшей мере 79%, по меньшей мере 80%, по меньшей мере 81%, по меньшей мере 82%, по меньшей мере 83%, по меньшей мере 84%, по меньшей мере 85%, по меньшей мере 86%, по меньшей мере 87%, по меньшей мере 88%, по меньшей мере 89%, по меньшей мере 90%, по меньшей мере 91%, по меньшей мере 92%, по меньшей мере 93%, по меньшей мере 94%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 98% или по меньшей мере 99% снижение уровней мРНК и/или белка ПКП in vitro и/или in vivo.
4. Азотистые основания 27427-27520 SEQ ID NO: 10
В некоторых вариантах реализации изобретения сконструированы антисмысловые олигонуклеотиды, нацеленные на азотистые основания 27427-27520 SEQ ID NO: 10 (номер доступа GENBANK NT_016354.19, усеченная по азотистым основаниям с 111693001 по 111730000). В некоторых вариантах реализации изобретения азотистые основания 27427-27520 SEQ ID NO: 10 представляют собой горячую точку мутагенеза. В некоторых вариантах реализации изобретения азотистые основания 27427-27520 SEQ ID NO: 10 представляют собой мишень для антисмысловых олигонуклеотидов. В некоторых вариантах реализации изобретения длина антисмысловых олигонуклеотидов составляет 15, 16, 17, 18, 19 или 20 азотистых оснований. В некоторых вариантах реализации антисмысловые олигонуклеотиды представляют собой гэпмеры. В некоторых вариантах реализации изобретения гэпмеры представляют собой 5-10-5 МОЕ гэпмеры, 4-9-4 МОЕ гэпмеры, 4-10-4 МОЕ гэпмеры, 4-10-3 МОЕ гэпмеры, 3-10-4 МОЕ гэпмеры или 3-10-3 МОЕ гэпмеры. В некоторых вариантах реализации изобретения гэпмеры представляют собой 5-10-5 МОЕ и cEt гэпмеры, 4-9-4 МОЕ и cEt гэпмеры, 4-10-4 МОЕ и cEt гэпмеры, 4-10-3 МОЕ и cEt гэпмеры, 3-10-4 МОЕ и cEt гэпмеры или 3-10-3 МОЕ и cEt гэпмеры. В некоторых вариантах реализации изобретения нуклеозиды антисмысловых олигонуклеотидов связаны тиофосфатными межнуклеозидными связями.
В некоторых вариантах реализации изобретения азотистые основания 27427-27520 SEQ ID NO: 10 представляют собой мишень для следующих номеров ISIS: 530993-530999, 546251-546256, 546258-546260, 546263, 546265-546268, 547410-547417 и 547978-547992.
В некоторых вариантах реализации изобретения азотистые основания 27427-27520 SEQ ID NO: 10 представляют собой мишень для следующих SEQ ID NO: 94-100, 566-587 и 1597-1611.
В некоторых вариантах реализации изобретения антисмысловые олигонуклеотиды, нацеленные на азотистые основания 27427-27520 SEQ ID NO: 10, обеспечивают по меньшей мере 30%, по меньшей мере 31%, по меньшей мере 32%, по меньшей мере 33%, по меньшей мере 34%, по меньшей мере 35%, по меньшей мере 36%, по меньшей мере 37%, по меньшей мере 38%, по меньшей мере 39%, по меньшей мере 40%, по меньшей мере 41%, по меньшей мере 42%, по меньшей мере 43%, по меньшей мере 44%, по меньшей мере 45%, по меньшей мере 46%, по меньшей мере 47%, по меньшей мере 48%, по меньшей мере 49%, по меньшей мере 50%, по меньшей мере 51%, по меньшей мере 52%, по меньшей мере 53%, по меньшей мере 54%, по меньшей мере 55%, по меньшей мере 56%, по меньшей мере 57%, по меньшей мере 58%, по меньшей мере 59%, по меньшей мере 60%, по меньшей мере 61%, по меньшей мере 62%, по меньшей мере 63%, по меньшей мере 64%, по меньшей мере 65%, по меньшей мере 66%, по меньшей мере 67%, по меньшей мере 68%, по меньшей мере 69%, по меньшей мере 70%, по меньшей мере 71%, по меньшей мере 72%, по меньшей мере 73%, по меньшей мере 74%, по меньшей мере 75%, по меньшей мере 76%, по меньшей мере 77%, по меньшей мере 78%, по меньшей мере 79%, по меньшей мере 80%, по меньшей мере 81%, по меньшей мере 82%, по меньшей мере 83%, по меньшей мере 84%, по меньшей мере 85%, по меньшей мере 86%, по меньшей мере 87%, по меньшей мере 88%, по меньшей мере 89%, по меньшей мере 90%, по меньшей мере 91%, по меньшей мере 92%, по меньшей мере 93%, по меньшей мере 94%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 98% или по меньшей мере 99% снижение уровней ПКП и/или белка in vitro и/или in vivo.
5. Азотистые основания 33085-33247 SEQ ID NO: 10
В некоторых вариантах реализации изобретения сконструированы антисмысловые олигонуклеотиды, нацеленные на азотистые основания 33085-33247 SEQ ID NO: 10 (номер доступа GENBANK NT_016354.19, усеченная по азотистым основаниям с 111693001 по 111730000). В некоторых вариантах реализации азотистые основания 33085-33247 SEQ ID NO: 10 представляют собой горячую точку мутагенеза. В некоторых вариантах реализации изобретения азотистые основания 33085-33247 SEQ ID NO: 10 представляют собой мишень для антисмысловых олигонуклеотидов. В некоторых вариантах реализации изобретения длина антисмысловых олигонуклеотидов составляет 15, 16, 17, 18, 19 или 20 азотистых оснований. В некоторых вариантах реализации антисмысловые олигонуклеотиды представляют собой гэпмеры. В некоторых вариантах реализации изобретения гэпмеры представляют собой 5-10-5 МОЕ гэпмеры, 4-9-4 МОЕ гэпмеры, 4-10-4 МОЕ гэпмеры, 4-10-3 МОЕ гэпмеры, 3-10-4 МОЕ гэпмеры или 3-10-3 МОЕ гэпмеры. В некоторых вариантах реализации изобретения гэпмеры представляют собой 5-10-5 МОЕ и cEt гэпмеры, 4-9-4 МОЕ и cEt гэпмеры, 4-10-4 МОЕ и cEt гэпмеры, 4-10-3 МОЕ и cEt гэпмеры, 3-10-4 МОЕ и cEt гэпмеры или 3-10-3 МОЕ и cEt гэпмеры. В некоторых вариантах реализации изобретения нуклеозиды антисмысловых олигонуклеотидов связаны тиофосфатными межнуклеозидными связями.
В некоторых вариантах реализации изобретения азотистые основания 33085-33247 SEQ ID NO: 10 представляют собой мишень для следующих номеров ISIS: 531041-531158, 546336, 546339, 546340, 546343, 546345, 547474-547483, 547778, 548077-548082 и 548677-548678.
В некоторых вариантах реализации изобретения азотистые основания 33085-33247 SEQ ID NO: 10 представляют собой мишень для следующих SEQ ID NO: 144-160, 261, 693-707, 1256, 1320-1325, 2214 и 2215.
В некоторых вариантах реализации изобретения антисмысловые олигонуклеотиды, нацеленные на азотистые основания 33085-33247 SEQ ID NO: 10, обеспечивают по меньшей мере 30%, по меньшей мере 31%, по меньшей мере 32%, по меньшей мере 33%, по меньшей мере 34%, по меньшей мере 35%, по меньшей мере 36%, по меньшей мере 37%, по меньшей мере 38%, по меньшей мере 39%, по меньшей мере 40%, по меньшей мере 41%, по меньшей мере 42%, по меньшей мере 43%, по меньшей мере 44%, по меньшей мере 45%, по меньшей мере 46%, по меньшей мере 47%, по меньшей мере 48%, по меньшей мере 49%, по меньшей мере 50%, по меньшей мере 51%, по меньшей мере 52%, по меньшей мере 53%, по меньшей мере 54%, по меньшей мере 55%, по меньшей мере 56%, по меньшей мере 57%, по меньшей мере 58%, по меньшей мере 59%, по меньшей мере 60%, по меньшей мере 61%, по меньшей мере 62%, по меньшей мере 63%, по меньшей мере 64%, по меньшей мере 65%, по меньшей мере 66%, по меньшей мере 67%, по меньшей мере 68%, по меньшей мере 69%, по меньшей мере 70%, по меньшей мере 71%, по меньшей мере 72%, по меньшей мере 73%, по меньшей мере 74%, по меньшей мере 75%, по меньшей мере 76%, по меньшей мере 77%, по меньшей мере 78%, по меньшей мере 79%, по меньшей мере 80%, по меньшей мере 81%, по меньшей мере 82%, по меньшей мере 83%, по меньшей мере 84%, по меньшей мере 85%, по меньшей мере 86%, по меньшей мере 87%, по меньшей мере 88%, по меньшей мере 89%, по меньшей мере 90%, по меньшей мере 91%, по меньшей мере 92%, по меньшей мере 93%, по меньшей мере 94%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 98% или по меньшей мере 99% снижение уровней ПКП и/или белка in vitro и/или in vivo.
6. Азотистые основания 30475-30639 SEQ ID NO: 10
В некоторых вариантах реализации изобретения сконструированы антисмысловые олигонуклеотиды, нацеленные на азотистые основания 30475-30639 SEQ ID NO: 10 (номер доступа GENBANK NT_016354.19, усеченная по азотистым основаниям с 111693001 по 111730000). В некоторых вариантах реализации изобретения азотистые основания 30475-30639 SEQ ID NO: 10 представляют собой горячую точку мутагенеза. В некоторых вариантах реализации изобретения азотистые основания 30475-30639 SEQ ID NO: 10 представляют собой мишень для антисмысловых олигонуклеотидов. В некоторых вариантах реализации изобретения длина антисмысловых олигонуклеотидов составляет 15, 16, 17, 18, 19 или 20 азотистых оснований. В некоторых вариантах реализации антисмысловые олигонуклеотиды представляют собой гэпмеры. В некоторых вариантах реализации изобретения гэпмеры представляют собой 5-10-5 МРЕ гэпмеры, 4-9-4 МРЕ гэпмеры, 4-10-4 МРЕ гэпмеры, 4-10-3 МРЕ гэпмеры, 3-10-4 МРЕ гэпмеры или 3-10-3 МРЕ гэпмеры. В некоторых вариантах реализации изобретения гэпмеры представляют собой 5-10-5 МРЕ и cEt гэпмеры, 4-9-4 МРЕ и cEt гэпмеры, 4-10-4 МРЕ и cEt гэпмеры, 4-10-3 МРЕ и cEt гэпмеры, 3-10-4 МРЕ и cEt гэпмеры или 3-10-3 МРЕ и cEt гэпмеры. В некоторых вариантах реализации изобретения нуклеозиды антисмысловых олигонуклеотидов связаны тиофосфатными межнуклеозидными связями.
В некоторых вариантах реализации изобретения азотистые основания 30475-30639 SEQ ID NO: 10 представляют собой мишень для следующих номеров ISIS: 531021-531029, 531146, 546297, 546299-546304, 546306-546311, 546313, 546316-546319, 547444-547462, 548031, 548032 и 548034-548056.
В некоторых вариантах реализации изобретения азотистые основания 30475-30639 SEQ ID NO: 10 представляют собой мишень для следующих SEQ ID NO: 124-132, 249, 633-669 и 1650-1674.
В некоторых вариантах реализации изобретения антисмысловые олигонуклеотиды, нацеленные на азотистые основания 30475-30639 SEQ ID NO: 10, обеспечивают по меньшей мере 30%, по меньшей мере 31%, по меньшей мере 32%, по меньшей мере 33%, по меньшей мере 34%, по меньшей мере 35%, по меньшей мере 36%, по меньшей мере 37%, по меньшей мере 38%, по меньшей мере 39%, по меньшей мере 40%, по меньшей мере 41%, по меньшей мере 42%, по меньшей мере 43%, по меньшей мере 44%, по меньшей мере 45%, по меньшей мере 46%, по меньшей мере 47%, по меньшей мере 48%, по меньшей мере 49%, по меньшей мере 50%, по меньшей мере 51%, по меньшей мере 52%, по меньшей мере 53%, по меньшей мере 54%, по меньшей мере 55%, по меньшей мере 56%, по меньшей мере 57%, по меньшей мере 58%, по меньшей мере 59%, по меньшей мере 60%, по меньшей мере 61%, по меньшей мере 62%, по меньшей мере 63%, по меньшей мере 64%, по меньшей мере 65%, по меньшей мере 66%, по меньшей мере 67%, по меньшей мере 68%, по меньшей мере 69%, по меньшей мере 70%, по меньшей мере 71%, по меньшей мере 72%, по меньшей мере 73%, по меньшей мере 74%, по меньшей мере 75%, по меньшей мере 76%, по меньшей мере 77%, по меньшей мере 78%, по меньшей мере 79%, по меньшей мере 80%, по меньшей мере 81%, по меньшей мере 82%, по меньшей мере 83%, по меньшей мере 84%, по меньшей мере 85%, по меньшей мере 86%, по меньшей мере 87%, по меньшей мере 88%, по меньшей мере 89%, по меньшей мере 90%, по меньшей мере 91%, по меньшей мере 92%, по меньшей мере 93%, по меньшей мере 94%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 98% или по меньшей мере 99% снижение уровней ПКП и/или белка in vitro и/или in vivo.
1. Азотистые основания 27362-27524 SEQ ID NO: 10
В некоторых вариантах реализации изобретения сконструированы антисмысловые олигонуклеотиды, нацеленные на азотистые основания 27362-27524 SEQ ID NO: 10 (номер доступа GENBANK NT_016354.19, усеченная по азотистым основаниям с 111693001 по 111730000). В некоторых вариантах реализации изобретения азотистые основания 27362-27524 соответствуют экзону 9 ПКП (номер доступа GENBANK NT_016354.19, усеченная по азотистым основаниям с 111693001 по 111730000). В некоторых вариантах реализации изобретения азотистые основания 27362-27524 SEQ ID NO: 10 представляют собой горячую точку мутагенеза. В некоторых вариантах реализации изобретения азотистые основания 27362-27524 SEQ ID NO: 10 представляют собой мишень для антисмысловых олигонуклеотидов. В некоторых вариантах реализации изобретения длина антисмысловых олигонуклеотидов составляет 15, 16, 17, 18, 19 или 20 азотистых оснований. В некоторых вариантах реализации антисмысловые олигонуклеотиды представляют собой гэпмеры. В некоторых вариантах реализации изобретения гэпмеры представляют собой 5-10-5 МОЕ гэпмеры, 4-9-4 МОЕ гэпмеры, 4-10-4 МОЕ гэпмеры, 4-10-3 МОЕ гэпмеры, 3-10-4 МОЕ гэпмеры или 3-10-3 МОЕ гэпмеры. В некоторых вариантах реализации изобретения гэпмеры представляют собой 5-10-5 МОЕ и cEt гэпмеры, 4-9-4 МОЕ и cEt гэпмеры, 4-10-4 МОЕ и cEt гэпмеры, 4-10-3 МОЕ и cEt гэпмеры, 3-10-4 МОЕ и cEt гэпмеры или 3-10-3 МОЕ и cEt гэпмеры. В некоторых вариантах реализации изобретения нуклеозиды антисмысловых олигонуклеотидов связаны тиофосфатными межнуклеозидными связями.
В некоторых вариантах реализации изобретения азотистые основания 27361-27524 SEQ ID NO: 10 представляют собой мишень для следующих номеров ISIS: 530985-530999, 546244, 546247-546256, 546258-546260, 546263, 546265-546268, 547403-547417, 547723, 547968-547970 и 547972-547992.
В некоторых вариантах реализации изобретения азотистые основания 27361-27524 SEQ ID NO: 10 представляют собой мишень для следующих SEQ ID NO: 86-100, 554-587, 1217 и 1588-1611.
В некоторых вариантах реализации изобретения антисмысловые олигонуклеотиды, нацеленные на азотистые основания 27362-27524 SEQ ID NO: 10, обеспечивают по меньшей мере 30%, по меньшей мере 31%, по меньшей мере 32%, по меньшей мере 33%, по меньшей мере 34%, по меньшей мере 35%, по меньшей мере 36%, по меньшей мере 37%, по меньшей мере 38%, по меньшей мере 39%, по меньшей мере 40%, по меньшей мере 41%, по меньшей мере 42%, по меньшей мере 43%, по меньшей мере 44%, по меньшей мере 45%, по меньшей мере 46%, по меньшей мере 47%, по меньшей мере 48%, по меньшей мере 49%, по меньшей мере 50%, по меньшей мере 51%, по меньшей мере 52%, по меньшей мере 53%, по меньшей мере 54%, по меньшей мере 55%, по меньшей мере 56%, по меньшей мере 57%, по меньшей мере 58%, по меньшей мере 59%, по меньшей мере 60%, по меньшей мере 61%, по меньшей мере 62%, по меньшей мере 63%, по меньшей мере 64%, по меньшей мере 65%, по меньшей мере 66%, по меньшей мере 67%, по меньшей мере 68%, по меньшей мере 69%, по меньшей мере 70%, по меньшей мере 71%, по меньшей мере 72%, по меньшей мере 73%, по меньшей мере 74%, по меньшей мере 75%, по меньшей мере 76%, по меньшей мере 77%, по меньшей мере 78%, по меньшей мере 79%, по меньшей мере 80%, по меньшей мере 81%, по меньшей мере 82%, по меньшей мере 83%, по меньшей мере 84%, по меньшей мере 85%, по меньшей мере 86%, по меньшей мере 87%, по меньшей мере 88%, по меньшей мере 89%, по меньшей мере 90%, по меньшей мере 91%, по меньшей мере 92%, по меньшей мере 93%, по меньшей мере 94%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 98% или по меньшей мере 99% снижение уровней ПКП и/или белка in vitro и/или in vivo.
8. Азотистые основания 33101-33240 SEQ ID NO: 10
В некоторых вариантах реализации изобретения сконструированы антисмысловые олигонуклеотиды, нацеленные на азотистые основания 33101-33240 SEQ ID NO: 10 (номер доступа GENBANK NT_016354.19, усеченная по азотистым основаниям с 111693001 по 111730000). В некоторых вариантах реализации изобретения азотистые основания 33101-33240 соответствуют экзону 14 ПКП (номер доступа GENBANK NT_016354.19, усеченная по азотистым основаниям с 111693001 по 111730000). В некоторых вариантах реализации изобретения азотистые основания 33101-33240 SEQ ID NO: 10 представляют собой горячую точку мутагенеза. В некоторых вариантах реализации изобретения азотистые основания 33101-33240 SEQ ID NO: 10 представляют собой мишень для антисмысловых олигонуклеотидов. В некоторых вариантах реализации изобретения длина антисмысловых олигонуклеотидов составляет 15, 16, 17, 18, 19 или 20 азотистых оснований. В некоторых вариантах реализации антисмысловые олигонуклеотиды представляют собой гэпмеры. В некоторых вариантах реализации изобретения гэпмеры представляют собой 5-10-5 МОЕ гэпмеры, 4-9-4 МОЕ гэпмеры, 4-10-4 МОЕ гэпмеры, 4-10-3 МОЕ гэпмеры, 3-10-4 МОЕ гэпмеры или 3-10-3 МОЕ гэпмеры. В некоторых вариантах реализации изобретения гэпмеры представляют собой 5-10-5 МОЕ и cEt гэпмеры, 4-9-4 МОЕ и cEt гэпмеры, 4-10-4 МОЕ и cEt гэпмеры, 4-10-3 МОЕ и cEt гэпмеры, 3-10-4 МОЕ и cEt гэпмеры или 3-10-3 МОЕ и cEt гэпмеры. В некоторых вариантах реализации изобретения нуклеозиды антисмысловых олигонуклеотидов связаны тиофосфатными межнуклеозидными связями.
В некоторых вариантах реализации изобретения азотистые основания 33101-33240 SEQ ID NO: 10 представляют собой мишень для следующих номеров ISIS: 531041-531158, 546336, 546339, 546340, 546343, 546345, 547474-547483, 548077-548082 и 548678-548678.
В некоторых вариантах реализации изобретения азотистые основания 33101-33240 SEQ ID NO: 10 представляют собой мишень для следующих SEQ ID NO: 144-160, 261, 693-707, 1320-1325 и 2215.
В некоторых вариантах реализации изобретения антисмысловые олигонуклеотиды, нацеленные на азотистые основания 33101-33240 SEQ ID NO: 10, обеспечивают по меньшей мере 30%, по меньшей мере 31%, по меньшей мере 32%, по меньшей мере 33%, по меньшей мере 34%, по меньшей мере 35%, по меньшей мере 36%, по меньшей мере 37%, по меньшей мере 38%, по меньшей мере 39%, по меньшей мере 40%, по меньшей мере 41%, по меньшей мере 42%, по меньшей мере 43%, по меньшей мере 44%, по меньшей мере 45%, по меньшей мере 46%, по меньшей мере 47%, по меньшей мере 48%, по меньшей мере 49%, по меньшей мере 50%, по меньшей мере 51%, по меньшей мере 52%, по меньшей мере 53%, по меньшей мере 54%, по меньшей мере 55%, по меньшей мере 56%, по меньшей мере 57%, по меньшей мере 58%, по меньшей мере 59%, по меньшей мере 60%, по меньшей мере 61%, по меньшей мере 62%, по меньшей мере 63%, по меньшей мере 64%, по меньшей мере 65%, по меньшей мере 66%, по меньшей мере 67%, по меньшей мере 68%, по меньшей мере 69%, по меньшей мере 70%, по меньшей мере 71%, по меньшей мере 72%, по меньшей мере 73%, по меньшей мере 74%, по меньшей мере 75%, по меньшей мере 76%, по меньшей мере 77%, по меньшей мере 78%, по меньшей мере 79%, по меньшей мере 80%, по меньшей мере 81%, по меньшей мере 82%, по меньшей мере 83%, по меньшей мере 84%, по меньшей мере 85%, по меньшей мере 86%, по меньшей мере 87%, по меньшей мере 88%, по меньшей мере 89%, по меньшей мере 90%, по меньшей мере 91%, по меньшей мере 92%, по меньшей мере 93%, по меньшей мере 94%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 98% или по меньшей мере 99% снижение уровней ПКП и/или белка in vitro и/или in vivo.
9. Азотистые основания 30463-30638 SEQ ID NO: 10
В некоторых вариантах реализации изобретения сконструированы антисмысловые олигонуклеотиды, нацеленные на азотистые основания 30463-30638 SEQ ID NO: 10 (номер доступа GENBANK NT_016354.19, усеченная по азотистым основаниям с 111693001 по 111730000). В некоторых вариантах реализации изобретения азотистые основания 30463-30638 соответствуют экзону 12 ПКП (номер доступа GENBANK NT_016354.19, усеченная по азотистым основаниям с 111693001 по 111730000). В некоторых вариантах реализации изобретения азотистые основания 30463-30638 SEQ ID NO: 10 представляют собой горячую точку мутагенеза. В некоторых вариантах реализации изобретения азотистые основания 30463-30638 SEQ ID NO: 10 представляют собой мишень для антисмысловых олигонуклеотидов. В некоторых вариантах реализации изобретения длина антисмысловых олигонуклеотидов составляет 15, 16, 17, 18, 19 или 20 азотистых оснований. В некоторых вариантах реализации антисмысловые олигонуклеотиды представляют собой гэпмеры. В некоторых вариантах реализации изобретения гэпмеры представляют собой 5-10-5 МОЕ гэпмеры, 4-9-4 МОЕ гэпмеры, 4-10-4 МОЕ гэпмеры, 4-10-3 МОЕ гэпмеры, 3-10-4 МОЕ гэпмеры или 3-10-3 МОЕ гэпмеры. В некоторых вариантах реализации изобретения гэпмеры представляют собой 5-10-5 МОЕ и cEt гэпмеры, 4-9-4 МОЕ и cEt гэпмеры, 4-10-4 МОЕ и cEt гэпмеры, 4-10-3 МОЕ и cEt гэпмеры, 3-10-4 МОЕ и cEt гэпмеры или 3-10-3 МОЕ и cEt гэпмеры. В некоторых вариантах реализации изобретения нуклеозиды антисмысловых олигонуклеотидов связаны тиофосфатными межнуклеозидными связями.
В некоторых вариантах реализации изобретения азотистые основания 30463-30638 SEQ ID NO: 10 представляют собой мишень для следующих номеров ISIS: 531021-531029, 531146, 546297, 546299-546304, 546306-546311, 546313, 546316-546319, 547444-547462, 548031, 548032 и 548034-548056.
В некоторых вариантах реализации изобретения азотистые основания 30463-30638 SEQ ID NO: 10 представляют собой мишень для следующих SEQ ID NO: 124-132, 249, 633-669 и 1650-1674.
В некоторых вариантах реализации изобретения антисмысловые олигонуклеотиды, нацеленные на азотистые основания 30463-30638 SEQ ID NO: 10, обеспечивают по меньшей мере 30%, по меньшей мере 31%, по меньшей мере 32%, по меньшей мере 33%, по меньшей мере 34%, по меньшей мере 35%, по меньшей мере 36%, по меньшей мере 37%, по меньшей мере 38%, по меньшей мере 39%, по меньшей мере 40%, по меньшей мере 41%, по меньшей мере 42%, по меньшей мере 43%, по меньшей мере 44%, по меньшей мере 45%, по меньшей мере 46%, по меньшей мере 47%, по меньшей мере 48%, по меньшей мере 49%, по меньшей мере 50%, по меньшей мере 51%, по меньшей мере 52%, по меньшей мере 53%, по меньшей мере 54%, по меньшей мере 55%, по меньшей мере 56%, по меньшей мере 57%, по меньшей мере 58%, по меньшей мере 59%, по меньшей мере 60%, по меньшей мере 61%, по меньшей мере 62%, по меньшей мере 63%, по меньшей мере 64%, по меньшей мере 65%, по меньшей мере 66%, по меньшей мере 67%, по меньшей мере 68%, по меньшей мере 69%, по меньшей мере 70%, по меньшей мере 71%, по меньшей мере 72%, по меньшей мере 73%, по меньшей мере 74%, по меньшей мере 75%, по меньшей мере 76%, по меньшей мере 77%, по меньшей мере 78%, по меньшей мере 79%, по меньшей мере 80%, по меньшей мере 81%, по меньшей мере 82%, по меньшей мере 83%, по меньшей мере 84%, по меньшей мере 85%, по меньшей мере 86%, по меньшей мере 87%, по меньшей мере 88%, по меньшей мере 89%, по меньшей мере 90%, по меньшей мере 91%, по меньшей мере 92%, по меньшей мере 93%, по меньшей мере 94%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 98% или по меньшей мере 99% снижение уровней ПКП и/или белка in vitro и/или in vivo.
ПРИМЕРЫ
Неограничивающее описание и включение посредством ссылки
Несмотря на то, что некоторые соединения, композиции и способы, описанные в настоящем документе, были подробно описаны в соответствии с некоторыми вариантами реализации изобретения, следующие примеры служат лишь для иллюстрации соединений, описанных в настоящем документе, и их не следует считать их ограничением. Каждая из ссылок, упоминаемых в настоящей заявке, включена в настоящий документ посредством ссылки в полном объеме.
Следующие примеры иллюстрируют некоторые варианты реализации настоящего описания и не являются ограничивающими. Более того, если представлены конкретные варианты реализации, авторы изобретения подразумевают общее применение указанных конкретных вариантов реализации. Например, описание олигонуклеотида, содержащего конкретный мотив, дает обоснованное основание для дополнительных олигонуклеотидов, содержащих такой же или похожий мотив. И, например, если конкретная высокоаффинная модификация возникает в определенном положении, то в этом же положении считаются подходящими другие высокоаффинные модификации, если не указано иное.
Пример 1: Общий способ получения фосфорамидитов, Соединений 1, 1а и 2
Вх представляет собой гетероциклическое основание
Соединения 1, 1а и 2 были получены по способам, общеизвестным в данной области техники, как описано в настоящем документе (см. Seth et al., Bioorg. Med. Chem., 2011, 21(4), 1122-1125, J. Org. Chem., 2010, 75(5), 1569-1581, Nucleic Acids Symposium Series, 2008, 52(1), 553-554); и см. также опубликованные Международные заявки РСТ (WO 2011/115818, WO 2010/077578, WO 2010/036698, WO 2009/143369, WO 2009/006478 и WO 2007/090071) и патент США 7569686).
Пример 2: Получение Соединения 7
Соединение 3 (2-ацетамидо-1,3,4,6-тетра-O-ацетил-2-дезокси-β-D-галактопираноза или галактозамина пентаацетат) имеется в продаже. Соединение 5 получили по опубликованным методикам (Weber et al., J. Med. Chem., 1991, 34, 2692).
Пример 3: Получение Соединения 11
Соединения 8 и 9 имеются в продаже.
Пример 4: Получение Соединения 18
Соединение 11 получили по способам, описанным в Примере 3. Соединение 14 имеется в продаже. Соединение 17 получили по такому же способу, как описан в публикации Rensen et al., J. Med. Chem., 2004, 47, 5798-5808.
Пример 5: Получение Соединения 23
Соединения 19 и 21 имеются в продаже.
Пример 6: Получение Соединения 24
Соединения 18 и 23 получили так, как описано в способах в Примерах 4 и 5.
Пример 7: Получение Соединения 25
Соединение 24 получили по способам, представленным в Примере 6.
Пример 8: Получения Соединения 26
Соединение 24 получили по способам, представленным в Примере 6.
Пример 9: Общее получение сопряженных ASO, содержащих GalNAc3-1 на 3'-конце, Соединения 29
Где защищенный GalNAc3-1 имеет структуру:
Кластерная часть GalNAc3 группы конъюгата GalNAc3-1 (GalNAc3-1a) может быть комбинирована с любым расщепляемым фрагментом с получением различных групп конъюгата. Где GalNAc3-1a имеет формулу:
Защищенный GalNAc3-1, связанный с твердой подложкой, Соединение 25, получили по способам, представленным в Примере 7. Олигомерное соединение 29, содержащее GalNAc3-1 на 3'-конце, получили по стандартным способам в автоматическом синтезаторе ДНК/РНК (см. Dupouy et al., Angew. Chem. Int. ред., 2006, 45, 3623-3627). Фосфорамидитные строительные блоки, Соединения 1 и 1a, получили так, как описано в способах в Примере 1. Изображенные фосфорамидиты являются иллюстративными и не предназначены для ограничения, поскольку могут быть использованы другие фосфорамидитные строительные блоки для получения олигомерных соединений, имеющих заданную последовательность и состав. Порядок и количество фосфорамидитов, добавляемых к твердой подложке, может быть подобрано для получения разорванных олигомерных соединений, описанных в настоящем документе. Такие разорванные олигомерные соединения могут иметь заданный состав и последовательность оснований, продиктованную любой данной мишенью.
Пример 10: Общее получение сопряженных ASO, содержащих GalNAc3-1 на 5'-конце, Соединения 34
Unylinker™ 30 имеется в продаже. Олигомерное соединение 34, содержащее кластер GalNAc3-1 на 5'-конце, получили по стандартным способам в автоматическом синтезаторе ДНК/РНК (см. Dupouy et al., Angew. Chem. Int. ред., 2006, 45, 3623-3627). Фосфорамидитные строительные блоки, Соединения 1 и 1a, получили так, как описано в способах в Примере 1. Изображенные фосфорамидиты являются иллюстративными и не предназначены для ограничения, поскольку могут быть использованы другие фосфорамидитные строительные блоки для получения олигомерных соединений, имеющих заданную последовательность и состав. Порядок и количество фосфорамидитов, добавляемых к твердой подложке, может быть подобрано для получения разорванных олигомерных соединений, описанных в настоящем документе. Такие разорванные олигомерные соединения могут иметь заданный состав и последовательность оснований, продиктованную любой данной мишенью.
Пример 11: Получение Соединения 39
Соединения 4, 13 и 23 получили так, как описано в способах в Примерах 2, 4 и 5. Соединение 35 получили по такому же способу, как описан в публикации Rouchaud et al., Eur, J. Org. Chem., 2011, 12, 2346-2353.
Пример 12: Получение Соединения 40
Соединение 38 получили по способам, представленным в Примере 11.
Пример 13: Получение Соединения 44
Соединения 23 и 36 получили так, как описано в способах в Примерах 5 и 11. Соединение 41 получили по такому же способу, как описан в публикации WO 2009082607.
Пример 14: Получение Соединения 45
Соединение 43 получили по способам, представленным в Примере 13.
Пример 15: Получение Соединения 47
Соединение 46 имеется в продаже.
Пример 16: Получение Соединения 53
Соединения 48 и 49 имеются в продаже. Соединения 17 и 47 получили так, как описано в способах в Примерах 4 и 15.
Пример 17: Получение Соединения 54
Соединение 53 получили по способам, представленным в Примере 16.
Пример 18: Получение Соединения 55
Соединение 53 получили по способам, представленным в Примере 16.
Пример 19: Общий способ получения сопряженных ASO, содержащих GalNAc3-1 в 3'-положении, при помощи твердофазных методик (получение ISIS 647535, 647536 и 651900)
Если не указано иное, все реагенты и растворы, использованные для синтеза олигомерных соединений, приобретены у коммерческих поставщиков. Стандартные фосфорамидитные строительные блоки и твердую подложку использовали для внедрения нуклеозидных остатков, которые включают, например, остатки Т, A, G и mC. 0,1 М раствор фосфорамидита в безводном ацетонитриле использовали для β-D-2'-дезоксирибонуклеозида и 2'-МОЕ.
Синтез антисмысловых олигонуклеотидов (ASO) выполнили на синтезаторе ABI 394 (в масштабе 1-2 мкмоль) или на синтезаторе Oligopilot производства GE Healthcare Bioscience (в масштабе 40-200 мкмоль) по способу фосфорамидитного связывания на твердой подложке VIMAD, наполненной GalNAc3-1 (110 мкмоль/г, Guzaev et al., 2003), упакованной в колонку. Для стадии связывания фосфорамидиты вводили в 4-кратном избытке по сравнению с загрузкой на твердой подложке, а конденсацию фосфорамидита выполняли в течение 10 минут. Все остальные стадии выполняли по стандартным протоколам, предоставленным производителем. Для удаления диметокситритильной (DMT) группы с 5'-гидроксильной группы нуклеотида использовали 6% раствор дихлоруксусной кислоты в толуоле. На стадии связывания в качестве активатора использовали 4,5-дицианоимидазол (0,7 М) в безводном CH3CN. Тиофосфатные связи внедряли сульфированием при помощи 0,1 М раствора гидрида ксантана в 1:1 смеси пиридина/CH3CN в течение 3 минут времени контакта. В качестве окислительного агента для получения фосфодиэфирных межнуклеозидных связей использовали 20% раствор трет-бутилгидропероксида в CH3CN, содержащий 6% воды, в течение 12 минут времени контакта.
После сборки требуемой последовательности цианоэтил-фосфатные защитные группы снимали при помощи 1:1 (об./об.) смеси триэтиламина и ацетонитрила в течение 45 минут времени контакта. Связанные с твердой подложкой ASO суспендировали в водном растворе аммиака (28-30 масс. %) и нагревали при 55°С в течение 6 часов.
Затем отфильтровывали не связанные ASO и выпаривали аммиак кипячением. Остаток очищали жидкостной хроматографией высокого давления на сильной анионообменной колонке (GE Healthcare Bioscience, Source 30Q, 30 мкм, 2,54×8 см, А = 100 мМ ацетата аммония в 30% водном CH3CN, В = 1,5 М NaBr в А, 0-40% В за 60 мин., скорость потока 14 мл.мин-1, λ = 260 нм). Остаток обессоливали при помощи ВЭЖХ на обращенно-фазовой колонке с получением заданных ASO с выделенным выходом 15-30% относительно первоначальной загрузки на твердую подложку. ASO характеризовали при помощи ион-парной ВЭЖХ, совмещенной с МС-анализом на системе Agilent 1100 MSD.
Антисмысловые олигонуклеотиды, не содержащие конъюгат, синтезировали по стандартным способам синтеза олигонуклеотидов, общеизвестным в данной области техники.
Применяя эти способы, получили три отдельных антисмысловых соединения, направленных на АроС III. Как показано ниже в Таблице 17, каждое из трех антисмысловых соединений, направленных на АроС III, имеет одну и ту же последовательность азотистых оснований. ISIS 304801 представляет собой 5-10-5 МОЕ гэпмер, содержащий только тиофосфатные связи; ISIS 647535 является таким же, как ISIS 304801, за исключением того, что он содержит GalNAc3-1, сопряженный на его 3'-конце; и ISIS 647536 является таким же, как ISIS 647535, за исключением того, что некоторые межнуклеозидные связи этого соединения представляют собой фосфодиэфирные связи. Как дополнительно показано в Таблице 17, были синтезированы два отдельных антисмысловых соединения, направленных на SRB-1. ISIS 440762 представляет собой 2-10-2 cEt гэпмер, содержащий только тиофосфатные межнуклеозидные связи; ISIS 651900 является таким же, как ISIS 440762, за исключением того, что он содержит GalNAc3-1 на его 3'-конце.
Нижние индексы: «е» означает 2'-МОЕ модифицированный нуклеозид; «d» означает β-D-2'-дезоксирибонуклеозид; «k» означает 6'-(S)-СН3 бициклический нуклеозид (например, cEt); «s» означает тиофосфатные межнуклеозидные связи (PS); «о» означает фосфодиэфирные межнуклеозидные связи (РО); и «o'» означает -O-Р(=O)(ОН)-. Верхний индекс «m» означает 5-метилцитозины. «GalNAc3-1» означает группу конъюгата, имеющую структуру, показанную ранее в Примере 9. Следует отметить, что GalNAc3-1 содержит расщепляемый аденозин, которые связывает ASO с остальной частью конъюгата, обозначенной «GalNAc3-1а.» Номенклатура, используемая в представленной выше таблице, показывает полную последовательность азотистых оснований, включая аденозин, который является частью конъюгата. Следовательно, в представленной выше таблице последовательности также могут быть перечислены с окончанием «GalNAc3-1», без «Ado». Такое условное применение нижнего индекса «а» для обозначения части группы конъюгата, не содержащей расщепляемого нуклеозида или расщепляемого фрагмента, используется во всех представленных Примерах. Эта часть группы конъюгата, не содержащая расщепляемого фрагмента, упоминается в настоящем документе как «кластер» или «кластер конъюгата» или «кластер GalNAc3». В некоторых случаях группа конъюгата для удобства описана путем отдельного представления ее кластера и ее расщепляемого фрагмента.
Пример 20: Дозозависимое антисмысловое ингибирование человеческого АроС III у huApoC III трансгенных мышей
ISIS 304801 и ISIS 647535, каждый из которых направлен на человеческий АроС III и описан выше, отдельно испытывали и оценивали в дозозависимом исследовании на их способность ингибировать человеческий АроС III у трансгенных мышей с человеческим АроС III.
Лечение
Трансгенных мышей с человеческим ApoCIII выдерживали при 12-часовом цикле освещения/темноты и обеспечивали ad libitum доступ к пище Teklad lab. До начала эксперимента животных акклиматизировали по меньшей мере в течение 7 дней в исследовательской лаборатории. Получили ASO в PBS и стерилизовали фильтрованием через фильтр 0,2 микрона. ASO растворили в 0,9% PBS для инъекций.
Трансгенным мышам с человеческим АроС III один раз в неделю в течение двух недель внутрибрюшинно вводили инъекции ISIS 304801 или 647535 при 0,08, 0,25, 0,75, 2,25 или 6,75 мкмоль/кг или PBS в качестве контроля. Каждая экспериментальная группа состояла из 4 животных. Через сорок восемь часов после введения последней дозы каждую мышь обескровили и усыпили, и собрали ткани.
Анализ мРНКАроС III
Уровни мРНК АроС-III в печени мышей определили при помощи ПЦР в реальном времени и реагента для количественного определения РНК RIBOGREEN® (Molecular Probes, Inc. Юджин, штат Орегон) по стандартным протоколам. Уровни мРНК АроС III определяли относительно общей РНК (при помощи Ribogreen), затем нормализовали к контрольному образцу, обработанному PBS. Результаты, показанные ниже, представлены как средний процент уровней мРНК АроС III для каждой экспериментальной группы, нормализованных к контрольному образцу, обработанному PBS, и обозначены как « % PBS». Полумаксимальная эффективная доза (ED50) каждого ASO представлена также ниже в Таблице 18.
Показано, что оба антисмысловых соединения снижают РНК АроС III, по сравнению с контрольным образцом, обработанным PBS. Кроме того, антисмысловое соединение, сопряженное с GalNAc3-1 (ISIS 647535), было значительно более эффективным, чем антисмысловое соединение, не содержащее конъюгат GalNAc3-1 (ISIS 304801).
Анализ белка АроС III (турбидиметрический анализ)
Анализ белка АроС III в плазме выполнили по способам, описанным в работе Graham et al, Circulation Research, до печати опубликованной онлайн 29 марта 2013 года.
Приблизительно 100 мкл плазмы, выделенной из мышей, анализировали без разбавления, используя клинический анализатор Olympus и имеющийся в продаже турбидиметрический аналитический набор АроС III (Kamiya, кат. №KAI-006, Kamiya Biomedical, Сиэтл, штат Вашингтон). Протокол анализа выполняли по описанию поставщика.
Как показано ниже в Таблице 19, оба антисмысловых соединения снижают белок АроС III, по сравнению с PBS контрольным образцом. Кроме того, антисмысловое соединение, сопряженное с GalNAc3-1 (ISIS 647535), было значительно более эффективным, чем антисмысловое соединение, не содержащее конъюгат GalNAc3-1 (ISIS 304801).
Триглицериды и холестерин плазмы выделили по способу Bligh и Dyer (Bligh, E.G. и Dyer, W.J. Can. J. Biochem. Physiol. 37: 911-917, 1959)(Bligh, E and Dyer, W, Can J Biochem Physiol, 37, 911-917, 1959)(Bligh, E and Dyer, W, Can J Biochem Physiol, 37, 911-917, 1959) и измерили при помощи клинического анализатора Beckmann Coulter и имеющихся в продаже реагентов.
Уровни триглицеридов измерили относительно мышей, инъецированных PBS, и выразили как « % PBS». Результаты представлены в Таблице 20. Показано, что оба антисмысловых соединения снижают уровни триглицеридов. Кроме того, антисмысловое соединение, сопряженное с GlNAc3-1 (ISIS 647535), было значительно более эффективным, чем антисмысловое соединение, не содержащее конъюгат GalNAc3-1 (ISIS 304801).
Образцы плазмы анализировали при помощи ВЭЖХ для определения количества общего холестерина и различных фракций холестерина (HDL и LDL). Результаты представлены в таблицах 21 и 22. Показано, что оба антисмысловых соединения снижают общие уровни холестерина; оба снижают LDL; и оба повышают HDL. Кроме того, антисмысловое соединение, сопряженное с GalNAc3-1 (ISIS 647535), было значительно более эффективным, чем антисмысловое соединение, не содержащее конъюгат GalNAc3-1 (ISIS 304801). Увеличение уровней HDL и снижение уровней LDL представляет собой преимущественный сердечно-сосудистый эффект антисмыслового ингибирования АроС III.
Фармакокинетический анализ (ФК)
Исследовали также ФК ASO. Образцы печени и почек измельчали и экстрагировали по стандартным протоколам. Образцы анализировали на MSD1, используя ИП-ВЭЖХ-МС. Определили содержание (мкг/г) в ткани ISIS 304801 и 647535 полной длины, и результаты представлены в Таблице 23. Показано, что концентрации в печени антисмысловых соединений полной длины были одинаковыми для двух антисмысловых соединений. Следовательно, даже несмотря на то, что GalNAc3-1-сопряженное антисмысловое соединение является более активным в печени (как показано по данным РНК и белка, представленным выше), его содержание в печени не намного выше. Действительно, рассчитанное значение ЕС50 (представленное в Таблице 23) подтверждает, что наблюдаемое увеличение эффективности сопряженного соединения не может быть приписано исключительно повышенному накоплению. Такой результат позволяет предположить, что конъюгат улучшает эффективность по другому механизму, чем простое накопление в печени, возможно за счет увеличения продуктивного захвата антисмыслового соединения в клетки.
Эти результаты показывают также, что концентрация GalNAc3-1-сопряженного антисмыслового соединения почках ниже, чем концентрация антисмыслового соединения, не содержащего конъюгата GalNAc. Это имеет несколько преимущественных терапевтических применений. Для терапевтических показаний, в которых не требуется проявление активности в почках, воздействие на почки подвергает их риску токсичности без соответствующей пользы. Более того, высокая концентрация в почках обычно приводит к выводу соединения с мочой, обеспечивая более быстрое выведение. Соответственно, для внепочечных мишеней накопление в почках является нежелательным. Эти данные позволяют предположить, что сопряжение с GalNAc3-1 снижает накопление в почках.
Идентифицировали также метаболиты ISIS 647535 и подтвердили их массы при помощи масс-спектрометрического анализа высокого разрешения. Сайты расщепления и структуры наблюдаемых метаболитов представлены ниже. Относительный % от общей длины ASO рассчитали по стандартным технологиям, а результаты представлены в Таблице 23а. Основной метаболит ISIS 647535 представляет собой ASO полной длины без всего конъюгата (то есть ISIS 304801), который образуется в результате расщепления по сайту расщепления А, представленному ниже. Кроме того, наблюдали также дополнительные метаболиты, образующиеся из других сайтов расщепления. Эти результаты позволяют предположить, что может быть пригодным также внедрение других расщепляемых связей, таких как сложные эфиры, пептиды, дисульфиды, фосфорамидаты или ацил-гидразоны, между сахаром GalNAc3-1 и ASO, которые могут расщепляться под действием ферментов внутри клетки или которые могут расщепляться в восстановительной среде цитозоля, или которые лабильны в кислотном рН внутри эндосом и лизосом.
Пример 21: Антисмысловое ингибирование человеческого АроС III у трансгенных мышей с АроС III в исследовании одного введения
ISIS 304801, 647535 и 647536, каждый из которых направлен на человеческий АроС III и описан в Таблице 17, дополнительно оценивали в исследовании однократного введения на их способность ингибировать человеческий АроС III у трансгенных мышей с человеческим АроС III.
Лечение
Трансгенных мышей с человеческим ApoCIII выдерживали при 12-часовом цикле освещения/темноты и обеспечивали ad libitum доступ к пище Teklad lab. До начала эксперимента животных акклиматизировали по меньшей мере в течение 7 дней в исследовательской лаборатории. Получили ASO в PBS и стерилизовали фильтрованием через фильтр 0,2 микрона. ASO растворили в 0,9% PBS для инъекций.
Трансгенным мышам с человеческим АроС III внутрибрюшинно ввели однократную инъекцию дозы, представленной ниже, соединения ISIS 304801, 647535 или 647536 (описанных выше), или PBS в качестве контрольного образца. Экспериментальная группа состояла из 3 животных, а контрольная группа состояла из 4 животных. Перед лечением, а также после последней дозы у каждой мыши брали кровь и анализировали образцы плазмы. Мышей усыпили через 72 часа после последнего введения.
Образцы собрали и анализировали для определения уровней мРНК АроС III и белка в печени; триглицеридов в плазме; и холестерина, включая фракции HDL и LDL, которые анализировали так, как описано выше (Пример 20). Данные этих анализов представлены ниже в Таблицах 24-28. Уровни трансаминазы в печени, аланин-аминотрансферазы (ALT) и аспартат-аминотрансферазы (AST) в сыворотке измеряли относительно мышей, инъецированных солевым раствором, используя стандартные протоколы. Уровни ALT и AST показали, что антисмысловые соединения хорошо переносятся при всех введенных дозах.
Эти результаты демонстрируют усиление эффективности антисмысловых соединений, содержащих конъюгат GalNAc3-1 на 3'-конце (ISIS 647535 и 647536), по сравнению с антисмысловым соединением, не содержащим конъюгат GalNAc3-1 (ISIS 304801). Кроме того, ISIS 647536, который содержит конъюгат GalNAc3-1 и несколько фосфодиэфирных связей, был таким же эффективным, как ISIS 647535, который содержит тот же конъюгат, и все межнуклеозидные связи в этом ASO являются тиофосфатными.
Эти результаты подтверждают, что конъюгат GalNAc3-1 улучшает эффективность антисмыслового соединения. Эти результаты показывают также равную эффективность GalNAc3-1-сопряженных антисмысловых соединений, в которых антисмысловые олигонуклеотиды имеют смешанные связи (ISIS 647536, который имеет шесть фосфодиэфирных связей), и полностью тиофосфатной версии того же антисмыслового соединения (ISIS 647535).
Тиофосфатные связи обеспечивают несколько свойств антисмысловых соединений. Например, они устойчивы к нуклеазному расщеплению и связываются с белками, что приводит к накоплению соединения в печени, а не в почках/моче. Эти свойства являются желательными, особенно при лечении показаний в печени. Однако тиофосфатные связи связаны также с воспалительной реакцией. Соответственно, уменьшение количества тиофосфатных связей в соединении предположительно снижает риск воспаления, но снижает также концентрацию соединения в печени, повышает концентрацию в почках и моче, снижает стабильность в присутствии нуклеаз и уменьшает общую эффективность. Представленные результаты демонстрируют, что GalNAc3-1-сопряженное антисмысловое соединение, в котором некоторые тиофосфатные связи заменены фосфодиэфирными связями, настолько же эффективно против мишени в печени, как и аналог, содержащий только тиофосфатные связи. Такие соединения предположительно являются менее провоспалительными (см. Пример 24, в котором описан эксперимент, демонстрирующий, что уменьшение тиофосфатов (PS) приводит к снижению воспалительного действия).
Пример 22: Влияние модифицированного GalNAc3-1-сопряженного ASO, направленного на SRB-1, in vivo
ISIS 440762 и 651900, каждый из которых направлен на SRB-1 и описан в Таблице 17, оценили в дозозависимом исследовании на их способность ингибировать SRB-1 у Balb/c мышей.
Лечение
Шестинедельным самцам мышей Balb/c (Jackson Laboratory, Бар-Харбор, штат Мэн) ввели однократную подкожную инъекцию дозы, представленной ниже, соединения ISIS 440762, 651900 или PBS в качестве контрольного образца. Каждая экспериментальная группа состояла из 4 животных. Мышей усыпили через 48 часов после последнего введения для определения уровней мРНК SRB-1 в печени при помощи ПЦР в реальном времени и реагента для количественного определения РНК RIBOGREEN® (Molecular Probes, Inc. Юджин, штат Орегон) по стандартным протоколам. Уровни мРНК SRB-1 определяли относительно общей РНК (при помощи Ribogreen), затем нормализовали к контрольному образцу, обработанному PBS. Результаты, показанные ниже, представлены как средний процент уровней мРНК SRB-1 для каждой экспериментальной группы, нормализованных к контрольному образцу, обработанному PBS, и обозначены как « % PBS».
Как показано в Таблице 29, оба антисмысловых соединения снижают уровни мРНК SRB-1. Кроме того, антисмысловое соединение, содержащее конъюгат GalNAc3-1 (ISIS 651900), было значительно более эффективным, чем антисмысловое соединение, не содержащее конъюгат GalNAc3-1 (ISIS 440762). Эти результаты демонстрируют, что преимущество эффективности конъюгатов GalNAc3-1 наблюдается при использовании антисмысловых олигонуклеотидов, комплементарных различным мишеням и имеющих различные химически модифицированные нуклеозиды, в этом случае модифицированные нуклеозиды содержат стерически затрудненные этил-сахарные фрагменты (бициклический сахарный фрагмент).
Пример 23: Протокол анализа человеческих мононуклеарных клеток периферической крови (hPBMC)
Анализ hPBMC выполнили при помощи пробирочного способа BD Vautainer СРТ. Получили образец цельной крови, полученной от доноров-добровольцев, давших информированное согласие в Медицинской клинике США (Faraday & El Camino Real, Карлсбад), и собрали его в 4-15 пробирки BD Vacutainer СРТ по 8 мл (VWR, кат. № BD362753). Приблизительный исходный общий объем цельной крови в пробирке СРТ для каждого донора записали в формуляре анализа РВМС.
Непосредственно перед центрифугированием образец крови повторно перемешали, осторожно переворачивая пробирки 8-10 раз. Пробирки СРТ центрифугировали при комнатной температуре (18-25°С) в горизонтальном (с избыточной поворачиваемостью) роторе в течение 30 минут с фактором разделения (RCF) 1500-1800 с затормаживанием (2700 об./мин. Beckman Allegra 6R). Клетки сняли с лейкоцитарной поверхности раздела (между слоями фиколла и полимерного геля); перенесли в стерильную 50 мл коническую пробирку и сгруппировали по 5 СРТ пробирок/50 мл коническая пробирка/донор. Затем клетки дважды промыли PBS (без Са++, Mg++; GIBCO). Пробирки пополнили до 50 мл и перемешали, переворачивая несколько раз. Затем образец центрифугировали при 330×g в течение 15 минут при комнатной температуре (1215 об./мин. в Beckman Allegra 6R) и аспирировали максимальное количество надосадочной жидкости, не нарушая осадок. Клеточный осадок сняли, осторожно поворачивая пробирку, и повторно суспендировали клетки в RPMI+10% FBS+пенициллин/стрептомицин (~1 мл/10 мл исходного объема цельной крови). Пипеткой взяли 60 мкл образца и поместили во флакон с пробой (Beckman Coulter), содержащий 600 мкл реагента VersaLyse (Beckman Coulter, кат. № А09777), и осторожно перемешивали на вортексе в течение 10-15 секунд. Образец оставили инкубироваться в течение 10 минут при комнатной температуре, и снова перемешали перед подсчетом. Суспензию клеток считывали на анализаторе жизнеспособности клеток Vicell XR (Beckman Coulter), используя клетки типа РВМС (сохранили фактор разбавления 1:11 с другими параметрами). Записали количество живых клеток/мл и жизнеспособность. Клеточную суспензию разбавили до 1×107 живых РВМС/мл в RPMI+10% FBS+пенициллин/стрептомицин.
Клетки поместили на планшет при 5×105 в 50 мкл/лунку 96-луночного тканевого культурального планшета (Falcon Microtest). 50 мкл/лунку 2× концентрации олигомеров/контроля, разбавленных в RPMI+10% FBS+пенициллин/стрептомицин, добавили в соответствии с экспериментальной матрицей (в целом 100 мкл/лунку). Планшеты установили на шейкер и оставили перемешиваться в течение около 1 мин. После инкубации в течение 24 часов при 37°С; 5% СО2, планшеты центрифугировали при 400×g в течение 10 минут, затем удалили надосадочную жидкость для анализа цитокинов MSD (то есть человеческих IL-6, IL-10, IL-8 и МСР-1).
Пример 24: Оценка провоспалительных эффектов в анализе hPBMC для GalNAc3-1-сопряженных ASO
Антисмысловые олигонуклеотиды (ASO), перечисленные в Таблице 30, оценили на провоспалительное действие в анализе hPBMC, используя протокол, описанный в Примере 23. ISIS 353512 представляет собой внутренний стандарт, который, как известно, обладает высоким ответом на высвобождение IL-6 в этом анализе. hPBMC выделили из свежих образцов, полученных от доноров-добровольцев, и обработали ASO в концентрациях 0, 0,0128, 0,064, 0,32, 1,6, 8, 40 и 200 мкМ. Через 24 часа обработки измерили уровни цитокинов.
Уровни IL-6 использовали в качестве первичного значения. ЕС50 и Emax рассчитывали по стандарным способам. Результаты выразили как среднее отношение Emax/EC50 для двух доноров и обозначили как «Emax/ЕС50». Более низкое соотношение означает относительное снижение провоспалительного ответа, а более высокое соотношение означает относительное увеличение провоспалительного ответа.
В отношении исследуемых соединений, наименее провоспалительным соединением было ASO, соединенное при помощи PS/PO (ISIS 616468). CalNAc3-1-сопряженное ASO, ISIS 647535, было немного менее провоспалительным, чем его несопряженный аналог, ISIS 304801. Эти результаты показывают, что внедрение нескольких РО связей снижает провоспалительную реакцию, а добавление конъюгата GalNAc3-1 не делает соединение более провоспалительным, и может снижать провоспалительную реакцию. Соответственно, можно ожидать, что антисмысловое соединение, содержащее смешанные PS/PO связи и конъюгат GalNAc3-1, может вызывать более слабые провоспалительные реакции, по сравнению с антисмысловым соединением, связанным только посредством PS, с конъюгатом GalNAc3-1 или без него. Эти результаты показывают, что GalNAc3-1-сопряженные антисмысловые соединения, в частности, соединения, имеющие меньшее содержание PS, являются менее провоспалительными.
В целом, эти результаты позволяют предположить, что CalNAc3-1-сопряженное соединение, в частности, соединение со сниженным содержанием PS, может быть введено в более высокой дозе, чем аналогичное полностью PS антисмысловое соединение без конъюгата GalNAc3-1. Поскольку не ожидается, что период полувыведения для этих соединений будет существенно различаться, то такое введение в более высокой дозе обусловит менее частое введение доз. В действительности, такое введение может быть еще более редким, поскольку CalNAc3-1-сопряженные соединения являются более эффективными (см. Примеры 20-22), а повторное введение дозы необходимо только при снижении концентрации соединения ниже заданного уровня, при этом такой заданный уровень обусловлен эффективностью.
Нижние индексы: «е» означает 2'-МОЕ модифицированный нуклеозид; «d» означает β-D-2'-дезоксирибонуклеозид; «k» означает 6'-(S)-СН3 бициклический нуклеозид (например, cEt); «s» означает тиофосфатные межнуклеозидные связи (PS); «о» означает фосфодиэфирные межнуклеозидные связи (РО); и «o'» означает -O-Р(=O)(ОН)-. Верхний индекс «m» означает 5-метилцитозины. «Ado'-GalNAc3-1a» означает конъюгат, имеющий структуру GalNAc3-1, показанную в Примере 9, присоединенную к 3'-концу антисмыслового олигонуклеотида, как показано.
Пример 25: Влияние модифицированного GalNAc3-1-сопряженного ASO, направленного на человеческий АроС III, in vitro
ISIS 304801 и 647535, описанные выше, испытали in vitro. Первичные гепатоцитарные клетки трансгенных мышей при плотности 25000 клеток на лунку обработали концентрациями 0,03, 0,08, 0,24, 0,74, 2,22, 6,67 и 20 мкМ модифицированных олигонуклеотидов. После обработки в течение приблизительно 16 часов, из клеток выделили РНК и измерили уровни мРНК при помощи количественной ПЦР в реальном времени, а уровни мРНК hApoC III скорректировали в соответствии с общим содержанием РНК, измеренным при помощи RIBOGREEN.
IC50 рассчитали по стандартным способам, а результаты представлены в Таблице 32. Показано, что наблюдали сравнимую эффективность в клетках, обработанных ISIS 647535, по сравнению с контрольным образцом, ISIS 304801.
В этом эксперименте in vitro не наблюдали такого большого преимущества эффективности сопряжения с GalNAc3-1, как наблюдали in vivo. Последующие эксперименты свободного захвата в первичных гепатоцитах in vitro не показали повышенной эффективности олигонуклеотидов, содержащих различные конъюгаты GalNAc, по сравнению с олигонуклеотидами, не содержащими конъюгаты GalNAc (см. Примеры 60, 82 и 92).
Пример 26: Влияние линкеров PO/PS на активность ASO в отношении АроС III
Трансгенным мышам с человеческим АроС III внутрибрюшинной инъекцией вводили 25 мг/кг ISIS 304801 или ISIS 616468 (оба описаны выше) или PBS в качестве контрольного образца, один раз в неделю в течение двух недель. Экспериментальная группа состояла из 3 животных, а контрольная группа состояла из 4 животных. Перед лечением, а также после последней дозы у каждой мыши брали кровь и анализировали образцы плазмы. Мышей усыпили через 72 часа после последнего введения.
Образцы собрали и анализировали для определения уровней белка АроС III в печени, как описано выше (Пример 20). Данные этих анализов представлены ниже в Таблице 33.
Эти результаты демонстрируют снижение эффективности антисмысловых соединений с PO/PS (ISIS 616468) в крыльях, по сравнению с соединениями, содержащими только PS (ISIS 304801).
Пример 27: Соединение 56
Соединение 56 имеется в продаже у компании Glen Research или может быть получено по опубликованным методикам, описанным авторами Shchepinov et al., Nucleic Acids Research, 1997, 25(22), 4447-4454.
Пример 28: Получение Соединения 60
Соединение 4 получили по способам, представленным в Примере 2. Соединение 57 имеется в продаже. Соединение 60 подтвердили структурным анализом.
Соединение 57 является иллюстративным, и его не следует считать ограничивающим, поскольку могут быть использованы другие монозащищенные замещенные или незамещенные алкилдиолы, включая, но не ограничиваясь ими, те, которые представлены в данном описании, для получения фосфорамидитов, имеющих заданный состав.
Пример 29: Получение Соединения 63
Соединения 61 и 62 получили по такому же способу, как описан в публикации Tober et al., Eur. J. Org. Chem., 2013, 3, 566-577; и Jiang et al., Tetrahedron, 2007, 63(19), 3982-3988.
Альтернативно, Соединение 63 получили по таким же способам, как описаны в научной и патентной литературе авторами Kim et al., Synlett, 2003, 12, 1838-1840; и Kim et al., опубликованная международная заявка PCT WO 2004063208.
Пример 30: Получение Соединения 63b
Соединение 63а получили по таким же способам, как описаны авторами Hanessian et al., Canadian Journal of Chemistry, 1996, 74(9), 1731-1737.
Пример 32: Получение Соединения 63d
Соединение 63с получили по таким же способам, как описаны авторами Chenet al., Chinese Chemical Letters, 1998, 9(5), 451-453.
Пример 32: Получение Соединения 67
Соединение 64 получили по способам, представленным в Примере 2. Соединение 65 получили по таким же способам, как описаны авторами Or et al., в опубликованной международной заявке РСТ WO 2009003009. Защитные группы, использованные для Соединения 65, являются иллюстративным, и их не следует считать ограничением, поскольку могут быть использованы другие защитные группы, включая, но не ограничиваясь ими, те, которые представлены в данном описании.
Пример 33: Получение Соединения 70
Соединение 64 получили по способам, представленным в Примере 2. Соединение 68 имеется в продаже. Защитная группа, использованная для Соединения 68, является иллюстративной, и ее не следует считать ограничением, поскольку могут быть использованы другие защитные группы, включая, но не ограничиваясь ими, те, которые представлены в данном описании.
Пример 34: Получение Соединения 75а
Соединение 75 получили по опубликованным способам, описанным авторами Shchepinov et al., Nucleic Acids Research, 1997, 25(22), 4447-4454.
Пример 35: Получение Соединения 79
Соединение 76 получили по опубликованным способам, описанным авторами Shchepinov et al., Nucleic Acids Research, 1997, 25(22), 4447-4454.
Пример 36: Получение Соединения 79а
Соединение 77 получили по способам, представленным в Примере 35.
Пример 37: Общий способ получения сопряженного олигомерного соединения 82, содержащего фосфодиэфир-связанный конъюгат GalNAc3-2 на 5'-конце, нетвердой подложке (Способ I),
где GalNAc3-2 имеет структуру:
Кластерная часть GalNAc3 группы конъюгата GalNAc3-2 (GalNAc3-2a) может быть комбинирована с любым расщепляемым фрагментом с получением различных групп конъюгата. Где GalNAc3-2a имеет формулу:
VIMAD-связанное олигомерное соединение 79b получили по стандартным способам в автоматическом синтезаторе ДНК/РНК (см. Dupouy et al., Angew. Chem. Int. ред., 2006, 45, 3623-3627). Фосфорамидитные Соединения 56 и 60 получили так, как описано в способах в Примерах 27 и 28, соответственно. Изображенные фосфорамидиты являются иллюстративными, и их не следует считать ограничением, поскольку могут быть использованы другие фосфорамидитные строительные блоки, включая, но не ограничиваясь ими, те, которые представлены в данном описании, для получения олигомерного соединения, содержащего фосфодиэфир-связанную группу конъюгата на 5'-конце. Порядок и количество фосфорамидитов, добавляемых к твердой подложке, может быть подобрано для получения олигомерных соединений, описанных в настоящем документе, которые имеют любую заданную последовательность и состав.
Пример 38: Альтернативный способ получения олигомерного соединения 82, содержащего фосфодиэфир-связанный конъюгат GalNAc3-2 на 5'-конце (Способ II)
VIMAD-связанное олигомерное соединение 79b получили по стандартным способам в автоматическом синтезаторе ДНК/РНК (см. Dupouy et al., Angew. Chem. Int. ред., 2006, 45, 3623-3627). GalNAc3-2 кластерный фосфорамидит, Соединение 79, получили по способам, представленным в Примере 35. Альтернативный способ обеспечивает возможность одностадийной установки фосфодиэфир-связанного GalNAc3-2 конъюгата на олигомерное соединение на последней стадии синтеза. Изображенные фосфорамидиты являются иллюстративными, и их не следует считать ограничением, поскольку могут быть использованы другие фосфорамидитные строительные блоки, включая, но не ограничиваясь ими, те, которые представлены в данном описании, для получения олигомерных соединений, содержащих фосфодиэфирный конъюгат на 5'-конце. Порядок и количество фосфорамидитов, добавляемых к твердой подложке, может быть подобрано для получения олигомерных соединений, описанных в настоящем документе, которые имеют любую заданную последовательность и состав.
Пример 39: Общий способ получения олигомерного соединения 83h, содержащего конъюгат GalNAc3-3 на 5'-конце (GalNAc3-1, модифицированный для 5'-концевого присоединения), на твердой подложке
Соединение 18 получили по способам, представленным в Примере 4. Соединения 83а и 83b имеются в продаже. Олигомерное Соединение 83е, содержащее связанный через фосфодиэфир гексиламин, получили по стандартным способам синтеза олигонуклеотидов. В результате обработки защищенного олигомерного соединения водным раствором аммиака получили 5'-GalNAc3-3 сопряженное олигомерное соединение (83h).
Где GalNAc3-3 имеет структуру:
Кластерная часть GalNAc3 группы конъюгата GalNAc3-3 (GalNAc3-3a) может быть комбинирована с любым расщепляемым фрагментом с получением различных групп конъюгата. Где GalNAc3-3a имеет формулу:
Пример 40: Общий способ получения олигомерного соединения 89, содержащего связанный фосфодиэфирным линкером GalNAc3-4 конъюгат на 3'-конце, на твердой подложке
Где CalNAc3-4 имеет структуру:
Где СМ представляет собой расщепляемый фрагмент. В некоторых вариантах реализации расщепляемый фрагмент представляет собой:
Кластерная часть GalNAc3 группы конъюгата GalNAc3-4 (GalNAc3-4a) может быть комбинирована с любым расщепляемым фрагментом с получением различных групп конъюгата. Где GalNAc3-4a имеет формулу:
Защищенное Соединение 30 на функционализированной твердой подложке Unylinker имеется в продаже. Соединение 84 получили по таким же способам, как описаны в литературе (см. Shchepinov et al., Nucleic Acids Research, 1997, 25(22), 4447-4454; Shchepinov et al., Nucleic Acids Research, 1999, 27, 3035-3041; и Hornet et al., Nucleic Acids Research, 1997, 25, 4842-4849).
Фосфорамидитные строительные блоки, Соединения 60 и 79а, получили так, как описано в способах в примерах 28 и 36. Изображенные фосфорамидиты являются иллюстративными и не предназначены для ограничения, поскольку могут быть использованы другие фосфорамидитные строительные блоки для получения олигомерного соединения, имеющего фосфодиэфир-связанный конъюгат на 3'-конце, которое имеет заданную последовательность и состав. Порядок и количество фосфорамидитов, добавляемых к твердой подложке, может быть подобрано для получения олигомерных соединений, описанных в настоящем документе, которые имеют любую заданную последовательность и состав.
Пример 41: Общий способ получения ASO, содержащих фосфодиэфир-связанный конъюгат GalNAc3-2 (см. Пример 37, Вх представляет собой аденин) в 5'-положении, по твердофазному способу (получение ISIS 661134)
Если не указано иное, все реагенты и растворы, использованные для синтеза олигомерных соединений, приобретены у коммерческих поставщиков. Стандартные фосфорамидитные строительные блоки и твердую подложку использовали для внедрения нуклеозидных остатков, которые включают, например, остатки Т, A, G и mC. Фосфорамидитные соединения 56 и 60 использовали для синтеза фосфодиэфир-связанного конъюгата GalNAc3-2 на 5'-конце. 0,1 М раствор фосфорамидита в безводном ацетонитриле использовали для β-D-2'-дезоксирибонуклеозида и 2'-МОЕ.
Синтез антисмысловых олигонуклеотидов (ASO) выполнили на синтезаторе ABI 394 (в масштабе 1-2 мкмоль) или на синтезаторе Oligopilot производства GE Healthcare Bioscience (в масштабе 40-200 мкмоль) по способу фосфорамидитного связывания на твердой подложке VIMAD (110 мкмоль/г, Guzaev et al., 2003), упакованной в колонку. Для стадии связывания фосфорамидиты вводили в 4-кратном избытке по сравнению с исходной загрузкой на твердой подложке, а конденсацию фосфорамидита выполняли в течение 10 минут. Все остальные стадии выполняли по стандартным протоколам, предоставленным производителем. Для удаления диметокситритильных (DMT) групп с 5'-гидроксильных групп нуклеотида использовали 6% раствор дихлоруксусной кислоты в толуоле. На стадии связывания в качестве активатора использовали 4,5-дицианоимидазол (0,7 М) в безводном CH3CN. Тиофосфатные связи внедряли сульфированием при помощи 0,1 М раствора гидрида ксантана в 1:1 смеси пиридина/CH3CN в течение 3 минут времени контакта. В качестве окислительного агента для получения фосфодиэфирных межнуклеозидных связей использовали 20% раствор трет-бутилгидропероксида в CH3CN, содержащий 6% воды, в течение 12 минут времени контакта.
После сборки требуемой последовательности цианоэтил-фосфатные защитные группы снимали при помощи 20% диэтиламина в толуоле (об./об.) в течение 45 минут времени контакта. Связанные с твердой подложкой ASO суспендировали в водном растворе аммиака (28-30 масс. %) и нагревали при 55°С в течение 6 часов.
Затем отфильтровывали не связанные ASO и выпаривали аммиак кипячением. Остаток очищали жидкостной хроматографией высокого давления на сильной анионообменной колонке (GE Healthcare Bioscience, Source 30Q, 30 мкм, 2,54×8 см, А=100 мМ ацетата аммония в 30% водном CH3CN, В=1,5 М NaBr в А, 0-40% В за 60 мин., скорость потока 14 мл. мин-1, λ=260 нм). Остаток обессоливали при помощи ВЭЖХ на обращенно-фазовой колонке с получением заданных ASO с выделенным выходом 15-30% относительно первоначальной загрузки на твердую подложку. ASO характеризовали при помощи ион-парной ВЭЖХ, совмещенной с МС-анализом на системе Agilent 1100 MSD.
Нижние индексы: «е» означает 2'-МОЕ модифицированный нуклеозид; «d» означает β-D-2'-дезоксирибонуклеозид; «k» означает 6'-(S)-СН3 бициклический нуклеозид (например, cEt); «s» означает тиофосфатные межнуклеозидные связи (PS); «о» означает фосфодиэфирные межнуклеозидные связи (РО); и «o'» означает -O-Р(=O)(ОН)-. Верхний индекс «m» означает 5-метилцитозины. Структура GalNAc3-2a показана в Примере 37.
Пример 42: Общий способ получения ASO, содержащих конъюгат GalNAc3-3 в 5'-положении, via твердофазным методикам (получение ISIS 661166)
Синтез ISIS 661166 выполнили по таким же способам, как представлены в Примерах 39 и 41.
ISIS 661166 представляет собой 5-10-5 МОЕ гэпмер, в котором 5'-положение содержит конъюгат GalNAc3-3. Это ASO характеризовали при помощи ион-парной ВЭЖХ, совмещенной с МС-анализом на системе Agilent 1100 MSD.
Нижние индексы: «е» означает 2'-МОЕ модифицированный нуклеозид; «d» означает β-D-2'-дезоксирибонуклеозид; «s» означает тиофосфатные межнуклеозидные связи (PS); «о» означает фосфодиэфирные межнуклеозидные связи (РО); и «o'» означает ОР(=O)(ОН)-. Верхний индекс «m» означает 5-метилцитозины. Структура «5'-GalNAc3-3a» представлена в Примере 39.
Пример 43: Дозозависимое исследование фосфодиэфир-связанного GalNAc3-2 (см. Примеры 37 и 41, Вх представляет собой аденин) на 5'-конце, направленного на SRB-1, in vivo
ISIS 661134 (см. Пример 41), содержащий фосфодиэфир-связанный конъюгат GalNAc3-2 на 5'-конце, испытывали в дозозависимом исследовании на антисмысловое ингибирование SRB-1 у мышей. Несопряженные ISIS 440762 и 651900 (конъюгат (GalNAc3-1 на 3'-конце, см. Пример 9) включены в исследование для сравнения и описаны ранее в Таблице 17.
Лечение
Шестинедельным самцам мышей Balb/c (Jackson Laboratory, Бар-Харбор, штат Мэн) ввели однократную подкожную инъекцию дозы, представленной ниже, соединения ISIS 440762, 651900, 661134 или PBS в качестве контрольного образца. Каждая экспериментальная группа состояла из 4 животных. Мышей усыпили через 72 часа после последнего введения для определения уровней мРНК SRB-1 в печени при помощи ПЦР в реальном времени и реагента для количественного определения РНК RIBOGREEN® (Molecular Probes, Inc. Юджин, штат Орегон) по стандартным протоколам. Уровни мРНК SRB-1 определяли относительно общей РНК (при помощи Ribogreen), затем нормализовали к контрольному образцу, обработанному PBS. Результаты, показанные ниже, представлены как средний процент уровней мРНК SRB-1 для каждой экспериментальной группы, нормализованных к контрольному образцу, обработанному PBS, и обозначены как «% PBS».
ED50 измеряли по таким же способам, как описаны ранее, и указанные значения представлены ниже.
Как показано в Таблице 35, лечение антисмысловыми олигонуклеотидами снижает уровни мРНК SRB-1 дозозависимым образом. Действительно, антисмысловые олигонуклеотиды, содержащие фосфодиэфир-связанный конъюгат GalNAc3-2 на 5'-конце (ISIS 661134) или конъюгат GalNAc3-1, связанный на 3'-конце (ISIS 651900), демонстрируют значительное улучшение эффективности, по сравнению с несопряженным антисмысловым олигонуклеотидом (ISIS 440762). Кроме того, ISIS 661134, который содержит фосфодиэфир-связанный конъюгат GalNAc3-2 на 5'-конце, был настолько же эффективным, как ISIS 651900, который содержит конъюгат GalNAc3-1 на 3'-конце.
Структуры 3' GalNAc3-1 и 5' GalNAc3-2 описаны ранее в Примерах 9 и 37.
Фармакокинетический анализ (ФК)
ФК для ASO из группы высокой дозы (7 мг/кг) исследовали и оценили таким же образом, как описано в Примере 20. Образцы печени измельчили и экстрагировали по стандартным протоколам. Идентифицировали метаболиты полной длины 661134 (5' GalNAc3-2) и ISIS 651900 (3' GalNAc3-1) и подтвердили их массы при помощи масс-спектрометрического анализа высокого разрешения. Результаты показали, что основной метаболит, обнаруженный для ASO, содержащего фосфодиэфир-связанный конъюгат GalNAc3-2 на 5'-конце (ISIS 661134), представлял собой ISIS 440762 (данные не показаны). Не наблюдали никаких дополнительных метаболитов в обнаруживаемом количестве. В отличие от него, для ASO, содержащего конъюгат GalNAc3-1 на 3'-конце (ISIS 651900), наблюдали дополнительные метаболиты, аналогичные тем, которые описаны ранее в Таблице 23а. Эти результаты позволяют предположить, что наличие фосфодиэфир-связанного конъюгата GalNAc3-1 или GalNAc3-2 может улучшать ФК профиль ASO без ухудшения их эффективности.
Пример 44: Влияние PO/PS линкеров на антисмысловое ингибирование ASO, содержащих конъюгат GalNAc3-1 (см. Пример 9) у 3'-конца, направленных на SRB-1
ISIS 655861 и 655862, содержащие конъюгат GalNAc3-1 на 3'-конце, каждый из которых направлен на SRB-1, испытали в исследовании однократного введения на их способность ингибировать SRB-1 у мышей. Исходное несопряженное соединение, ISIS 353382, включили в исследование для сравнения.
Эти ASO представляют собой 5-10-5 МОЕ гэпмеры, в которых гэп-область содержит десять 2'-дезоксирибонуклеозидов, и каждая область крыльев содержит пять 2'-МОЕ модифицированных нуклеозидов. Эти ASO получили по таким же способам, как показаны ранее в Примере 19, и они описаны ниже в Таблице 36.
Нижние индексы: «е» означает 2'-МОЕ модифицированный нуклеозид; «d» означает β-D-2'-дезоксир ибо нуклеозид; «s» означает тиофосфатные межнуклеозидные связи (PS); «о» означает фосфодиэфирные межнуклеозидные связи (РО); и «o'» означает ОР(=O)(ОН)-. Верхний индекс «m» означает 5-метилцитозины. Структура «GalNAc3-1» показана в Примере 9.
Лечение
Шестинедельным самцам мышей Balb/c (Jackson Laboratory, Бар-Харбор, штат Мэн) ввели однократную подкожную инъекцию дозы, представленной ниже, соединения ISIS 353382, 655861, 655862 или PBS в качестве контрольного образца. Каждая экспериментальная группа состояла из 4 животных. Перед лечением, а также после последней дозы у каждой мыши брали кровь и анализировали образцы плазмы. Мышей усыпили через 72 часа после последнего введения для определения уровней мРНК SRB-1 в печени при помощи ПЦР в реальном времени и реагента для количественного определения РНК RIBOGREEN® (Molecular Probes, Inc. Юджин, штат Орегон) по стандартным протоколам. Уровни мРНК SRB-1 определяли относительно общей РНК (при помощи Ribogreen), затем нормализовали к контрольному образцу, обработанному PBS. Результаты, показанные ниже, представлены как средний процент уровней мРНК SRB-1 для каждой экспериментальной группы, нормализованных к контрольному образцу, обработанному PBS, и обозначены как «% PBS». ED50 измеряли по таким же способам, как описаны ранее, и указанные значения представлены ниже.
Как показано в Таблице 37, лечение антисмысловыми олигонуклеотидами снижает уровни мРНК SRB-1 дозозависимым образом, по сравнению с контрольным образцом, обработанным PBS. Действительно, антисмысловые олигонуклеотиды, содержащие конъюгат GalNAc3-1 на 3'-конце (ISIS 655861 и 655862), демонстрируют значительное усиление эффективности, по сравнению с несопряженным антисмысловым олигонуклеотидом (ISIS 353382). Кроме того, ISIS 655862 со смешанными PS/PO связями демонстрирует усиление эффективности, по сравнению с соединением, содержащим только PS (ISIS 655861).
Уровни трансаминазы в печени, аланин-аминотрансферазы (ALT) и аспартат-аминотрансферазы (AST) в сыворотке измеряли относительно мышей, инъецированных солевым раствором, используя стандартные протоколы. Оценили также массу органов. Результаты показывают, что не наблюдали какого-либо увеличения уровней трансаминазы (Таблица 38) или массы органов (данные не показаны) у мышей, обработанных ASO, по сравнению с PBS контролем. Кроме того, ASO со смешанными PS/PO связями (ISIS 655862) демонстрирует схожие уровни трансаминазы, по сравнению с соединением, содержащим только PS (ISIS 655861).
Пример 45: Получение PFP эфира, Соединения 110а
Соединение 4 (9,5 г, 28,8 ммоль) обработали по отдельности соединением 103а или 103b (38 ммоль) и TMSOTf (0,5 экв.), и молекулярными ситами в дихлорметане (200 мл), и перемешивали в течение 16 часов при комнатной температуре. Затем органический слой отфильтровали через целит, затем промыли бикарбонатом натрия, водой и насыщенным солевым раствором. Затем отделили органический слой и высушили над сульфатом натрия, отфильтровали и упарили при пониженном давлении. Полученное маслянистое вещество очистили хроматографией на силикагеле (2%-->10% метанол/дихлорметан) с получением соединений 104а и 104b с выходом >80%. Данные ЖХМС и протонного ЯМР согласовались с указанной структурой.
Соединения 104а и 104b обработали в тех же условиях, что и соединения 100a-d (Пример 47), с получением соединений 105а и 105b с выходом >90%. Данные ЖХМС и протонного ЯМР согласовались с указанной структурой.
Соединения 105а и 105b по отдельности обработали соединением 90 при тех же условиях, что и соединения 901a-d, с получением соединений 106а (80%) и 106b (20%). Данные ЖХМС и протонного ЯМР согласовались с указанной структурой.
Соединения 106а и 106b обработали в тех же условиях, что и соединения 96a-d (Пример 47), с получением соединения 107а (60%) и 107b (20%). Данные ЖХМС и протонного ЯМР согласовались с указанной структурой.
Соединения 107а и 107b обработали в тех же условиях, что и соединения 97a-d (Пример 47), с получением соединений 108а и 108b с выходом 40-60%. Данные ЖХМС и протонного ЯМР согласовались с указанной структурой.
Соединения 108а (60%) и 108b (40%) обработали в тех же условиях, что и соединения 100a-d (Пример 47), с получением соединений 109а и 109b с выходом >80%. Данные ЖХМС и протонного ЯМР согласовались с указанной структурой.
Соединение 109а обработали в тех же условиях, что и соединения 101a-d (Пример 47), с получением соединения 110а с выходом 30-60%. Данные ЖХМС и протонного ЯМР согласовались с указанной структурой. Альтернативно, Соединение 110b может быть получено таким же образом, исходя из Соединения 109b.
Пример 46: Общий способ сопряжения с PFP эфирами (олигонуклеотид 111); получение ISIS 666881 (GalNAc3-10)
Синтезировали и очистили 5'-гексиламино-модифицированный олигонуклеотид по стандартным способам твердофазного получения олигонуклеотидов. 5'-Гексиламино-модифицированный олигонуклеотид растворили в 0,1 М растворе тетрабората натрия, pH 8,5 (200 мкл) и добавили 3 эквивалента выбранного PFP-эстерифицированного кластера GalNAc3, растворенного в ДМСО (50 мкл). Если при добавлении раствора ASO эфир PFP выпадал в осадок, то добавляли ДМСО до перехода всего эфира PFP в раствор. Реакция была завершена примерно через 16 часов перемешивания при комнатной температуре. Полученный раствор разбавили водой до 12 мл, а затем центрифугировали при 3000 об./мин. в центробежном фильтре с отсечением по массе 3000 Да. Этот прием повторили два раза для удаления низкомолекулярных примесей. Затем раствор лиофилизировали досуха и повторно растворили в концентрированном водном растворе аммиака, и перемешивали при комнатной температуре в течение 2,5 часов, затем концентрировали in vacuo для удаления большей части аммиака. Сопряженный олигонуклеотид очистили и обессолили при помощи ОФ-ВЭЖХ, и лиофилизировали с получением GalNAc3 сопряженного олигонуклеотида.
Олигонуклеотид 111 сопряжен с GalNAc3-10. Кластерная часть GalNAc3 группы конъюгата GalNAc3-10 (GalNAc3-10a) может быть комбинирована с любым расщепляемым фрагментом с получением различных групп конъюгата. В некоторых вариантах реализации расщепляемый фрагмент представляет собой -P(=O)(OH)-Ad-P(=O)(OH)-, как показано ниже в олигонуклеотиде (ISIS 666881), синтезированном с GalNAc3-10. Структура GalNAc3-10 (GalNAc3-10a-CM-) представлена ниже:
По указанному общему способу получили ISIS 666881. Синтезировали и очистили 5'-гексиламино-модифицированный олигонуклеотид, ISIS 660254, по стандартным способам твердофазного получения олигонуклеотидов. ISIS 660254 (40 мг, 5,2 мкмоль) растворили в 0,1 М растворе тетрабората натрия, pH 8,5 (200 мкл) и добавили 3 эквивалента PFP эфира (Соединения 110а), растворенного в ДМСО (50 мкл). Эфир PFP выпал в осадок при добавлении раствора ASO, поэтому потребовалось добавление дополнительного количества ДМСО (600 мкл) для полного растворения PFP эфира. Реакция была завершена через 16 часов перемешивания при комнатной температуре. Раствор разбавили водой до общего объема 12 мл, а затем центрифугировали при 3000 об./мин. в центробежном фильтре с отсечением по массе 3000 Да. Этот прием повторили два раза для удаления низкомолекулярных примесей. Раствор лиофилизировали досуха и повторно растворили в концентрированном водном растворе аммиака, перемешивая при комнатной температуре в течение 2,5 часов, затем концентрировали in vacuo для удаления большей части аммиака. Сопряженный олигонуклеотид очистили и обессолили при помощи ОФ-ВЭЖХ, и лиофилизировали с получением ISIS 666881 с выходом 90% по массе (42 мг, 4,7 мкмоль).
Заглавные буквы указывают азотистое основание для каждого нуклеозида, а mC означает 5-метилцитозин. Нижние индексы: «е» означает 2'-МОЕ модифицированный нуклеозид; «d» означает β-D-2'-дезоксирибонуклеозид; «s» означает тиофосфатную межнуклеозидную связь (PS); «о» означает фосфодиэфирную межнуклеозидную связь (РО); и «o'» означает ОР(=O)(ОН)-. Группы конъюгата выделены жирным.
Пример 47: Получение олигонуклеотида 102, содержащего GalNAc3-8
Трехкислотное соединение 90 (4 г, 14,43 ммоль) растворили в ДМФА (120 мл) и N,N-диизопропилэтиламине (12,35 мл, 72 ммоль). По каплям добавили пентафторфенила трифторацетат (8,9 мл, 52 ммоль) в атмосфере аргона и оставили реакционную смесь перемешиваться при комнатной температуре в течение 30 минут. Добавили Boc-диамин 91а или 91b (68,87 ммоль) вместе с N,N-диизопропилэтиламином (12,35 мл, 72 ммоль) и оставили реакционную смесь перемешиваться при комнатной температуре в течение 16 часов. Затем упарили ДМФА на >75% при пониженном давлении, а затем растворили смесь в дихлорметане. Органический слой промыли бикарбонатом натрия, водой и насыщенным солевым раствором. Затем отделили органический слой и высушили над сульфатом натрия, отфильтровали и упарили при пониженном давлении до маслянистого остатка. Полученное маслянистое вещество очистили хроматографией на силикагеле (2%-->10% метанол/дихлорметан) с получением соединений 92а и 92b с приблизительным выходом 80%. Данные ЖХМС и протонного ЯМР согласовались с указанной структурой.
Соединение 92а или 92b (6,7 ммоль) обрабатывали 20 мл дихлорметана и 20 мл трифторуксусной кислоты при комнатной температуре в течение 16 часов. Полученный раствор выпарили, а затем растворили в метаноле и обрабатывали смолой DOWEX-OH в течение 30 минут. Полученный раствор отфильтровали и упарили до маслянистого вещества при пониженном давлении с получением 85-90% выхода соединений 93а и 93b.
Соединения 7 или 64 (9,6 ммоль) обрабатывали HBTU (3,7 г, 9,6 ммоль) и N,N-диизопропилэтиламином (5 мл) в ДМФА (20 мл) в течение 15 минут. К смеси добавили либо соединение 93а, либо 93b (3 ммоль) и оставили перемешиваться при комнатной температуре на 16 часов. Затем упарили ДМФА на >75% при пониженном давлении, а затем растворили смесь в дихлорметане. Органический слой промыли бикарбонатом натрия, водой и насыщенным солевым раствором. Затем отделили органический слой и высушили над сульфатом натрия, отфильтровали и упарили при пониженном давлении до маслянистого остатка. Полученное маслянистое вещество очистили хроматографией на силикагеле (5%-->20% метанол/дихлорметан) с получением соединений 96a-d с выходом 20-40%. Данные ЖХМС и протонного ЯМР согласовались с указанной структурой.
Соединения 96a-d (0,75 ммоль) по отдельности гидрировали на никеле Ренея в течение 3 часов в этаноле (75 мл). Затем катализатор удалили фильтрованием через целит, а этанол удалили при пониженном давлении с получением соединений 97a-d с выходом 80-90%. Данные ЖХМС и протонного ЯМР согласовались с указанной структурой.
Соединение 23 (0,32 г, 0,53 ммоль) обрабатывали HBTU (0,2 г, 0,53 ммоль) и N,N-диизопропилэтиламином (0,19 мл, 1,14 ммоль) в ДМФА (30 мл) в течение 15 минут. К смеси по отдельности добавили соединения 97a-d (0,38 ммоль) и оставили перемешиваться при комнатной температуре на 16 часов. Затем упарили ДМФА на >75% при пониженном давлении, а затем растворили смесь в дихлорметане. Органический слой промыли бикарбонатом натрия, водой и насыщенным солевым раствором. Затем отделили органический слой и высушили над сульфатом натрия, отфильтровали и упарили при пониженном давлении до маслянистого остатка. Полученное маслянистое вещество очистили хроматографией на силикагеле (2%-->20% метанол/дихлорметан) с получением соединений 98a-d с выходом 30-40%. Данные ЖХМС и протонного ЯМР согласовались с указанной структурой.
Соединение 99 (0,17 г, 0,76 ммоль) обрабатывали HBTU (0,29 г, 0,76 ммоль) и N,N-диизопропилэтиламином (0,35 мл, 2,0 ммоль) в ДМФА (50 мл) в течение 15 минут. К смеси по отдельности добавили соединения 97a-d (0,38 ммоль) и оставили перемешиваться при комнатной температуре на 16 часов. Затем упарили ДМФА на >75% при пониженном давлении, а затем растворили смесь в дихлорметане. Органический слой промыли бикарбонатом натрия, водой и насыщенным солевым раствором. Затем отделили органический слой и высушили над сульфатом натрия, отфильтровали и упарили при пониженном давлении до маслянистого остатка. Полученное маслянистое вещество очистили хроматографией на силикагеле (5%-->20% метанол/дихлорметан) с получением соединений 100а-d с выходом 40-60%. Данные ЖХМС и протонного ЯМР согласовались с указанной структурой.
Соединения 100a-d (0,16 ммоль) по отдельности гидрировали на 10% Pd(OH)2/C в течение 3 часов в метаноле/этилацетате (1:1, 50 мл). Затем катализатор удалили фильтрованием через целит, а органические растворители удалили при пониженном давлении с получением соединений 101a-d с выходом 80-90%. Данные ЖХМС и протонного ЯМР согласовались с указанной структурой.
Соединения 101a-d (0,15 ммоль) по отдельности растворили в ДМФА (15 мл) и пиридине (0,016 мл, 0,2 ммоль). По каплям добавили пентафторфенила трифторацетат (0,034 мл, 0,2 ммоль) в атмосфере аргона и оставили реакционную смесь перемешиваться при комнатной температуре в течение 30 минут. Затем упарили ДМФА на >75% при пониженном давлении, а затем растворили смесь в дихлорметане. Органический слой промыли бикарбонатом натрия, водой и насыщенным солевым раствором. Затем отделили органический слой и высушили над сульфатом натрия, отфильтровали и упарили при пониженном давлении до маслянистого остатка. Полученное маслянистое вещество очистили хроматографией на силикагеле (2%-->5% метанол/дихлорметан) с получением соединений 102a-d с приблизительным выходом 80%. Данные ЖХМС и протонного ЯМР согласовались с указанной структурой.
Олигомерное соединение 160, содержащее группу конъюгата GalNAc3-8, получили по стандартным способам синтеза олигонуклеотидов. Кластерная часть GalNAc3 группы конъюгата GalNAc3-8 (GalNAc3-8a) может быть комбинирована с любым расщепляемым фрагментом с получением различных групп конъюгата. В предпочтительном варианте реализации расщепляемый фрагмент представляет собой -P(=O)(OH)-Ad-P(=O)(OH)-.
Структура GalNAc3-8 (GalNAc3-8a-CM-) представлена ниже:
Пример 48: Получение олигонуклеотида 119, содержащего GalNAc3-7
Соединение 112 синтезировали по способу, описанному в литературе (J. Med. Chem. 2004, 47, 5798-5808).
Соединение 112 (5 г, 8,6 ммоль) растворили в 1:1 смеси метанола/этилацетата (22 мл/22 мл). Добавили гидроксид палладия на углероде (0,5 г). Реакционную смесь перемешивали при комнатной температуре в атмосфере водорода в течение 12 часов. Реакционную смесь отфильтровали через слой целита и промыли этот слой 1:1 смесью метанола/этилацетата. Фильтрат и промывочные растворы объединили и концентрировали досуха с получением Соединения 105а (количественно). Структуру подтвердили по ЖХМС.
Соединение 113 (1,25 г, 2,7 ммоль), HBTU (3,2 г, 8,4 ммоль) и DIEA (2,8 мл, 16,2 ммоль) растворили в безводном ДМФА (17 мл) и перемешивали реакционную смесь при комнатной температуре в течение 5 минут. К этой смеси добавили раствор Соединения 105а (3,77 г, 8,4 ммоль) в безводном ДМФА (20 мл). Реакционную смесь перемешивали при комнатной температуре в течение 6 часов. Растворитель удалили при пониженном давлении с получением маслянистого вещества. Остаток растворили в CH2Cl2 (100 мл) и промыли насыщенным водным раствором NaHCO3 (100 мл) и насыщенным солевым раствором (100 мл). Органическую фазу отделили, высушили (Na2SO4), отфильтровали и выпарили. Остаток очистили силикагелевой колоночной хроматографией и элюировали от 10 до 20% МеОН в дихлорметане с получением Соединения 114 (1,45 г, 30%). Структуру подтвердили анализом ЖХМС и 1Н ЯМР.
Соединение 114 (1,43 г, 0,8 ммоль) растворили в 1:1 смеси метанола/этилацетата (4 мл/4 мл). Добавили палладий на углероде (влажный, 0,14 г). Реакционную смесь продували водородом и перемешивали при комнатной температуре в атмосфере водорода в течение 12 часов. Реакционную смесь фильтровали через слой целита. Слой целита промыли метано лом/этилацетатом (1:1). Фильтрат и промывочные растворы объединили и выпарили при пониженном давлении с получением Соединения 115 (количественно). Структуру подтвердили анализом ЖХМС и 1Н ЯМР.
Соединение 83а (0,17 г, 0,75 ммоль), HBTU (0,31 г, 0,83 ммоль) и DIEA (0,26 мл, 1,5 ммоль) растворили в безводном ДМФА (5 мл) и перемешивали реакционную смесь при комнатной температуре в течение 5 минут. К этой смеси добавили раствор Соединения 115 (1,22 г, 0,75 ммоль) в безводном ДМФА и перемешивали реакционную смесь при комнатной температуре в течение 6 часов. Растворитель удалили при пониженном давлении, а остаток растворили в CH2Cl2. Органический слой промыли насыщенным водным раствором NaHCO3 и насыщенным солевым раствором, и высушили над безводным Na2SO4, и отфильтровали. Органический слой концентрировали досуха, а полученный остаток очистили силикагелевой колоночной хроматографией и элюировали от 3 до 15% МеОН в дихлорметане с получением Соединения 116 (0,84 г, 61%). Структуру подтвердили анализом ЖХМС и 1Н ЯМР.
Соединение 116 (0,74 г, 0,4 ммоль) растворили в 1:1 смеси метанола/этилацетата (5 мл/5 мл). Добавили палладий на углероде (влажный, 0,074 г). Реакционную смесь продували водородом и перемешивали при комнатной температуре в атмосфере водорода в течение 12 часов. Реакционную смесь фильтровали через слой целита. Слой целита промыли метанолом/этилацетатом (1:1). Фильтрат и промывочные растворы объединили и выпарили при пониженном давлении с получением соединения 117 (0,73 г, 98%). Структуру подтвердили анализом ЖХМС и 1Н ЯМР.
Соединение 117 (0,63 г, 0,36 ммоль) растворили в безводном ДМФА (3 мл). К этому раствору добавили N,N-диизопропилэтиламин (70 мкл, 0,4 ммоль) и пентафторфенила трифторацетат (72 мкл, 0,42 ммоль). Реакционную смесь перемешивали при комнатной температуре в течение 12 часов и вылили в насыщенный водный раствор NaHCO3. Смесь экстрагировали дихлорметаном, промыли насыщенным солевым раствором и высушили над безводным Na2SO4. Дихлорметановый раствор концентрировали досуха и очистили силикагелевой колоночной хроматографией, и элюировали от 5 до 10% МеОН в дихлорметане с получением соединения 118 (0,51 г, 79%). Структуру подтвердили анализом ЖХМС и 1Н и 1Н и 19F ЯМР.
Олигомерное соединение 119, содержащее группу конъюгата GalNAc3-7, получили по общим способам, представленным в Примере 46. Кластерная часть GalNAc3 группы конъюгата GalNAc3-7 (GalNAc3-7a) может быть комбинирована с любым расщепляемым фрагментом с получением различных групп конъюгата. В некоторых вариантах реализации расщепляемый фрагмент представляет собой -P(=O)(OH)-Ad-P(=O)(OH)-.
Структура GalNAc3-7 (GalNAc3-7a-CM-) представлена ниже:
Пример 49: Получение олигонуклеотида 132, содержащего GalNAc3-5
Соединение 120 (14,01 г, 40 ммоль) и HBTU (14,06 г, 37 ммоль) растворили в безводном ДМФА (80 мл). Добавили триэтиламин (11,2 мл, 80,35 ммоль) и перемешивали в течение 5 минут. Реакционную смесь охладили на ледяной бане и добавили раствор соединения 121 (10 г, ммоль) в безводном ДМФА (20 мл). Добавили дополнительное количество триэтиламина (4,5 мл, 32,28 ммоль) и перемешивали реакционную смесь в течение 18 часов в атмосфере аргона. Реакцию контролировали по ТСХ (этилацетат : гексан; 1:1; Rf=0,47). Растворитель удалили при пониженном давлении. Остаток растворили в EtOAc (300 мл) и промыли 1 М раствором NaHSO4 (3×150 мл), насыщенным водным раствором NaHCO3 (3×150 мл) и насыщенным солевым раствором (2×100 мл). Органический слой высушили над Na2SO4 и концентрировали. Высушивающий агент удалили фильтрованием, а органический слой концентрировали на ротационном испарителе. Неочищенную смесь очистили силикагелевой колоночной хроматографией и элюировали при помощи 35-50% EtOAc в гексане с получением соединения 122 (15,50 г, 78,13%). Структуру подтвердили анализом ЖХМС и 1Н ЯМР. Масса m/z 589,3 [М+Н]+.
К охлажденному раствору соединения 122 (7,75 г, 13,16 ммоль), растворенного в метаноле (15 мл) добавили раствор LiOH (92,15 ммоль) в воде (20 мл) и ТГФ (10 мл). Реакционную смесь перемешивали при комнатной температуре в течение 45 минут и контролировали по ТСХ (EtOAc : гексан; 1:1). Реакционную смесь концентрировали до половины объема при пониженном давлении. Оставшийся раствор охладили на ледяной бане и нейтрализовали добавлением концентрированной HCl. Реакционную смесь разбавили, экстрагировали EtOAc (120 мл) и промыли насыщенным солевым раствором (100 мл). При стоянии в течение ночи образовалась и осветлилась эмульсия. Органический слой отделили, высушили (Na2SO4), отфильтровали и выпарили с получением Соединения 123 (8,42 г). Избыточную массу вероятно обусловливает остаточная соль. Данные ЖХМС согласовались со структурой. Продукт использовали без какой-либо дополнительной очистки. Мол. масса, расчетная: 574,36% мол. масса, найденная: 575,3 [М+Н]+.
Соединение 126 синтезировали по способу, описанному в литературе (J. Am. Chem. Soc. 2011, 133, 958-963).
Соединение 123 (7,419 г, 12,91 ммоль), HOBt (3,49 г, 25,82 ммоль) и соединение 126 (6,33 г, 16,14 ммоль) растворили в ДМФА (40 мл), а полученную реакционную смесь охладили на ледяной бане. К смеси добавили N,N-диизопропилэтиламин (4,42 мл, 25,82 ммоль), РуВор (8,7 г, 16,7 ммоль), затем Bop-связывающий агент (1,17 г, 2,66 ммоль) в атмосфере аргона. Ледяную баню убрали и оставили раствор нагреваться до комнатной температуры. По данным ТСХ (ДХМ : МеОН : АА; 89:10:1), реакция была завершена через 1 час. Реакционную смесь концентрировали при пониженном давлении. Остаток растворили в EtOAc (300 мл) и промыли 1 М раствором NaHSO4 (3×150 мл), насыщенным водным раствором NaHCO3 (3×150 мл) и насыщенным солевым раствором (2×100 мл). Отделенную органическую фазу высушили (Na2SO4), отфильтровали и концентрировали. Остаток очистили колоночной хроматографией на силикагеле с градиентом от 50% гексанов в EtOAc до 100% EtOAc с получением Соединения 127 (9,4 г) в виде белого пенистого вещества. Данные ЖХМС и 1Н ЯМР согласовались со структурой. Масса m/z 778,4 [М+Н]+.
Трифторуксусную кислоту (12 мл) добавили к раствору соединения 127 (1,57 г, 2,02 ммоль) в дихлорметане (12 мл) и перемешивали при комнатной температуре в течение 1 часа. Реакционную смесь выпарили совместно с толуолом (30 мл) при пониженном давлении досуха. Полученный остаток дважды совместно выпаривали с ацетонитрилом (30 мл) и толуолом (40 мл) с получением Соединения 128 (1,67 г) в виде трифторацетатной соли и использовали на следующей стадии без дополнительной очистки. Данные ЖХМС и 1Н ЯМР согласовались со структурой. Масса m/z 478,2 [М+Н]+.
Соединение 7 (0,43 г, 0,963 ммоль), HATU (0,35 г, 0,91 ммоль) и HOAt (0,035 г, 0,26 ммоль) смешали вместе и высушивали в течение 4 часов над Р2О5 при пониженном давлении в круглодонной колбе, а затем растворили в безводном ДМФА (1 мл) и перемешивали в течение 5 минут. К этой смеси добавили раствор соединения 128 (0,20 г, 0,26 ммоль) в безводном ДМФА (0,2 мл) и добавили N/N-диизопропилэтиламин (0,2 мл). Реакционную смесь перемешивали при комнатной температуре в атмосфере аргона. По данным ЖХМС и ТСХ (7% МеОН/ДХМ), реакция была завершена через 20 минут. Реакционную смесь концентрировали при пониженном давлении. Остаток растворили в ДХМ (30 мл) и промыли 1 М раствором NaHSO4 (3×20 мл), насыщенным водным раствором NaHCO3 (3×20 мл) и насыщенным солевым раствором (3×20 мл). Органическую фазу отделили, высушили над Na2SO4, отфильтровали и концентрировали. Остаток очистили колоночной хроматографией на силикагеле, используя 5-15% МеОН в дихлорметане, с получением Соединения 129 (96,6 мг). Данные ЖХМС и 1Н ЯМР согласовались со структурой. Масса m/z 883,4 [М+2Н]+.
Соединение 129 (0,09 г, 0,051 ммоль) растворили в метаноле (5 мл) в сцинтилляционной пробирке объемом 20 мл. К смеси добавили небольшое количество 10% Pd/C (0,015 мг) и продули реакционный сосуд газообразным H2. Реакционную смесь перемешивали при комнатной температуре в атмосфере H2 в течение 18 часов. Реакционную смесь отфильтровали через слой целита и промыли слой целита метанолом. Фильтрат и промывочные растворы слили вместе и концентрировали при пониженном давлении с получением Соединения 130 (0,08 г). Данные ЖХМС и 1Н ЯМР согласовались с указанной структурой. Продукт использовали без дополнительной очистки. Масса m/z 838,3 [М+2Н]+.
В коническую круглодонную колбу объемом 10 мл добавили соединение 130 (75,8 мг, 0,046 ммоль), 0,37 М пиридин/ДМФА (200 мкл) и мешалку. К этому раствору по каплям добавили 0,7 М пентафторфенилтрифторацетат/ДМФА (100 мкл) при перемешивании. По данным ЖХМС реакция была завершена через 1 час. Растворитель удалили при пониженном давлении и растворили остаток в CHCl3 (~10 мл). Органический слой разделили между NaHSO4 (1 М, 10 мл), насыщенным водным раствором NaHCO3 (10 ил) и насыщенным солевым раствором (10 мл), с каждым раствором по три раза. Органическую фазу отделили и высушили над Na2SO4, отфильтровали и концентрировали с получением Соединения 131 (77,7 мг). Данные ЖХМС согласовались со структурой. Использовали без дополнительной очистки. Масса m/z 921,3 [М+2Н]+.
Олигомерное Соединение 132, содержащее группу конъюгата GalNAc3-5,получили по общим способам, представленным в Примере 46. Кластерная часть GalNAc3 группы конъюгата GalNAc3-5 (GalNAc3-5a) может быть комбинирована с любым расщепляемым фрагментом с получением различных групп конъюгата. В некоторых вариантах реализации расщепляемый фрагмент представляет собой -P(=O)(OH)-Ad-P(=O)(OH)-.
Структура GalNAc3-5 (GalNAc3-5a-CM-) представлена ниже:
Пример 50: Получение олигонуклеотида 144, содержащего GalNAc4-11
Синтез Соединения 134. В колбу Меррифилда добавили аминометиловую смолу VIMAD (2,5 г, 450 мкмоль/г), которую промыли ацетонитрилом, диметилформамидом, дихлорметаном и ацетонитрилом. Смолу оставили набухать в ацетонитриле (4 мл). Соединение 133 предварительно активировали в 100 мл круглодонной колбе путем добавления 20 (1,0 ммоль, 0,747 г), TBTU (1,0 ммоль, 0,321 г), ацетонитрила (5 мл) и DIEA (3,0 ммоль, 0,5 мл). Этот раствор оставили перемешиваться на 5 минут, а затем добавили в колбу Меррифилда при встряхивании. Суспензию оставили встряхиваться на 3 часа. Реакционную смесь слили, а смолу промыли ацетонитрилом, ДМФА и ДХМ. Заполнение новой смолы количественно определили по измерению абсорбции DMT катиона при 500 нм (коэффициент экстинкции = 76000) в ДХМ, которое составило 238 мкмоль/г. Смолу кэпировали трехкратным суспендированием в растворе уксусного ангидрида в течение десяти минут.
Соединение 141, связанное с твердой подложкой, синтезировали многократным повторением способов твердофазного синтеза пептидов при помощи Fmoc. Взяли небольшое количество твердой подложки и суспендировали в водном растворе аммиака (28-30 масс. %) в течение 6 часов. Расщепленное соединение анализировали по ЖХ-МС и наблюдали, что масса согласуется со структурой. Масса m/z 1063,8 [М+2Н]+.
Соединение 142, связанное с твердой подложкой, синтезировали по способам твердофазного синтеза пептидов.
Соединение 143, связанное с твердой подложкой, синтезировали при помощи стандартного твердофазного синтеза на ДНК синтезаторе.
Соединение 143, связанное с твердой подложкой, суспендировали в водном аммиаке (28-30 масс. %) и нагревали при 55°C в течение 16 часов. Раствор охладили, а твердую подложку отфильтровали. Фильтрат концентрировали, а остаток растворили в воде и очистили при помощи ВЭЖХ на сильной анионообменной колонке. Фракции, содержащие соединение 144 полной длины, слили вместе и обессолили. Полученное GalNAc4-11-сопряженное олигомерное соединение анализировали при помощи ЖХ-МС и наблюдали, что масса согласуется со структурой.
Кластерная часть GalNAc4 группы конъюгата GalNAc4-11 (GalNAc4-11а) может быть комбинирована с любым расщепляемым фрагментом с получением различных групп конъюгата. В некоторых вариантах реализации расщепляемый фрагмент представляет собой -P(=O)(OH)-Ad-P(=O)(OH)-.
Структура GalNAc4-11 (GalNAc4-11а-СМ) представлена ниже:
Пример 51: Получение олигонуклеотида 155, содержащего GalNAc3-6
Соединение 146 синтезировали так, как описано в литературе (Analytical Biochemistry 1995, 229, 54-60).
Соединение 4 (15 г, 45,55 ммоль) и соединение 35b (14,3 грамм, 57 ммоль) растворили в CH2Cl2 (200 мл). Добавили активированные молекулярные сита (4 , 2 г, порошкообразные) и оставили реакционную смесь перемешиваться в течение 30 минут в атмосфере азота. Добавили TMS-OTf (4,1 мл, 22,77 ммоль) и оставили реакционную смесь перемешиваться при комнатной температуре в течение ночи. После завершения реакции смесь погасили, вылив в насыщенный водный раствор NaHCO3 (500 мл) с дробленым льдом (~150 г). Органический слой отделили, промыли насыщенным солевым раствором, высушили над MgSO4, отфильтровали и концентрировали до оранжевого маслянистого вещества при пониженном давлении. Неочищенный материал очистили силикагелевой колоночной хроматографией и элюировали 2-10% МеОН в CH2Cl2 с получением Соединения 112 (16,53 г, 63%). ЖХМС и 1Н ЯМР согласовались с ожидаемым соединением.
Соединение 112 (4,27 г, 7,35 ммоль) растворили в 1:1 МеОН/EtOAc (40 мл). Реакционную смесь очистили пропусканием потока аргона через раствор в течение 15 минут. Добавили катализатор Перлмана (гидроксид палладия на углероде, 400 мг) и пропускали через раствор газообразный водород в течение 30 минут. После завершения (ТСХ, 10% МеОН в CH2Cl2, и ЖХМС), катализатор удалили фильтрованием через слой целита. Фильтрат концентрировали на ротационном испарителе и быстро высушили под высоким вакуумом с получением Соединения 105а (3,28 г). Данные ЖХМС и 1Н ЯМР согласовались с заданным продуктом.
Соединение 147 (2,31 г, 11 ммоль) растворили в безводном ДМФА (100 мл). Добавили N,N-диизопропилэтиламин (DIEA, 3,9 мл, 22 ммоль), затем HBTU (4 г, 10,5 ммоль). Реакционную смесь оставили перемешиваться в течение ~15 минут в атмосфере азота. К этой смеси добавили раствор соединения 105а (3,3 г, 7,4 ммоль) в сухом ДМФА и перемешивали в течение 2 часов в атмосфере азота. Реакционную смесь разбавили EtOAc и промыли насыщенным водным раствором NaHCO3 и насыщенным солевым раствором. Органическую фазу отделили, высушили (MgSO4), отфильтровали и концентрировали до оранжевого сиропообразного вещества. Неочищенный материал очистили колоночной хроматографией и элюировали 2-5% МеОН в CH2Cl2 с получением Соединения 148 (3,44 г, 73%). ЖХМС и 1Н ЯМР согласовались с ожидаемым продуктом.
Соединение 148 (3,3 г, 5,2 ммоль) растворили в 1:1 МеОН/EtOAc (75 мл). Реакционную смесь очистили пропусканием потока аргона через раствор в течение 15 минут. Добавили катализатор Перлмана (гидроксид палладия на углероде) (350 мг). Через раствор продували газообразный водород в течение 30 минут. После завершения (ТСХ, 10% МеОН в ДХМ, и ЖХМС), катализатор удалили фильтрованием через слой целита. Фильтрат концентрировали на ротационном испарителе и быстро высушили под высоким вакуумом с получением Соединения 149 (2,6 г). Данные ЖХМС согласовались с заданным продуктом. Остаток растворили в сухом ДМФА (10 мл) и сразу использовали на следующей стадии.
Соединение 146 (0,68 г, 1,73 ммоль) растворили в сухом ДМФА (20 мл). К нему добавили DIEA (450 мкл, 2,6 ммоль, 1,5 экв.) и HBTU (1,96 г, 0,52 ммоль). Реакционную смесь оставили перемешиваться в течение 15 минут при комнатной температуре в атмосфере азота. Добавили раствор соединения 149 (2,6 г) в безводном ДМФА (10 мл). рН реакционной смеси довели до рН=9-10 добавлением DIEA (при необходимости). Реакционную смесь оставили перемешиваться в течение 2 часов при комнатной температуре в атмосфере азота. После завершения реакции смесь разбавили EtOAc (100 мл) и промыли насыщенным водным раствором NaHCO3, затем насыщенным солевым раствором. Органическую фазу отделили, высушили над MgSO4, отфильтровали и концентрировали. Остаток очистили силикагелевой колоночной хроматографией и элюировали 2-10% МеОН в CH2Cl2 получением Соединения 150 (0,62 г, 20%). ЖХМС и 1Н ЯМР согласовались с заданным продуктом.
Соединение 150 (0,62 г) растворили в 1:1 МеОН/EtOAc (5 л). Реакционную смесь очистили пропусканием потока аргона через раствор в течение 15 минут. Добавили катализатор Перлмана (гидроксид палладия на углероде) (60 мг). Через раствор продували газообразный водород в течение 30 минут. После завершения (ТСХ, 10% МеОН в ДХМ, и ЖХМС), катализатор удалили фильтрованием (тефлоновый фильтр с переходной канюлей шприца, 0,45 мкм). Фильтрат концентрировали на ротационном испарителе и быстро высушили под высоким вакуумом с получением Соединения 151 (0,57 г). Данные ЖХМС согласовались с заданным продуктом. Продукт растворили в 4 мл сухого ДМФА и сразу использовали на следующей стадии.
Соединение 83а (0,11 г, 0,33 ммоль) растворили в безводном ДМФА (5 мл) и добавили N,N-диизопропилэтиламин (75 мкл, 1 ммоль) и PFP-ТФК (90 мкл, 0,76 ммоль). При соприкосновении реакционная смесь стала пурпурной и постепенно изменила цвет на оранжевый в течение следующих 30 минут. Ход реакции контролировали по ТСХ и ЖХМС. После завершения (образования эфира PFP) добавили раствор соединения 151 (0,57 г, 0,33 ммоль) в ДМФА. рН реакционной смеси довели до рН=9-10 добавлением N,N-диизопропилэтиламина (при необходимости). Реакционную смесь перемешивали в атмосфере азота в течение ~30 минут. После завершения реакции большую часть растворителя удалили при пониженном давлении. Остаток разбавили CH2Cl2 и промыли насыщенным водным раствором NaHCO3, затем насыщенным солевым раствором. Органическую фазу отделили, высушили над MgSO4, отфильтровали и концентрировали до оранжевого сиропообразного вещества. Остаток очистили колоночной хроматографией на силикагеле (2-10% МеОН в CH2Cl2) с получением Соединения 152 (0,35 г, 55%). ЖХМС и 1Н ЯМР согласовались с заданным продуктом.
Соединение 152 (0,35 г, 0,182 ммоль) растворили в 1:1 МеОН/EtOAc (10 мл). Реакционную смесь очистили пропусканием потока аргона через раствор в течение 15 минут. Добавили катализатор Перлмана (гидроксид палладия на углероде) (35 мг). Через раствор продували газообразный водород в течение 30 минут. После завершения (ТСХ, 10% МеОН в ДХМ, и ЖХМС), катализатор удалили фильтрованием (тефлоновый фильтр с переходной канюлей шприца, 0,45 мкм). Фильтрат концентрировали на ротационном испарителе и быстро высушили под высоким вакуумом с получением Соединения 153 (0,33 г, количественно). Данные ЖХМС согласовались с заданным продуктом.
Соединение 153 (0,33 г, 0,18 ммоль) растворили в безводном ДМФА (5 мл) при перемешивании в атмосфере азота. К нему добавили N,N-диизопропилэтиламин (65 мкл, 0,37 ммоль) и PFP-ТФК (35 мкл, 0,28 ммоль). Реакционную смесь перемешивали в атмосфере азота в течение ~30 минут. При соприкосновении реакционная смесь стала пурпурной и постепенно изменила цвет на оранжевый. рН реакционной смеси поддерживали при рН=9-10 добавлением дополнительного количества N,N-диизопропилэтиламина. Ход реакции контролировали по ТСХ и ЖХМС. После завершения реакции большую часть растворителя удалили при пониженном давлении. Остаток разбавили CH2Cl2 (50 мл) и промыли насыщенным водным раствором NaHCO3, затем насыщенным солевым раствором. Органический слой высушили над MgSO4, отфильтровали и концентрировали до оранжевого сиропообразного вещества. Остаток очистили колоночной хроматографией и элюировали 2-10% МеОН в CH2Cl2 с получением Соединения 154 (0,29 г, 79%). ЖХМС и 1Н ЯМР согласовались с заданным продуктом.
Олигомерное Соединение 155, содержащее группу конъюгата GalNAc3-6, получили по общим способам, представленным в Примере 46. Кластерная часть GalNAc3 группы конъюгата GalNAc3-6 (GalNAc3-6a) может быть комбинирована с любым расщепляемым фрагментом с получением различных групп конъюгата. В некоторых вариантах реализации расщепляемый фрагмент представляет собой -P(=O)(OH)-Ad-P(=O)(OH)-.
Структура GalNAc3-6 (GalNAc3-6a-CM-) представлена ниже:
Пример 52: Получение олигонуклеотида 160, содержащего GalNAc3-9
Соединение 112 синтезировали по способу, описанному в литературе (J. Med. Chem. 2004, 47, 5798-5808).
Соединение 156 (18,60 г, 29,28 ммоль) растворили в метаноле (200 мл). Добавили палладий на углероде (6,15 г, загрузка 10 масс. % (в пересчете на сухое вещество), матрица из порошкообразного углерода, влажный). Реакционную смесь перемешивали при комнатной температуре в атмосфере водорода в течение 18 часов. Реакционную смесь отфильтровали через слой целита и тщательно промыли слой целита метанолом. Объединенный фильтрат промыли и концентрировали досуха. Остаток очистили силикагелевой колоночной хроматографией и элюировали 5-10% метанола в дихлорметане с получением Соединения 157 (14,26 г, 89%). Масса m/z 544,1 [М-Н]-.
Соединение 157 (5 г, 9,17 ммоль) растворили в безводном ДМФА (30 мл). Добавили HBTU (3,65 г, 9,61 ммоль) и N,N-диизопропилэтиламин (13,73 мл, 78,81 ммоль) и перемешивали реакционную смесь при комнатной температуре в течение 5 минут. К нему добавили раствор соединения 47 (2,96 г, 7,04 ммоль). Реакционную смесь перемешивали при комнатной температуре в течение 8 часов. Реакционную смесь вылили в насыщенный водный раствор NaHCO3. Смесь экстрагировали этилацетатом, а органический слой промыли насыщенным солевым раствором и высушили (Na2SO4), отфильтровали и выпарили. Полученный остаток очистили силикагелевой колоночной хроматографией и элюировали 50% этилацетатом в гексане с получением Соединения 158 (8,25 г, 73,3%). Структуру подтвердили анализом МС и 1Н ЯМР.
Соединение 158 (7,2 г, 7,61 ммоль) высушили над Р2О5 при пониженном давлении. Высушенное соединение растворили в безводном ДМФА (50 мл). К нему добавили 1Н-тетразол (0,43 г, 6,09 ммоль) и N-метилимидазол (0,3 мл, 3,81 ммоль), и цианоэтил-N,N,N',N'-тетраизопропил-фосфородиамидит (3,65 мл, 11,50 ммоль). Реакционную смесь перемешивали в атмосфере аргона в течение 4 часов. Реакционную смесь разбавили этилацетатом (200 мл). Реакционную смесь промыли насыщенным раствором NaHCO3 и насыщенным солевым раствором. Органическую фазу отделили, высушили (Na2SO4), отфильтровали и выпарили. Остаток очистили силикагелевой колоночной хроматографией и элюировали 50-90% этилацетатом в гексане с получением Соединения 159 (7,82 г, 80,5%). Структуру подтвердили анализом ЖХМС и 31Р ЯМР.
Олигомерное соединение 160, содержащее группу конъюгата GalNAc3-9, получили по стандартным способам синтеза олигонуклеотидов. Три единицы соединения 159 связали с твердой подложкой, затем с фосфорамидитами нуклеотидов. В результате обработки защищенного олигомерного соединения водным раствором аммиака получили соединение 160. Кластерная часть GalNAc3 группы конъюгата GalNAc3-9 (GalNAc3-9a) может быть комбинирована с любым расщепляемым фрагментом с получением различных групп конъюгата. В некоторых вариантах реализации расщепляемый фрагмент представляет собой -P(=O)(OH)-Ad-P(=O)(OH)-. Структура GalNAc3-9 (GalNAc3-9a-CM) представлена ниже:
Пример 53: Альтернативный способ получения Соединения 18 (GalNAc3-1a и GalNAc3-3а)
Выполнили реакцию лактона 161 с диаминопропаном (3-5 экв.) или моно-Вос-защищинным диаминопропаном (1 экв.) с получением спирта 162а или 162b. При использовании для описанной выше реакции незащищенного пропандиамина, избыток диамина удалили выпариванием под высоким вакуумом, а свободную аминогруппу в 162а защитили при помощи CbzCl с получением 162b в виде белого твердого вещества после очистки колоночной хроматографией. Спирт 162b затем взаимодействовал с соединением 4 в присутствии TMSOTf с получением 163а, которое преобразовали в 163b путем снятия Cbz группы при помощи каталитического гидрирования. Пентафторфениловый (PFP) эфир 164 получили взаимодействием трехкислотного соединения 113 (см. Пример 48) с PFP-ТФК (3,5 экв.) и пиридином (3,5 экв.) в ДМФА (от 0,1 до 0,5 М). Триэфир 164 непосредственно взаимодействовал с амином 163b (3-4 экв.) и DIPEA (3-4 экв.) с получением Соединения 18. Представленный выше способ значительно облегчает очистку промежуточных соединений и минимизирует образование побочных продуктов, которые образуются при использовании способа, описанного в Примере 4.
Пример 54: Альтернативный способ получения Соединения 18 (GalNAc3-1a и GalNAc3-3а)
Три-PFP эфир 164 получили из кислоты 113 по способу, представленному выше в Примере 53, выполнили реакцию этого эфира с моно-Вос-защищенным диамином с получением 165 практически с количественным выходом. Вое группы сняли хлористоводородной кислотой или трифторуксусной кислотой с получением триамина, который взаимодействовал с активированной кислотой PFP 166 в присутствии подходящего основания, такого как DIPEA, с получением Соединения 18.
PFP-защищенную кислоту Gal-NAc 166 получили из соответствующей кислоты обработкой PFP-ТФК (1-1,2 экв.) и пиридином (1-1,2 экв.) в ДМФА. Кислоту-предшественник, в свою очередь, получили из соответствующего спирта окислением с использованием TEMPO (0,2 экв.) и BAIB в ацетонитриле и воде. Спирт-предшественник получили из сахарного промежуточного соединения 4 взаимодействием с 1,6-гександиолом (или 1,5-гександиолом или другим диолом для других значений n) (2-4 экв.) и TMSOTf, используя условия, описанные ранее в Примере 47.
Пример 55: Дозозависимое исследование олигонуклеотидов, содержащих либо 3', либо 5'-группу конъюгата (сравнение GalNAc3-1, 3, 8 и 9), направленных на SRB-1, in vivo
Олигонуклеотиды, перечисленные ниже, испытали в дозозависимом исследовании антисмыслового ингибирования SRB-1 у мышей. Несопряженный ISIS 353382 включили в качестве стандарта. Каждая из различных групп конъюгата GalNAc3 была присоединена либо к 3', либо к 5'-концу соответствующего олигонуклеотида при помощи фосфодиэфир-связанного 2'-дезоксиаденозинового нуклеозида (расщепляемый фрагмент).
Заглавные буквы указывают азотистое основание для каждого нуклеозида, а mC означает 5-метилцитозин. Нижние индексы: «е» означает 2'-МОЕ модифицированный нуклеозид; «d» означает β-D-2'-дезоксирибонуклеозид; «s» означает тиофосфатную межнуклеозидную связь (PS); «о» означает фосфодиэфирную межнуклеозидную связь (РО); и «o'» означает ОР(=O)(ОН)-. Группы конъюгата выделены жирным.
Структура GalNAc3-1a показана ранее в Примере 9. Структура GalNAc3-9 показана ранее в Примере 52. Структура GalNAc3-3 показана ранее в Примере 39. Структура GalNAc3-8 показана ранее в Примере 47.
Лечение
Шестинедельным самцам мышей Balb/c (Jackson Laboratory, Бар-Харбор, штат Мэн) ввели однократную подкожную инъекцию дозы, представленной ниже, соединения ISIS 353382, 655861, 664078, 661161, 665001 или солевого раствора. Каждая экспериментальная группа состояла из 4 животных. Мышей усыпили через 72 часа после последнего введения для определения уровней мРНК SRB-1 в печени при помощи ПЦР в реальном времени и реагента для количественного определения РНК RIBOGREEN® (Molecular Probes, Inc. Юджин, штат Орегон) по стандартным протоколам. Результаты, показанные ниже, представлены как средний процент уровней мРНК SRB-1 для каждой экспериментальной группы, нормализованных к контрольному образцу, обработанному солевым раствором.
Как показано в Таблице 40, лечение антисмысловыми олигонуклеотидами снижает уровни мРНК SRB-1 дозозависимым образом. Действительно, антисмысловые олигонуклеотиды, содержащие фосфодиэфир-связанные конъюгаты GalNAc3-1 и GalNAc3-9 на 3'-конце (ISIS 655861 и ISIS 664078), а также конъюгаты GalNAc3-3 и GalNAc3-8, связанные на 5'-конце (ISIS 661161 и ISIS 665001) демонстрируют существенное улучшение эффективности, по сравнению с несопряженным антисмысловым олигонуклеотидом (ISIS 353382). Кроме того, ISIS 664078, содержащий конъюгат GalNAc3-9 на 3'-конце, был по существу настолько же эффективным, как ISIS 655861, который содержит конъюгат GalNAc3-1 на 3'-конце. 5'-сопряженные антисмысловые олигонуклеотиды, ISIS 661161 и ISIS 665001, содержащие GalNAc3-3 или GalNAc3-9, соответственно, обладают повышенной эффективностью, по сравнению с 3'-сопряженными антисмысловыми соединениями (ISIS 655861 и ISIS 664078).
Уровни трансаминазы в печени, аланин-аминотрансферазы (ALT) и аспартат-аминотрансферазы (AST) в сыворотке измеряли относительно мышей, инъецированных солевым раствором, используя стандартные протоколы. Оценили также общий билирубин и азот мочевины крови (АМК). Проверили изменение массы тела, которое существенно не отличалось от группы с солевым раствором. Значения ALT, AST, общего билирубина и АМК представлены ниже в таблице.
Пример 56: Дозозависимое исследование олигонуклеотидов, содержащих либо 3', либо 5'-группу конъюгата (сравнение GalNAc3-1, 2, 3, 5, 6, 7 и 20), направленных на SRB-1, in vivo
Олигонуклеотиды, перечисленные ниже, испытали в дозозависимом исследовании антисмыслового ингибирования SRB-1 у мышей. Несопряженный ISIS 353382 включили в качестве стандарта. Каждая из различных групп конъюгата GalNAc3 была присоединена к 5'-концу соответствующего олигонуклеотида фосфодиэфир-связанным 2'-дезоксиаденозиновым нуклеозидом (расщепляемый фрагмент), за исключением ISIS 655861, в котором группа конъюгата GalNAc3 присоединена к 3'-концу.
Заглавные буквы указывают азотистое основание для каждого нуклеозида, а mC означает 5-метилцитозин. Нижние индексы: «е» означает 2'-МОЕ модифицированный нуклеозид; «d» означает β-D-2'-дезоксирибонуклеозид; «s» означает тиофосфатную межнуклеозидную связь (PS); «о» означает фосфодиэфирную межнуклеозидную связь (РО); и «o'» означает ОР(=O)(ОН)-. Группы конъюгата выделены жирным.
Структура GalNAc3-1a показана ранее в Примере 9. Структура GalNAc3-2а показана ранее в Примере 37. Структура GalNAc3-3a показана ранее в Примере 39. Структура GalNAc3-5а показана ранее в Примере 49. Структура GalNAc3-6a показана ранее в Примере 51. Структура GalNAc3-7a показана в Примере 48. Структура GalNAc3-10a показана в Примере 46.
Лечение
Шестинедельным самцам мышей Balb/c (Jackson Laboratory, Бар-Харбор, штат Мэн) ввели однократную подкожную инъекцию дозы, представленной ниже, соединения ISIS 353382, 655861, 664507, 661161, 666224, 666961, 666981, 666881 или солевого раствора. Каждая экспериментальная группа состояла из 4 животных. Мышей усыпили через 72 часа после последнего введения для определения уровней мРНК SRB-1 в печени при помощи ПЦР в реальном времени и реагента для количественного определения РНК RIBOGREEN® (Molecular Probes, Inc. Юджин, штат Орегон) по стандартным протоколам. Результаты, показанные ниже, представлены как средний процент уровней мРНК SRB-1 для каждой экспериментальной группы, нормализованных к контрольному образцу, обработанному солевым раствором.
Как показано в Таблице 43, лечение антисмысловыми олигонуклеотидами снижает уровни мРНК SRB-1 дозозависимым образом. Действительно, сопряженные антисмысловые олигонуклеотиды демонстрируют значительное усиление эффективности, по сравнению с несопряженным антисмысловым олигонуклеотидом (ISIS 353382). 5'-сопряженные антисмысловые олигонуклеотиды демонстрируют небольшое усиление эффективности, по сравнению с 3'-сопряженным антисмысловым олигонуклеотидом.
Уровни трансаминазы в печени, аланин-аминотрансферазы (ALT) и аспартат-аминотрансферазы (AST) в сыворотке измеряли относительно мышей, инъецированных солевым раствором, используя стандартные протоколы. Оценили также общий билирубин и азот мочевины крови (АМК). Проверили изменение массы тела, которое существенно не отличалось от группы с солевым раствором. Значения ALT, AST, общего билирубина и АМК представлены ниже в Таблице 44.
Пример 57: Исследование продолжительности действия олигонуклеотидов, содержащих 3'-группу конъюгата, направленных на АроС III, in vivo
Мышам однократно ввели инъекцию дозы, указанной ниже, и в течение 42 дней наблюдали уровни АроС-III и триглицеридов в плазме (TG в плазме). Исследование выполнили, используя в каждой группе 3 трансгенных мышей, которые экспрессируют человеческий АРОС-III.
Заглавные буквы указывают азотистое основание для каждого нуклеозида, а mC означает 5-метилцитозин. Нижние индексы: «е» означает 2'-МОЕ модифицированный нуклеозид; «d» означает β-D-2'-дезоксирибонуклеозид; «s» означает тиофосфатную межнуклеозидную связь (PS); «о» означает фосфодиэфирную межнуклеозидную связь (РО); и «o'» означает ОР(=O)(ОН)-. Группы конъюгата выделены жирным.
Структура GalNAc3-1a показана ранее в Примере 9.
Как можно видеть в представленной выше таблице, продолжительность действия увеличивается при добавлении 3'-группы конъюгата, по сравнению с несопряженным олигонуклеотидом. Дополнительное увеличение продолжительности действия наблюдали для смешанного сопряженного PO/PS олигонуклеотида 647536, по сравнению с сопряженным олигонуклеотидом 647535, содержащим только PS.
Пример 58: Дозозависимое исследование олигонуклеотидов, содержащих либо 3', либо 5'-группу конъюгата (сравнение GalNAc3-1 и GalNAc4-11), направленных на SRB-1, in vivo
Олигонуклеотиды, перечисленные ниже, испытали в дозозависимом исследовании антисмыслового ингибирования SRB-1 у мышей. Несопряженный ISIS 440762 включили в качестве несопряженного стандарта. Каждая из групп конъюгата была присоединена к 3'-концу соответствующего олигонуклеотида при помощи расщепляемого фрагмента фосфодиэфир-связанного 2'-дезоксиаденозинового нуклеозида.
Структура GalNAc3-1a показана ранее в Примере 9. Структура GalNAc3-11а показана ранее в Примере 50.
Лечение
Шестинедельным самцам мышей Balb/c (Jackson Laboratory, Бар-Харбор, штат Мэн) ввели однократную подкожную инъекцию дозы, представленной ниже, соединения ISIS 440762, 651900, 663748 или солевого раствора. Каждая экспериментальная группа состояла из 4 животных. Мышей усыпили через 72 часа после последнего введения для определения уровней мРНК SRB-1 в печени при помощи ПЦР в реальном времени и реагента для количественного определения РНК RIBOGREEN® (Molecular Probes, Inc. Юджин, штат Орегон) по стандартным протоколам. Результаты, показанные ниже, представлены как средний процент уровней мРНК SRB-1 для каждой экспериментальной группы, нормализованных к контрольному образцу, обработанному солевым раствором.
Как показано в Таблице 47, лечение антисмысловыми олигонуклеотидами снижает уровни мРНК SRB-1 дозозависимым образом. Антисмысловые олигонуклеотиды, содержащие фосфодиэфир-связанные конъюгаты GalNAc3-1 и GalNAc4-11 на 3'-конце (ISIS 651900 и ISIS 663748), демонстрируют значительное усиление эффективности, по сравнению с несопряженным антисмысловым олигонуклеотидом (ISIS 440762). Эти два сопряженных олигонуклеотида, GalNAc3-1 и GalNAc4-11, были одинаково эффективными.
Заглавные буквы указывают азотистое основание для каждого нуклеозида, а mC означает 5-метилцитозин. Нижние индексы: «е» означает 2'-МОЕ модифицированный нуклеозид; «k» означает 6'-(S)-СН3 бициклиеский нуклеозид; «d» означает β-D-2'-дезоксирибонуклеозид; «s» означает тиофосфатную межнуклеозидную связь (PS); «о» означает фосфодиэфирную межнуклеозидную связь (РО); и «o'» означает -O-Р(=O)(ОН)-. Группы конъюгата выделены жирным.
Уровни трансаминазы в печени, аланин-аминотрансферазы (ALT) и аспартат-аминотрансферазы (AST) в сыворотке измеряли относительно мышей, инъецированных солевым раствором, используя стандартные протоколы. Оценили также общий билирубин и азот мочевины крови (АМК). Проверили изменение массы тела, которое существенно не отличалось от группы с солевым раствором. Значения ALT, AST, общего билирубина и АМК представлены ниже в Таблице 48.
Пример 59: Действие CalNAc3-1-сопряженных ASO, направленных на FXI, in vivo
Олигонуклеотиды, перечисленные ниже, испытали в исследовании действия многократных нарастающих доз на антисмысловое ингибирование FXI у мышей. ISIS 404071 включили в качестве несопряженного стандарта. Каждая из групп конъюгата была присоединена к 3'-концу соответствующего олигонуклеотида при помощи расщепляемого фрагмента фосфодиэфир-связанного 2'-дезоксиаденозинового нуклеозида.
Заглавные буквы указывают азотистое основание для каждого нуклеозида, а mC означает 5-метилцитозин. Нижние индексы: «е» означает 2'-МОЕ модифицированный нуклеозид; «d» означает β-D-2'-дезоксирибонуклеозид; «s» означает тиофосфатную межнуклеозидную связь (PS); «о» означает фосфодиэфирную межнуклеозидную связь (РО); и «o'» означает ОР(=O)(ОН)-. Группы конъюгата выделены жирным.
Структура GalNAc3-1a показана ранее в Примере 9.
Лечение
Шестинедельным самцам мышей Balb/c (Jackson Laboratory, Бар-Харбор, штат Мэн) дважды в неделю в течение 3 недель вводили подкожную инъекцию дозы, представленной ниже, соединения ISIS 404071, 656172, 656173 или PBS в качестве контрольного образца. Каждая экспериментальная группа состояла из 4 животных. Мышей усыпили через 72 часа после последнего введения для определения уровней мРНК FXI в печени при помощи ПЦР в реальном времени и реагента для количественного определения РНК RIBOGREEN® (Molecular Probes, Inc. Юджин, штат Орегон) по стандартным протоколам. Измерили также уровни белка FXI в плазме при помощи твердофазного иммуноферментного анализа. Уровни мРНК FXI определяли относительно общей РНК (при помощи RIBOGREEN®), затем нормализовали к контрольному образцу, обработанному PBS. Результаты, показанные ниже, представлены как средний процент уровней мРНК FXI для каждой экспериментальной группы. Результаты нормализовали к контрольному образцу, обработанному PBS, и обозначали как «% PBS». ED50s измеряли по таким же способом, как описаны ранее, и указанные значения представлены ниже.
Как показано в Таблице 50, лечение антисмысловыми олигонуклеотидами снижает уровни мРНК FXI дозозависимым образом. Олигонуклеотиды, содержащие группу конъюгата 3'-GalNAc3-1, демонстрируют значительное усиление эффективности, по сравнению с несопряженным антисмысловым олигонуклеотидом (ISIS 404071). Между эти двумя сопряженными олигонуклеотидами дополнительное усиление эффективности было обеспечено за счет замены некоторых PS связей на РО (ISIS 656173)
Как показано в Таблице 50а, лечение антисмысловыми олигонуклеотидами снижает уровни белка FXI дозозависимым образом. Олигонуклеотиды, содержащие группу конъюгата 3'-GalNAc3-1, демонстрируют значительное усиление эффективности, по сравнению с несопряженным антисмысловым олигонуклеотидом (ISIS 404071). Между эти двумя сопряженными олигонуклеотидами дополнительное усиление эффективности было обеспечено за счет замены некоторых PS связей на РО (ISIS 656173)
Уровни трансаминазы в печени, аланин-аминотрансферазы (ALT) и аспартат-аминотрансферазы (AST) в сыворотке измеряли относительно мышей, инъецированных солевым раствором, используя стандартные протоколы. Оценили также общий билирубин, общий альбумин, CRE и азот мочевины крови (АМК). Проверили изменение массы тела, которое существенно не отличалось от группы с солевым раствором. Значения ALT, AST, общего билирубина и АМК представлены ниже в таблице.
Пример 60: Действие сопряженных ASO, направленных на SRB-1, in vitro
Олигонуклеотиды, перечисленные ниже, испытали в исследовании действия многократных нарастающих доз на антисмысловое ингибирование SRB-1 в первичных гепатоцитах мышей. ISIS 353382 включили в качестве несопряженного стандарта. Каждая из групп конъюгата была присоединена к 3' или 5'-концу соответствующего олигонуклеотида при помощи расщепляемого фрагмента фосфодиэфир-связанного 2'-дезоксиаденозинового нуклеозида.
Заглавные буквы указывают азотистое основание для каждого нуклеозида, а mC означает 5-метилцитозин. Нижние индексы: «е» означает 2'-МОЕ модифицированный нуклеозид; «d» означает β-D-2'-дезоксирибонуклеозид; «s» означает тиофосфатную межнуклеозидную связь (PS); «о» означает фосфодиэфирную межнуклеозидную связь (РО); и «o'» означает ОР(=O)(ОН)-. Группы конъюгата выделены жирным.
Структура GalNAc3-1a показана ранее в Примере 9. Структура GalNAc3-3a показана ранее в Примере 39. Структура GalNAc3-8a показана ранее в Примере 47. Структура GalNAc3-9a показана ранее в Примере 52. Структура GalNAc3-6a показана ранее в Примере 51. Структура GalNAc3-2a показана ранее в Примере 37. Структура GalNAc3-10a показана ранее в Примере 46. Структура GalNAc3-5a показана ранее в Примере 49. Структура GalNAc3-7a показана ранее в Примере 48.
Лечение
Олигонуклеотиды, перечисленные выше, испытывали in vitro в первичных гепатоцитарных клетках мышей, помещенных на планшеты при плотности 25000 клеток на лунку и обработанных 0,03, 0,08, 0,24, 0,74, 2,22, 6,67 или 20 нМ модифицированного олигонуклеотида. После обработки в течение приблизительно 16 часов, из клеток выделили РНК и измерили уровни мРНК при помощи количественной ПЦР в реальном времени, а уровни мРНК SRB-1 III скорректировали в соответствии с общим содержанием РНК, измеренным при помощи RIBOGREEN®.
IC50 рассчитали по стандартным способам, а результаты представлены в Таблице 53. Результаты показывают, что при условиях свободного поглощения, в которых не использованы никакие реагенты или электроимпульсные приемы для искусственного ускорения входа олигонуклеотидов в клетки, олигонуклеотиды, содержащие конъюгат GalNAc, были существенно более эффективными в гепатоцитах, чем исходный олигонуклеотид (ISIS 353382), который не содержит конъюгат GalNAc.
Пример 61: Получение олигомерного соединения 175, содержащего GalNAc3-12
Соединение 169 имеется в продаже. Соединение 172 получили добавлением бензил(перфторфенил)глутарата к соединению 171. Бензил(перфторфенил)глутарат получили добавлением PFP-ТФК и DIEA к 5-(бензилокси)-5-оксопентановой кислоте в ДМФА. Олигомерное Соединение 175, содержащее группу конъюгата GalNAc3-12, получили из соединения 174 по общим способам, представленным в Примере 46. Кластерная часть GalNAc3 группы конъюгата GalNAc3-12 (GalNAc3-12a) может быть комбинирована с любым расщепляемым фрагментом с получением различных групп конъюгата. В некоторых вариантах реализации расщепляемый фрагмент представляет собой -P(=O)(OH)-Ad-Р(=O)(ОН)-. Структура GalNAc3-12 (GalNAc3-12a-CM-) представлена ниже:
Пример 62: Получение олигомерного соединения 180, содержащего GalNAc3-13
Соединение 176 получили по общему способу, представленному в Примере 2. Олигомерное Соединение 180, содержащее группу конъюгата GalNac3-13, получили из соединения 177 по общим способам, представленным в Примере 49. Кластерная часть GalNAc3 группы конъюгата GalNAc3-13 (GalNAc3-13a) может быть комбинирована с любым расщепляемым фрагментом с получением различных групп конъюгата. В некоторых вариантах реализации расщепляемый фрагмент представляет собой -Р(=O)(ОН)-Ad-Р(=O)(ОН)-. Структура GalNAc3-13 (GalNAc3-13a-CM-) представлена ниже:
Пример 63: Получение олигомерного соединения 188, содержащего GalNAc3-14
Соединения 181 и 185 имеются в продаже. Олигомерное Соединение 188, содержащее группу конъюгата GalNAc3-14, получили из соединения 187 по общим способам, представленным в Примере 46. Кластерная часть GalNAc3 группы конъюгата GalNAc3-14 (GalNAc3-14a) может быть комбинирована с любым расщепляемым фрагментом с получением различных групп конъюгата. В некоторых вариантах реализации расщепляемый фрагмент представляет собой -P(=O)(OH)-Ad-P(=O)(OH)-. Структура GalNAc3-14 (GalNAc3-14a-CM-) представлена ниже:
Пример 64: Получение олигомерного соединения 188, содержащего GalNAc3-15
Соединение 189 имеется в продаже. Соединение 195 получили по общему способу, представленному в Примере 31. Олигомерное соединение 197, содержащее группу конъюгата GalNAc3-15, получили из соединений 194 и 195 по стандартным способам синтеза олигонуклеотидов. Кластерная часть GalNAc3 группы конъюгата GalNAc3-15 (GalNAc3-15a) может быть комбинирована с любым расщепляемым фрагментом с получением различных групп конъюгата. В некоторых вариантах реализации расщепляемый фрагмент представляет собой -P(=O)(OH)-Ad-P(=O)(OH)-. Структура GalNAc3-15 (GalNAc3-15a-CM-) представлена ниже:
Пример 65: Дозозависимое исследование олигонуклеотидов, содержащих 5'-группу конъюгата (сравнение GalNAc3-3, 12, 13, 14 и 15), направленных на SRB-1, in vivo
Олигонуклеотиды, перечисленные ниже, испытали в дозозависимом исследовании антисмыслового ингибирования SRB-1 у мышей. Несопряженный ISIS 353382 включили в качестве стандарта. Каждая из групп конъюгата GalNAc3 была присоединена к 5'-концу соответствующего олигонуклеотида при помощи расщепляемого фрагмента фосфодиэфир-связанного 2'-дезоксиаденозинового нуклеозида.
Заглавные буквы указывают азотистое основание для каждого нуклеозида, а mC означает 5-метилцитозин. Нижние индексы: «е» означает 2'-МОЕ модифицированный нуклеозид; «d» означает β-D-2'-дезоксирибонуклеозид; «s» означает тиофосфатную межнуклеозидную связь (PS); «о» означает фосфодиэфирную межнуклеозидную связь (РО); и «o'» означает ОР(=O)(ОН)-. Группы конъюгата выделены жирным.
Структура GalNAc3-3a показана ранее в Примере 39. Структура GalNAc3-12a показана ранее в Примере 61. Структура GalNAc3-13a показана ранее в Примере 62. Структура GalNAc3-14a показана ранее в Примере 63. Структура GalNAc3-15a показана ранее в Примере 64.
Лечение
Шести-восьминедельным мышам C57bl6 (Jackson Laboratory, Бар-Харбор, штат Мэн) один или два раза ввели подкожную инъекцию дозы, представленной ниже, соединения ISIS 353382, 661161, 671144, 670061, 671261, 671262 или солевого раствора. Мыши, которым вводили дозу два раза, вторую дозу вводили через три дня после первой дозы. Каждая экспериментальная группа состояла из 4 животных. Мышей усыпили через 72 часа после последнего введения для определения уровней мРНК SRB-1 в печени при помощи ПЦР в реальном времени и реагента для количественного определения РНК RIBOGREEN® (Molecular Probes, Inc. Юджин, штат Орегон) по стандартным протоколам. Результаты, показанные ниже, представлены как средний процент уровней мРНК SRB-1 для каждой экспериментальной группы, нормализованных к контрольному образцу, обработанному солевым раствором.
Как показано в Таблице 55, лечение антисмысловыми олигонуклеотидами снижает уровни мРНК SRB-1 дозозависимым образом. Не наблюдали значительной разницы нокдауна мишени между животными, получавшими одну дозу, и животными, получавшими две дозы (см. ISIS 353382 в дозах 30 и 2×15 мг/кг; и ISIS 661161 в дозах 5 и 2×2,5 мг/кг). Антисмысловые олигонуклеотиды, содержащие фосфодиэфир-связанные конъюгаты GalNAc3-3, 12, 13, 14 и 15, демонстрируют существенное усиление эффективности, по сравнению с несопряженным антисмысловым олигонуклеотидом (ISIS 335382).
Уровни трансаминазы в печени, аланин-аминотрансферазы (ALT) и аспартат-аминотрансферазы (AST) в сыворотке измеряли относительно мышей, инъецированных солевым раствором, используя стандартные протоколы. Оценили также общий билирубин и азот мочевины крови (АМК). Проверили изменение массы тела, которое существенно не отличалось от группы с солевым раствором (данные не показаны). Значения ALT, AST, общего билирубина и АМК представлены ниже в Таблице 56.
Пример 66: Влияние различных расщепляемых фрагментов на антисмысловое ингибирование in vivo под действием олигонуклеотидов, направленных на SRB-1, содержащих кластер 5'-GalNAc3
Олигонуклеотиды, перечисленные ниже, испытали в дозозависимом исследовании антисмыслового ингибирования SRB-1 у мышей. Каждая из групп конъюгата GalNAc3 была присоединена к 5'-концу соответствующего олигонуклеотида при помощи фосфодиэфир-связанного нуклеозида (расщепляемый фрагмент (СМ)).
Заглавные буквы указывают азотистое основание для каждого нуклеозида, а mC означает 5-метилцитозин. Нижние индексы: «е» означает 2'-МОЕ модифицированный нуклеозид; «d» означает β-D-2'-дезоксирибонуклеозид; «s» означает тиофосфатную межнуклеозидную связь (PS); «о» означает фосфодиэфирную межнуклеозидную связь (РО); и «o'» означает ОР(=O)(ОН)-. Группы конъюгата выделены жирным.
Структура GalNAc3-3a показана ранее в Примере 39. Структура GalNAc3-13a показана ранее в Примере 62.
Лечение
Шести-восьминедельным мышам C57bl6 (Jackson Laboratory, Ббар-Харбор, штат Мэн) ввели однократную подкожную инъекцию дозы, представленной ниже, соединения ISIS 661161, 670699, 670700, 670701, 671165 или солевого раствора. Каждая экспериментальная группа состояла из 4 животных. Мышей усыпили через 72 часа после последнего введения для определения уровней мРНК SRB-1 в печени при помощи ПЦР в реальном времени и реагента для количественного определения РНК RIBOGREEN® (Molecular Probes, Inc. Юджин, штат Орегон) по стандартным протоколам. Результаты, показанные ниже, представлены как средний процент уровней мРНК SRB-1 для каждой экспериментальной группы, нормализованных к контрольному образцу, обработанному солевым раствором.
Как показано в Таблице 58, лечение антисмысловыми олигонуклеотидами снижает уровни мРНК SRB-1 дозозависимым образом. Все антисмысловые олигонуклеотиды, содержащие различные расщепляемые фрагменты, демонстрируют одинаковую эффективность.
Уровни трансаминазы в печени, аланин-аминотрансферазы (ALT) и аспартат-аминотрансферазы (AST) в сыворотке измеряли относительно мышей, инъецированных солевым раствором, используя стандартные протоколы. Оценили также общий билирубин и азот мочевины крови (АМК). Проверили изменение массы тела, которое существенно не отличалось от группы с солевым раствором (данные не показаны). Значения ALT, AST, общего билирубина и АМК представлены ниже в Таблице 56.
Пример 67: Получение олигомерного соединения 199, содержащего GalNAc3-16
Олигомерное Соединение 199, содержащее группу конъюгата GalNAc3-16, получили по общим способам, представленным в Примерах 7 и 9. Кластерная часть GalNAc3 группы конъюгата GalNAc3-16 (GalNAc3-16a) может быть комбинирована с любым расщепляемым фрагментом с получением различных групп конъюгата. В некоторых вариантах реализации расщепляемый фрагмент представляет собой -P(=O)(OH)-Ad-P(=O)(OH)-. Структура GalNAc3-16 (GalNAc3-16a-CM-) представлена ниже:
Пример 68: Получение олигомерного соединения 200, содержащего GalNAc3-17
Олигомерное Соединение 200, содержащее группу конъюгата GalNAc3-17, получили по общим способам, представленным в Примере 46. Кластерная часть GalNAc3 группы конъюгата GalNAc3-17 (GalNAc3-17a) может быть комбинирована с любым расщепляемым фрагментом с получением различных групп конъюгата. В некоторых вариантах реализации расщепляемый фрагмент представляет собой -P(=O)(OH)-Ad-P(=O)(OH)-. Структура GalNAc3-17 (GalNAc3-17a-CM-) представлена ниже:
Пример 69: Получение олигомерного соединения 201, содержащего GalNAc3-18
Олигомерное Соединение 201, содержащее группу конъюгата GalNAc3-18, получили по общим способам, представленным в Примере 46. Кластерная часть GalNAc3 группы конъюгата GalNAc3-18 (GalNAc3-18a) может быть комбинирована с любым расщепляемым фрагментом с получением различных групп конъюгата. В некоторых вариантах реализации расщепляемый фрагмент представляет собой -Р(=O)(ОН)-Ad-Р(=O)(ОН)-. Структура GalNAc3-18 (GalNAc3-18a-CM-) представлена ниже:
Пример 70: Получение олигомерного соединения 204, содержащего GalNAc3-19
Олигомерное Соединение 204, содержащее группу конъюгата GalNAc3-19, получили из соединения 64 по общим способам, представленным в Примере 52. Кластерная часть GalNAc3 группы конъюгата GalNAc3-19 (GalNAc3-19a) может быть комбинирована с любым расщепляемым фрагментом с получением различных групп конъюгата. В некоторых вариантах реализации расщепляемый фрагмент представляет собой -P(=O)(OH)-Ad-Р(=O)(ОН)-. Структура GalNAc3-19 (GalNAc3-19a-CM-) представлена ниже:
Пример 71: Получение олигомерного соединения 210, содержащего GalNAc3-20
Соединение 205 получили добавлением PFP-ТФК и DIEA к 6-(2,2,2-трифторацетамидо)гексановой кислоте в ацетонитриле, которую получили добавлением трифторуксусного ангидрида к 6-аминогексановой кислоте. Реакционную смесь нагрели до 80°С, затем охладили до комнатной температуры. Олигомерное Соединение 210, содержащее группу конъюгата GalNAc3-20, получили из соединения 208 по общим способам, представленным в Примере 52. Кластерная часть GalNAc3 группы конъюгата GalNAc3-20 (GalNAc3-20a) может быть комбинирована с любым расщепляемым фрагментом с получением различных групп конъюгата. В некоторых вариантах реализации расщепляемый фрагмент представляет собой -P(=O)(OH)-Ad-P(=O)(OH)-. Структура GalNAc3-20 (GalNAc3-20a-CM-) представлена ниже:
Пример 72: Получение олигомерного соединения 215, содержащего GalNAc3-21
Соединение 211 имеется в продаже. Олигомерное Соединение 215, содержащее группу конъюгата GalNAc3-21, получили из соединения 213 по общим способам, представленным в Примере 52. Кластерная часть GalNAc3 группы конъюгата GalNAc3-21 (GalNAc3-21a) может быть комбинирована с любым расщепляемым фрагментом с получением различных групп конъюгата. В некоторых вариантах реализации расщепляемый фрагмент представляет собой -P(=O)(OH)-Ad-P(=O)(OH)-. Структура GalNAc3-21 (GalNAc3-21a-CM-) представлена ниже:
Пример 73: Получение олигомерного соединения 221, содержащего GalNAc3-22
Соединение 220 получили из соединения 219, используя тетразолид диизопропиламмония. Олигомерное Соединение 221, содержащее группу конъюгата GalNAc3-21, получили из соединения 220 по общим способам, представленным в Примере 52. Кластерная часть GalNAc3 группы конъюгата GalNAc3-22 (GalNAc3-22a) может быть комбинирована с любым расщепляемым фрагментом с получением различных групп конъюгата. В некоторых вариантах реализации расщепляемый фрагмент представляет собой -P(=O)(OH)-Ad-Р(=O)(ОН)-. Структура GalNAc3-22 (GalNAc3-22a-CM-) представлена ниже:
Пример 74: Влияние различных расщепляемых фрагментов на антисмысловое ингибирование in vivo под действием олигонуклеотидов, направленных на SRB-1, содержащих кластер 5'-GalNAc3
Олигонуклеотиды, перечисленные ниже, испытали в дозозависимом исследовании антисмыслового ингибирования SRB-1 у мышей. Каждая из групп конъюгата GalNAc3 была присоединена к 5'-концу соответствующего олигонуклеотида.
Во всех таблицах заглавные буквы указывают азотистое основание для каждого нуклеозида, а mC означает 5-метилцитозин. Нижние индексы: «е» означает 2'-МОЕ модифицированный нуклеозид; «d» означает β-D-2'-дезоксирибонуклеозид; «s» означает тиофосфатную межнуклеозидную связь (PS); «о» означает фосфодиэфирную межнуклеозидную связь (РО); и «o'» означает ОР(=O)(ОН)-. Группы конъюгата выделены жирным.
Структура GalNAc3-3a показана ранее в Примере 39. Структура GalNAc3-17a показана ранее в Примере 68, а структура GalNAc3-18a показана в Примере 69.
Лечение
Шести-восьминедельным мышам C57BL/6 (Jackson Laboratory, Бар-Харбор, штат Мэн) ввели однократную подкожную инъекцию дозы, представленной ниже, олигонуклеотида, перечисленного в Таблице 60, или солевого раствора. Каждая экспериментальная группа состояла из 4 животных. Мышей усыпили через 72 часа после последнего введения для определения уровней мРНК SRB-1 при помощи ПЦР в реальном времени и реагента для количественного определения РНК RIBOGREEN® (Molecular Probes, Inc. Юджин, штат Орегон) по стандартным протоколам. Результаты, показанные ниже, представлены как средний процент уровней мРНК SRB-1 для каждой экспериментальной группы, нормализованных к контрольному образцу, обработанному солевым раствором.
Как показано в Таблице 61, лечение антисмысловыми олигонуклеотидами снижает уровни мРНК SRB-1 дозозависимым образом. Антисмысловые олигонуклеотиды, содержащие конъюгат GalNAc, демонстрируют равные эффективности и являются значительно более эффективными, чем исходный олигонуклеотид, не имеющий конъюгата GalNAc.
Уровни трансаминазы в печени, аланин-аминотрансферазы (ALT) и аспартат-аминотрансферазы (AST) в сыворотке измеряли относительно мышей, инъецированных солевым раствором, используя стандартные протоколы. Оценили также общий билирубин и азот мочевины крови (АМК). Проверили изменение массы тела, которое существенно не отличалось от группы с солевым раствором (данные не показаны). Значения ALT, AST, общего билирубина и АМК представлены ниже в Таблице 62.
Пример 75: Фармакокинетический анализ олигонуклеотидов, содержащих 5'-группу конъюгата
ФК ASO, представленных выше в Таблицах 54, 57 и 60, оценили с использованием образцов печени, которые получили после выполнения способов лечения, описанных в Примерах 65, 66 и 74. Образцы печени измельчили и экстрагировали по стандартным протоколам, и анализировали при помощи ИП-ВЭЖХ-МС вместе с внутренним стандартом. Суммарный уровень (мкг/г) всех метаболитов в ткани измерили интегрированиемсоответствующих УФ пиков, а уровни в ткани ASO полной длины, не содержащих конъюгата («исходное», в данном случае Isis №353382), измерили с использованием подходящих ионэкстракционных хроматограмм (EIC).
Результаты, представленные выше в Таблице 63, демонстрируют, что наблюдали более высокие уровни в печени олигонуклеотидов, содержащих группу конъюгата GalNAc3, чем исходного олигонуклеотида, не содержащего группу конъюгата GalNAc3 (ISIS 353382) через 72 часа после введения олигонуклеотида, особенно с учетом введения различных доз для олигонуклеотидов с группой конъюгата GalNAc3 и без нее. Кроме того, через 72 часа 40-98% каждого олигонуклеотида, содержащего группу конъюгата GalNAc3, было метаболизировано до исходного соединения, что указывает на то, что группы конъюгата GalNAc3 расщепляются в указанных олигонуклеотидах.
Пример 76: Получение олигомерного соединения 230, содержащего GalNAc3-23
Соединение 222 имеется в продаже. 44,48 мл (0,33 моль) соединения 222 обрабатывали тозилхлоридом (25,39 г, 0,13 моль) в пиридине (500 мл) в течение 16 часов. Затем реакционную смесь выпарили до маслянистого вещества, растворили в EtOAc и промыли водой, насыщенным раствором NaHCO3, насыщенным солевым раствором и высушили над Na2SO4. Этилацетат концентрировали досуха и очистили колоночной хроматографией, элюировали EtOAc в гексанах (1:1), затем 10% метанола в CH2Cl2 с получением соединения 223 в виде бесцветного маслянистого вещества. Данные ЖХМС и ЯМР согласовались с указанной структурой. 10 г (32,86 ммоль) 1-тозилтриэтиленгликоля (соединение 223) обрабатывали азидом натрия (10,68 г, 164,28 ммоль) в ДМСО (100 мл) при комнатной температуре в течение 17 часов. Затем реакционную смесь вылили в воду и экстрагировали EtOAc. Органический слой три раза промыли водой и высушили над Na2SO4. Органический слой концентрировали досуха с получением 5,3 г соединения 224 (92%). Данные ЖХМС и ЯМР согласовались с указанной структурой. 1-Азидотриэтиленгликоль (соединение 224, 5,53 г, 23,69 ммоль) и соединение 4 (6 г, 18,22 ммоль) обработали 4А молекулярными ситами (5 г) и TMSOTf (1,65 мл, 9,11 ммоль) в дихлорметане (100 мл) под инертной атмосферой. Через 14 часов реакционную смесь отфильтровали для удаления сит, а органический слой промыли насыщенным раствором NaHCO3, водой, насыщенным солевым раствором и высушили над Na2SO4. Органический слой концентрировали досуха и очистили колоночной хроматографией, элюировали градиентом от 2 до 4% метанола в дихлорметане с получением соединения 225. Данные ЖХМС и ЯМР согласовались с указанной структурой. Соединение 225 (11,9 г, 23,59 ммоль) гидрировали в EtOAc/метаноле (4:1, 250 мл) на катализаторе Перлмана. Через 8 часов катализатор удалили фильтрованием, а растворители удалили досуха с получением соединения 226. Данные ЖХМС и ЯМР согласовались с указанной структурой.
Для получения соединения 227 раствор нитрометантриспропионовой кислоты (4,17 г, 15,04 ммоль) и основание Хюнига (10,3 мл, 60,17 ммоль) в ДМФА (100 мл) по каплям обработали пентафтортрифторацетатом (9,05 мл, 52,65 ммоль). Через 30 минут реакционную смесь вылили в ледяную воду и экстрагировали EtOAc. Органический слой промыли водой, насыщенным солевым раствором и высушили над Na2SO4. Органический слой концентрировали досуха, а затем перекристаллизовали из гептана с получением соединения 227 в виде белого твердого вещества. Данные ЖХМС и ЯМР согласовались с указанной структурой. Соединение 227 (1,5 г, 1,93 ммоль) и соединение 226 (3,7 г, 7,74 ммоль) перемешивали при комнатной температуре в ацетонитриле (15 мл) в течение 2 часов. Затем реакционную смесь выпарили досуха и очистили колоночной хроматографией, элюируя градиентом от 2 до 10% метанола в дихлорметане, с получением соединения 228. Данные ЖХМС и ЯМР согласовались с указанной структурой. Соединение 228 (1,7 г, 1,02 ммоль) обработали никелем Ренея (около 2 г, влажный) в этаноле (100 мл) в атмосфере водорода. Через 12 часов катализатор удалили фильтрованием, а органический слой выпарили до твердого вещества, которое использовали непосредственно на следующей стадии. Данные ЖХМС и ЯМР согласовались с указанной структурой. Это твердое вещество (0,87 г, 0,53 ммоль) обработали бензилглутаровой кислотой (0,18 г, 0,8 ммоль), HBTU (0,3 г, 0,8 ммоль) и DIEA (273,7 мкл, 1,6 ммоль) в ДМФА (5 мл). Через 16 часов ДМФА удалили при пониженном давлении при 65°С до маслянистого вещества, и это маслянистое вещество растворили в дихлорметане. Органический слой промыли насыщенным раствором NaHCO3, насыщенным солевым раствором и высушили над Na2SO4. После выпаривания органического слоя соединение очистили колоночной хроматографией и элюировали градиентом от 2 до 20% метанола в дихлорметане с получением связанного продукта. Данные ЖХМС и ЯМР согласовались с указанной структурой. С бензилового эфира сняли защиту на катализаторе Перлмана в атмосфере водорода в течение 1 часа. Затем катализатор удалили фильтрованием, а растворители удалили досуха с получением кислоты. Данные ЖХМС и ЯМР согласовались с указанной структурой. Эту кислоту (486 мг, 0,27 ммоль) растворили в сухом ДМФА (3 мл). Добавили пиридин (53,61 мкл, 0,66 ммоль) и продули реакционную смесь аргоном. К реакционной смеси медленно добавили пентафтортрифторацетат (46,39 мкл, 0,4 ммоль). Цвет реакционной смеси изменился с бледно-желтого на винный, и появился легкий дымок, который улетучился с потоком аргона. Реакционную смесь оставили перемешиваться при комнатной температуре на один час (завершение реакции подтвердили по ЖХМС). Растворитель удалили при пониженном давлении (ротационный испаритель) при 70°С. Остаток разбавили ДХМ и промыли 1 н. NaHSO4, насыщенным солевым раствором, насыщенным раствором бикарбоната натрия и снова насыщенным солевым раствором. Органический слой высушили над Na2SO4, отфильтровали и концентрировали досуха с получением 225 мг соединения 229 в виде хрупкой желтой пены. Данные ЖХМС и ЯМР согласовались с указанной структурой.
Олигомерное Соединение 230, содержащее группу конъюгата GalNAc3-23, получили из соединения 229 по общим способам, представленным в Примере 46. Кластерная часть GalNAc3 группы конъюгата GalNAc3-23 (GalNAc3-23a) может быть комбинирована с любым расщепляемым фрагментом с получением различных групп конъюгата. Структура GalNAc3-23 (GalNAc3-23a-CM) представлена ниже:
Пример 77: Антисмысловое ингибирование in vivo под действием олигонуклеотидов, направленных на SRB-1, содержащих конъюгат GalNAc3
Олигонуклеотиды, перечисленные ниже, испытали в дозозависимом исследовании антисмыслового ингибирования SRB-1 у мышей.
Структура GalNAc3-1a показана ранее в Примере 9, GalNAc3-3a показана в Примере 39, GalNAc3-9a показана в Примере 52, GalNAc3-10a показана в Примере 46, GalNAc3-19a показана в Примере 70, GalNAc3-20a показана в Примере 71, и GalNAc3-23a показана в Примере 76.
Лечение
Шести-восьминедельным мышам C57BL/6 (Jackson Laboratory, Бар-Харбор, штат Мэн) ввели однократную подкожную инъекцию дозы, представленной ниже, олигонуклеотида, перечисленного в Таблице 64, или солевого раствора. Каждая экспериментальная группа состояла из 4 животных. Мышей усыпили через 72 часа после последнего введения для определения уровней мРНК SRB-1 при помощи ПЦР в реальном времени и реагента для количественного определения РНК RIBOGREEN® (Molecular Probes, Inc. Юджин, штат Орегон) по стандартным протоколам. Результаты, показанные ниже, представлены как средний процент уровней мРНК SRB-1 для каждой экспериментальной группы, нормализованных к контрольному образцу, обработанному солевым раствором.
Как показано в Таблице 65, лечение антисмысловыми олигонуклеотидами снижает уровни мРНК SRB-1 дозозависимым образом.
Измерили также уровни трансаминазы в печени, аланин-аминотрансферазы (ALT) и аспартат-аминотрансферазы (AST) в сыворотке, используя стандартные протоколы. Оценили также общий билирубин и азот мочевины крови (АМК). Проверили изменение массы тела, которое существенно не отличалось от группы с солевым раствором (данные не показаны). Значения ALT, AST, общего билирубина и АМК представлены ниже в Таблице 66.
Пример 78: Антисмысловое ингибирование in vivo под действием олигонуклеотидов, направленных на ангиотензиноген, содержащих конъюгат GalNAc3
Олигонуклеотиды, перечисленные ниже, испытали в дозозависимом исследовании антисмыслового ингибирования ангиотензиногена (AGT) у нормотензивных мышей Спрага-Доули.
Структура GalNAc3-1a показана ранее в Примере 9.
Лечение
Шестинедельным самцам крыс Спрага-Доули один раз в неделю вводили подкожную инъекцию дозы, представленной ниже, в целом три дозы олигонуклеотида, перечисленного в Таблице 67, или PBS. Каждая экспериментальная группа состояла из 4 животных. Крыс усыпили через 72 часа после последней дозы. Уровни мРНК AGT в печени измерили при помощи ПЦР в реальном времени и реагента для количественного определения РНК RIBOGREEN® (Molecular Probes, Inc., Юджин, штат Орегон) по стандартным протоколам. Уровни белка AGT в плазме измерили при помощи твердофазного иммуноферментного анализа для определения общего ангиотензиногена (кат. № JP27412, IBL International, Торонто, штат Онтарио) с разбавлением плазмы 1:20000. Результаты, показанные ниже, представлены как средний процент от уровней мРНК AGT в печени или от уровней белка AGT в плазме для каждой экспериментальной группы, нормализованных к контрольному образцу с PBS.
Как показано в Таблице 68, лечение антисмысловыми олигонуклеотидами снижает уровни мРНК AGT в печени и уровни белка в плазме дозозависимым образом, и олигонуклеотид, содержащий конъюгат GalNAc, был значительно более эффективным, чем исходный олигонуклеотид, не содержащий конъюгата GalNAc.
Измерили также уровни трансаминазы в печени, аланин-аминотрансферазы (ALT) и аспартат-аминотрансферазы (AST) в плазме, а также массу тела в момент усыпления, используя стандартные протоколы. Результаты представлены ниже в Таблице 69.
Пример 79: Продолжительность действия in vivo олигонуклеотидов, направленных на АРОС-III, содержащих конъюгат GalNAc3
Олигонуклеотиды, перечисленные ниже в Таблице 70, испытали в исследовании однократной дозы на продолжительность действия у мышей.
Структура GalNAc3-1a показана ранее в Примере 9, GalNAc3-3a показана в Примере 39, GalNAc3-7a показана в Примере 48, GalNAc3-10a показана в Примере 46, и GalNAc3-13a показана в Примере 62.
Лечение
Шести-восьминедельным трансгенным мышам, экспрессирующим человеческий АРОС-III, ввели однократную подкожную инъекцию олигонуклеотида, перечисленного в Таблице 70, или PBS. Каждая экспериментальная группа состояла из 3 животных. Образцы крови брали до введения дозы для определения исходного значения, а также через 72 часа, 1 неделю, 2 недели, 3 недели, 4 недели, 5 недель и 6 недель после введения дозы. Уровни триглицеридов и белка АРОС-III в плазме измеряли так, как описано в Примере 20. Результаты, показанные ниже, представлены как средний процент от уровней триглицеридов и АРОС-III в плазме для каждой экспериментальной группы, нормализованных и исходным значениям, и они демонстрируют, что олигонуклеотиды, содержащие группу конъюгата GalNAc, обладают более продолжительным действием, чем исходный олигонуклеотид, не содержащий группу конъюгата (ISIS 304801) даже несмотря на то, что доза исходного соединения была в три раза выше, чем доза олигонуклеотидов, содержащих группу конъюгата GalNAc.
Пример 80: Антисмысловое ингибирование in vivo под действием олигонуклеотидов, направленных на альфа-1 антитрипсин (А1АТ), содержащих конъюгат GalNAc3
Олигонуклеотиды, перечисленные ниже в Таблице 72, испытали в исследовании дозозависимого ингибирования А1АТ у мышей.
Структура GalNAc3-1a показана ранее в Примере 9, GalNAc3-3a показана в Примере 39, GalNAc3-7a показана в Примере 48, GalNAc3-10a показана в Примере 46, и GalNAc3-13a показана в Примере 62.
Лечение
Шестинедельным самцам мышей C57BL/6 (Jackson Laboratory, Бар-Харбор, штат Мэн) один раз в неделю вводили подкожную инъекцию дозы, представленной ниже, в целом три дозы олигонуклеотида, перечисленного в Таблице 72, или PBS. Каждая экспериментальная группа состояла из 4 животных. Мышей усыпили через 72 часа после последнего введения. Уровни мРНК А1АТ в печени определили при помощи ПЦР в реальном времени и реагента для количественного определения РНК RIBOGREEN® (Molecular Probes, Inc., Юджин, штат Орегон) по стандартным протоколам. Уровни белка А1АТ в плазме определили при помощи твердофазного иммуноферментного анализа для определения мышиного альфа 1-антитрипсина (кат. №41-A1AMS-E01, Alpco, Салем, штат Нью-Гэмпшир). Результаты, показанные ниже, представлены как средний процент уровней мРНК А1АТ в печени и белка в плазме для каждой экспериментальной группы, нормализованных к контрольному образцу cPBS.
Как показано в Таблице 73, лечение антисмысловыми олигонуклеотидами снижает уровни мРНК А1АТ в печени и уровни белка А1АТ в плазме дозозависимым образом. Олигонуклеотиды, содержащие конъюгат GalNAc, были значительно более эффективными, чем исходное соединение (ISIS 476366).
Во время усыпления измерили уровни трансаминазы в печени и АМК в плазме по стандартным протоколам. Измерили также массы тела и массы органов. Результаты представлены ниже в Таблице 74. Масса тела представлена как % относительно исходного значения. Массы органов представлены как % от массы тела относительно контрольной группы с PBS.
Пример 81: Продолжительность действия in vivo олигонуклеотидов, направленных на А1АТ, содержащих кластер GalNAc3
Олигонуклеотиды, перечисленные в Таблице 72, испытали в исследовании однократной дозы на продолжительность действия у мышей.
Лечение
Шестинедельным самцам мышей C57BL/6 ввели однократную подкожную инъекцию олигонуклеотида, перечисленного в Таблице 72, или PBS. Каждая экспериментальная группа состояла из 4 животных. Образцы крови брали за день до введения дозы для определения исходного значения, а также на 5, 12, 19 и 25 день после введения дозы. Уровни белка А1АТ в плазме измерили при помощи твердофазного иммуноферментного анализа (см. Пример 80). Результаты, показанные ниже, представлены как средний процент уровней белка А1АТ в плазме для каждой экспериментальной группы, нормализованных к исходным уровням. Результаты демонстрируют, что олигонуклеотиды, содержащие конъюгат GalNAc, были более эффективными и имели более продолжительное действие, чем исходное соединение без конъюгата GalNAc (ISIS 476366). Кроме того, олигонуклеотиды, содержащие 5'-GalNAc конъюгат (ISIS 678381, 678382, 678383 и 678384), были, в целом, еще более эффективными с еще более продолжительным действием, чем олигонуклеотид, содержащий 3'-GalNAc конъюгат (ISIS 656326).
Пример 82: Антисмысловое ингибирование in vitro под действием олигонуклеотидов, направленных на SRB-1, содержащих конъюгат GalNAc3
Первичные гепатоциты печени мышей высеивали в 96-луночные планшеты при 15000 клеток на лунку за 2 часа до обработки. Олигонуклеотиды, перечисленные в Таблице 76, добавили в концентрации 2, 10, 50 или 250 нМ в среде Уильяма Е, и инкубировали клетки в течение ночи при 37°С в 5% СО2. Клетки лизировали через 16 часов после добавления олигонуклеотида, а общую РНК очистили при помощи RNease 3000 BioRobot (Qiagen). Уровни мРНК SRB-1 определили при помощи ПЦР в реальном времени и реагента для количественного определения РНК RIBOGREEN® (Molecular Probes, Inc., Юджин, штат Орегон) по стандартным протоколам. Значения IC50 определили при помощи программы Prism 4 (GraphPad). Результаты демонстрируют, что олигонуклеотиды, содержащие множество различных групп конъюгата GalNAc и множество различных расщепляемых фрагментов, являются значительно более эффективными в in vitro эксперименте свободного поглощения, чем исходные олигонуклеотиды, не содержащие группу конъюгата GalNAc (ISIS 353382 и 666841).
Структура GalNAc3-1a показана ранее в Примере 9, GalNAc3-3a показана в Примере 39, GalNAc3-5a показана в Примере 49, GalNAc3-6a показана в Примере 51, GalNAc3-7а показана в Примере 48, GalNAc3-8a показана в Примере 47, GalNAc3-9a показана в Примере 52, GalNAc3-10а показана в Примере 46, GalNAc3-12a показана в Примере 61, GalNAc3-13a показана в Примере 62, GalNAc3-14a показана в Примере 63, GalNAc3-15a показана в Примере 64, GalNAc3-17a показана в Примере 68, GalNAc3-18a показана в Примере 69, GalNAc3-19a показана в Примере 70, GalNAc3-20a показана в Примере 71, и GalNAc3-23a показана в Примере 76.
Пример 83: Антисмысловое ингибирование in vivo под действием олигонуклеотидов, направленных на фактор XI, содержащих кластер GalNAc3
Олигонуклеотиды, перечисленные ниже в Таблице 77, испытали в исследовании дозозависимого ингибирования фактора XI у мышей.
Структура GalNAc3-1a показана ранее в Примере 9, GalNAc3-3a показана в Примере 39, GalNAc3-7a показана в Примере 48, GalNAc3-10a показана в Примере 46, и GalNAc3-13a показана в Примере 62.
Лечение
Шести-восьминедельным мышам один раз в неделю вводили подкожную инъекцию дозы, представленной ниже, в целом три дозы олигонуклеотида, перечисленного ниже, или PBS. Каждая экспериментальная группа состояла из 4 животных. Мышей усыпили через 72 часа после последней дозы. Уровни мРНК фактора XI в печени измерили при помощи ПЦР в реальном времени и нормализовали к циклофилину по стандартным протоколам. Измерили также трансаминазы в печени, АМК и билирубин. Результаты, показанные ниже, представлены как средний процент для каждой экспериментальной группы, нормализованный к контролю с PBS.
Как показано в Таблице 78, лечение антисмысловыми олигонуклеотидами снижает уровни мРНК фактора XI в печени дозозависимым образом. Результаты демонстрируют, что олигонуклеотиды, содержащие конъюгат GalNAc, были более эффективными, чем исходное соединение без конъюгата GalNAc (ISIS 404071). Кроме того, олигонуклеотиды, содержащие 5'-GalNAc конъюгат (ISIS 663086, 678347, 678348 и 678349), были еще более эффективными, чем олигонуклеотид, содержащий 3'-GalNAc конъюгат (ISIS 656173).
Пример 84: Продолжительность действия in vivo олигонуклеотидов, направленных на фактор XI, содержащих конъюгат GalNAc3
Олигонуклеотиды, перечисленные в Таблице 77, испытали в исследовании однократной дозы на продолжительность действия у мышей.
Лечение
Шести-восьминедельным мышам ввели однократную подкожную инъекцию олигонуклеотида, перечисленного в Таблице 77, или PBS. Каждая экспериментальная группа состояла из 4 животных. Образцы крови брали из хвостовой вены за день до введения дозы для определения исходного значения, а также на 3, 10 и 17 день после введения дозы. Уровни белка фактора XI в плазме определяли твердофазным иммуноферментным анализом, используя иммобилизованные и биотинилированные детекторные антитела для фактора XI производства R&D Systems, Миннеаполис, штат Миннесота (кат. №AF2460 и №BAF2460, соответственно), а также реагент OptEIA, набор В (кат. №550534, BD Biosciences, Сан-Хосе, штат Калифорния). Результаты, показанные ниже, представлены как средний процент уровней белка фактора XI в плазме для каждой экспериментальной группы, нормализованных к исходным уровням. Результаты демонстрируют, что олигонуклеотиды, содержащие конъюгат GalNAc, были более эффективными и имели более продолжительное действие, чем исходное соединение без конъюгата GalNAc (ISIS 404071). Кроме того, олигонуклеотиды, содержащие 5'-GalNAc конъюгат (ISIS 663086, 678347, 678348 и 678349), были еще более эффективными с еще более продолжительным действием, чем олигонуклеотид, содержащий 3'-GalNAc конъюгат (ISIS 656173).
Пример 85: Антисмысловое ингибирование in vivo под действием олигонуклеотидов, направленных на SRB-1, содержащих конъюгат GalNAc3
Олигонуклеотиды, перечисленные в Таблице 76, испытали в дозозависимом исследовании антисмыслового ингибирования SRB-1 у мышей.
Лечение
Шести-восьминедельным мышам C57BL/6 один раз в неделю вводили подкожную инъекцию дозы, представленной ниже, в целом три дозы олигонуклеотида, перечисленного в Таблице 76, или солевого раствора. Каждая экспериментальная группа состояла из 4 животных. Мышей усыпили через 48 часов после последнего введения для определения уровней мРНК SRB-1 при помощи ПЦР в реальном времени и реагента для количественного определения РНК RIBOGREEN® (Molecular Probes, Inc. Юджин, штат Орегон) по стандартным протоколам. Результаты, показанные ниже, представлены как средний процент уровней мРНК SRB-1 в печени для каждой экспериментальной группы, нормализованных к контрольному образцу, обработанному солевым раствором.
Как показано в Таблицах 80 и 81, лечение антисмысловыми олигонуклеотидами снижает уровни мРНК SRB-1 дозозависимым образом.
Измерили также уровни трансаминазы в печени, общего билирубина, АМК и массы тела по стандартным протоколам. Средние значения для каждой экспериментальной группы представлены ниже в Таблице 82.
Пример 86: Антисмысловое ингибирование in vivo под действием олигонуклеотидов, направленных на TTR, содержащих кластер GalNAc3
Олигонуклеотиды, перечисленные ниже в Таблице 83, испытали в дозозависимом исследовании антисмыслового ингибирования человеческого транстиретина (TTR) у трансгенных мышей, экспрессирующих человеческий TTR ген.
Лечение
Восьминедельным TTR трансгенным мышам один раз в неделю в течение трех недель, в целом три дозы, вводили подкожную инъекцию олигонуклеотида и дозы, перечисленных в представленных ниже таблицах, или PBS. Каждая экспериментальная группа состояла из 4 животных. Мышей усыпили через 72 часа после последнего введения. В течение эксперимента в различных временных точках брали образцы крови из хвостовой вены и измеряли уровни белка TTR в плазме, ALT и AST, которые представлены в Таблицах 85-87. После усыпления животных измерили уровни ALT, AST и человеческого TTR в плазме, а также массы тела, массы органов и уровни мРНК человеческого TTR в печени. Уровни белка TTR измерили при помощи клинического анализатора (AU480, Beckman Coulter, штат Калифорния). Реагент для количественного определения РНК RIBOGREEN® (Molecular Probes, Inc., использовали по стандартным протоколам для определения уровней мРНК человеческого TTR в печени. Результаты, показанные в Таблицах 84-87, представляют собой средние значения для каждой экспериментальной группы. Уровни мРНК представляют собой средние значения относительно среднего значения для PBS группы. Уровни белка в плазме представляют собой средние значения относительно среднего значения для PBS группы в исходном состоянии. Массы тела представляют собой среднее процентное изменение массы от исходного значения до умерщвления для каждой отдельной экспериментальной группы. Представленные массы органов нормализованы к массе тела животного, а затем представлена средняя нормализованная масса органов для каждой экспериментальной группы относительно средней нормализованной массы органов для PBS группы.
В Таблицах 84-87 «BL» означает исходное значения измерений, выполненных непосредственно перед введением первой дозы. Как показано в Таблицах 84 и 85, лечение антисмысловыми олигонуклеотидами снижает уровни экспрессии TTR дозозависимым образом. Олигонуклеотиды, содержащие конъюгат GalNAc, были более эффективными, чем исходное соединение без конъюгата GalNAc (ISIS 420915). Кроме того, олигонуклеотиды, содержащие конъюгат GalNAc и смешанные PS/PO межнуклеозидные связи, были еще более эффективными, чем олигонуклеотид, содержащий конъюгат GalNAc и только PS связи.
Легенда для Таблицы 85 представлена в Примере 74. Структура GalNAc3-1 показана в Примере 9. Структура GalNAc3-3a показана в Примере 39. Структура GalNAc3-7а показана в Примере 48. Структура GalNAc3-10a показана в Примере 46. Структура GalNAc3-13a показана в Примере 62. Структура GalNAc3-19a показана в Примере 70.
Пример 87: Продолжительность действия in vivo однократных доз олигонуклеотидов, направленных на TTR, содержащих кластер GalNAc3
ISIS №420915 и 660261 (см. Таблицу 83), испытали в исследовании однократной дозы на продолжительность действия у мышей. ISIS №420915, 682883 и 682885 (см. Таблицу 83) также испытали в исследовании однократной дозы на продолжительность действия у мышей.
Лечение
Восьминедельным самцам трансгенных мышей, которые экспрессируют человеческий TTR, ввели однократную подкожную инъекцию 100 мг/кг ISIS №420915 или 13,5 мг/кг ISIS №660261. Каждая экспериментальная группа состояла из 4 животных. Образцы крови из хвостовой вены брали до введения дозы для определения исходных показателей и на 3, 7, 10, 17, 24 и 39 день после введения дозы. Уровни белка TTR в плазме измеряли так, как описано в Примере 86. Результаты, показанные ниже, представлены как средний процент уровней белка TTR в плазме для каждой экспериментальной группы, нормализованных к исходным уровням.
Лечение
Самкам трансгенных мышей, которые экспрессируют человеческий TTR, ввели однократную подкожную инъекцию 100 мг/кг ISIS №420915, 10,0 мг/кг ISIS №682883 или 10,0 мг/кг 682885. Каждая экспериментальная группа состояла из 4 животных. Образцы крови из хвостовой вены брали до введения дозы для определения исходных показателей и на 3, 7, 10, 17, 24 и 39 день после введения дозы. Уровни белка TTR в плазме измеряли так, как описано в Примере 86. Результаты, показанные ниже, представлены как средний процент уровней белка TTR в плазме для каждой экспериментальной группы, нормализованных к исходным уровням.
Результаты в Таблицах 88 и 89 демонстрируют, что олигонуклеотиды, содержащие конъюгат GalNAc, являются более эффективными и имеют более продолжительное действие, чем исходный олигонуклеотид без конъюгата (ISIS 420915).
Пример 88: Сплайсинг-модулирование in vivo под действием олигонуклеотидов, направленных на SMN, содержащих конъюгат GalNAc3
Олигонуклеотиды, перечисленные в Таблице 90, испытали на сплайсинг-модулирование человеческих генов выживаемости мотонейронов (SMN) у мышей.
Структура GalNAc3-7a показана ранее в Примере 48. «X» означает 5'-первичный амин, полученный компанией Gene Tools (Филомат, штат Орегон), aGalNAc3-7b означает структуру GalNAc3-7a, не содержащую часть -NH-С6-О линкера, как показано ниже:
ISIS №703421 и 703422 представляют собой морфолино-олигонуклеотиды, при этом каждый нуклеотид из двух олигонуклеотидов представляет собой морфолино-нуклеотид.
Лечение
Шестинедельным трансгенным мышам, экспрессирующим человеческий SMN, ввели однократную подкожную инъекцию олигонуклеотида, перечисленного в Таблице 91, или солевого раствора. Каждая экспериментальная группа состояла из 2 самцов и 2 самок. Мышей усыпили через 3 дня после введения дозы для определения уровней мРНК человеческого SMN в печени с экзоном 7 и без него, используя ПЦР в реальном времени по стандартным протоколам. Общую РНК измерили при помощи реагента Ribogreen. Уровни мРНК SMN нормализовали к общей мРНК, а затем нормализовали к средним значениям в группе, обработанной солевым раствором. Полученные средние отношения мРНК SMN, содержащей экзон 7, к мРНК SMN, не содержащей экзон 7, представлены в Таблице 91. Результаты демонстрируют, что полностью модифицированные олигонуклеотиды, которые модулируют сплайсинг и содержат конъюгат GalNAc, являются значительно более эффективными для изменения сплайсинга в печени, чем исходные олигонуклеотиды, не содержащие конъюгат GalNAc. Кроме того, эта тенденция сохраняется для химизма многократных модификаций, включая 2'-МОЕ и морфолино-модифицированные олигонуклеотиды.
Пример 89: Антисмысловое ингибирование in vivo под действием олигонуклеотидов, направленных на аполипопротеин А (Аро(а)), содержащих конъюгат GalNAc3
Олигонуклеотиды, перечисленные ниже в Таблице 92, испытали в исследовании дозозависимого ингибирования Аро(а) у трансгенных мышей.
Структура GalNAc3-7a показана в Примере 48.
Лечение
Восьминедельным самкам мышей C57BL/6 (Jackson Laboratory, Бар-Харбор, штат Мэн) один раз в неделю вводили подкожную инъекцию дозы, представленной ниже, в целом шесть доз олигонуклеотида, перечисленного в Таблице 92, или PBS. Каждая экспериментальная группа состояла из 3-4 животных. Образцы крови из хвостовой вены брали за день до введения первой дозы и еженедельно после введения каждой дозы для определения уровней белка Аро(а) в плазме. Мышей усыпили через два дня после последнего введения. Уровни мРНК Аро(а) в печени определили при помощи ПЦР в реальном времени и реагента для количественного определения РНК RIBOGREEN® (Molecular Probes, Inc., Юджин, штат Орегон) по стандартным протоколам. Уровни белка Аро(а) в плазме определили при помощи твердофазного иммуноферментного анализа, и определили уровни трансаминазы в печени. Результаты анализа мРНК и белка в плазме в Таблице 93 представлены как среднее процентное значение для экспериментальной группы относительно группы, обработанной PBS. Уровни белка в плазме дополнительно нормализовали к исходному значению (BL) для группы с PBS. Средние абсолютные уровни трансаминазы и массы тела (% относительно среднего исходного значения) представлены в Таблице 94.
Как показано в Таблице 93, лечение олигонуклеотидами снижает уровни мРНК Аро(а) в печени и уровни белка в плазме дозозависимым образом. Кроме того, олигонуклеотид, содержащий конъюгат GalNAc, был значительно более эффективным с более продолжительным действием, чем исходный олигонуклеотид, не содержащий конъюгат GalNAc. Как показано в Таблице 94, представленные олигонуклеотиды не влияют на уровни трансаминазы и массы тела, что указывает на хорошую переносимость олигонуклеотидов.
Пример 90: Антисмысловое ингибирование in vivo под действием олигонуклеотидов, направленных на TTR, содержащих кластер GalNAc3
Олигонуклеотиды, перечисленные ниже в Таблице 95, испытали в дозозависимом исследовании антисмыслового ингибирования человеческого транстиретина (TTR) у трансгенных мышей, экспрессирующих человеческий TTR ген.
Лечение
TTR трансгенным мышам один раз в неделю в течение трех недель, в целом три дозы, вводили подкожную инъекцию олигонуклеотида и дозы, перечисленных в Таблице 96, или PBS. Каждая экспериментальная группа состояла из 4 животных. Перед введением первой дозы взяли образец крови из хвостовой вены для определения уровней белка TTR в плазме в исходном состоянии (BL). Мышей усыпили через 72 часа после последнего введения. Уровни белка TTR измерили при помощи клинического анализатора (AU480, Beckman Coulter, штат Калифорния). Реагент для количественного определения РНК RIBOGREEN® (Molecular Probes, Inc., использовали по стандартным протоколам для определения уровней мРНК человеческого TTR в печени. Результаты, показанные в Таблице 96, представляют собой средние значения для каждой экспериментальной группы. Уровни мРНК представляют собой средние значения относительно среднего значения для PBS группы. Уровни белка в плазме представляют собой средние значения относительно среднего значения для PBS группы в исходном состоянии. «BL» означает исходное значения измерений, выполненных непосредственно перед введением первой дозы. Как показано в Таблице 96, лечение антисмысловыми олигонуклеотидами снижает уровни экспрессии TTR дозозависимым образом. Олигонуклеотид, содержащий конъюгат GalNAc, был более эффективным, чем исходное соединение без конъюгата GalNAc (ISIS 420915), а олигонуклеотиды, содержащие фосфодиэфирный или дезоксиаденозиновый расщепляемый фрагмент, демонстрировали значительное усиление эффективности, по сравнению с исходным соединением, не содержащим конъюгат (см. ISIS №682883 и 666943 по сравнению с 420915, а также см. Примеры 86 и 87).
Легенда для Таблицы 95 представлена в Примере 74. Структура GalNAc3-3а показана в Примере 39. Структура GalNAc3-7a показана в Примере 48. Структура GalNAc3-10а показана в Примере 46. Структура GalNAc3-13a показана в Примере 62.
Пример 91: Антисмысловое ингибирование in vivo под действием олигонуклеотидов, направленных на фактор VII, содержащих конъюгат GalNAc3, у приматов, не являющихся человеком
Олигонуклеотиды, перечисленные ниже в Таблице 97, испытали в нетерминальном исследовании повышения дозы на антисмысловое ингибирование фактора VII у обезьян.
Лечение
Обезьянам, ранее не подверженным экспериментам, на 0, 15 и 29 день вводили подкожные инъекции повышающихся доз олигонуклеотидов, перечисленных в Таблице 97, или PBS. Каждая экспериментальная группа состояла из 4 самцов и 1 самки. Перед введением первой дозы и в различные временные точки после нее брали образцы крови для определения уровней белка фактора VII в плазме. Уровни белка фактора VII определяли с помощью твердофазного иммуноферментного анализа. Результаты, показанные в Таблице 98, представляют собой средние значения для каждой экспериментальной группы относительно среднего значения для группы PBS в исходном состоянии (BL), измерения выполнены непосредственно перед введением первой дозы. Как показано в Таблице 98, лечение антисмысловыми олигонуклеотидами снижает уровни экспрессии фактора VII дозозависимым образом, и олигонуклеотид, содержащий конъюгат GalNAc, был значительно более эффективным у обезьян, чем олигонуклеотид, не содержащий конъюгата GalNAc.
Легенда для Таблицы 97 представлена в Примере 74. Структура GalNAc3-10а показана в Примере 46.
Пример 92: Антисмысловое ингибирование в первичных гепатоцитах под действием олигонуклеотидов, направленных на Аро-CIII, содержащих конъюгат GalNAc3
Первичные мышиные гепатоциты высеивали в 96-луночные планшеты при 15000 клеток на лунку и добавляли олигонуклеотиды, перечисленные в Таблице 99, направленные на мышиный АроС-III в концентрации 0,46, 1,37, 4,12 или 12,35, 37,04, 111,11 или 333,33 нМ, или 1,00 мкМ. После инкубации с олигонуклеотидами в течение 24 часов клетки лизировали и очистили общую РНК при помощи RNeasy (Qiagen). Уровни мРНК АроС-III определили при помощи ПЦР в реальном времени и реагента для количественного определения РНК RIBOGREEN® (Molecular Probes, Inc.) по стандартным протоколам. Значения IC50 определили при помощи программы Prism 4 (GraphPad). Результаты демонстрируют, что независимо от того, является ли расщепляемый фрагмент фосфодиэфиром или фосфодиэфир-связанным дезоксиаденозином, олигонуклеотиды, содержащие конъюгат GalNAc, были значительно более эффективными, чем исходный олигонуклеотид, не содержащий конъюгата.
Структура GalNAc3-1a показана ранее в Примере 9, GalNAc3-3a показана в Примере 39, GalNAc3-7a показана в Примере 48, GalNAc3-10a показана в Примере 46, GalNAc3-13a показана в Примере 62, и GalNAc3-19a показана в Примере 70.
Пример 93: Антисмысловое ингибирование in vivo под действием олигонуклеотидов, направленных на SRB-1, содержащих смешанные крылья и 5'-GalNAc3 конъюгат
Олигонуклеотиды, перечисленные в Таблице 100, испытали в дозозависимом исследовании антисмыслового ингибирования SRB-1 у мышей.
Структура GalNAc3-3a показана ранее в Примере 39, а структура GalNAc3-7a показана ранее в Примере 48. Нижние индексы: «е» означает 2'-МОЕ модифицированный нуклеозид; «d» означает β-D-2'-дезоксирибонуклеозид; «k» означает 6'-(S)-СН3 бициклический нуклеозид (cEt); «s» означает тиофосфатные межнуклеозидные связи (PS); «о» означает фосфодиэфирные межнуклеозидные связи (РО). Верхний индекс «т» означает 5-метилцитозины.
Лечение
Шести-восьминедельным мышам C57BL/6 (Jackson Laboratory, Бар-Харбор, штат Мэн) ввели однократную подкожную инъекцию дозы, представленной ниже, олигонуклеотида, перечисленного в Таблице 100, или солевого раствора. Каждая экспериментальная группа состояла из 4 животных. Мышей усыпили через 72 часа после последнего введения. Уровни мРНК SRB-1 в печени измерили при помощи ПЦР в реальном времени. Уровни мРНК SRB-1 нормализовали к уровням мРНК циклофилина по стандартным протоколам. Результаты, показанные ниже, представлены как средний процент уровней мРНК SRB-1 для каждой экспериментальной группы, по сравнению с контрольной группой, обработанной солевым раствором. Как показано в Таблице 101, лечение антисмысловыми олигонуклеотидами снижает уровни мРНК SRB-1 дозозависимым образом, а гэпмерные олигонуклеотиды, содержащие конъюгат GalNAc и имеющие крылья, которые представляют собой либо полностью cEt, либо смешанные сахарные модификации, были существенно более эффективными, чем исходный олигонуклеотид, не содержащий конъюгата и содержащий полностью cEt модифицированные крылья.
Измерили также массы тела, уровни трансаминазы в печени, общий билирубин и АМК, а средние значения для каждой экспериментальной группы представлены в Таблице 101. Масса тела показана как средний процент массы тела относительно исходной массы тела (% BL), измеренный непосредственно перед введением дозы олигонуклеотида.
Пример 94: Антисмысловое ингибирование in vivo под действием олигонуклеотидов, направленных на SRB-1, содержащих 2'-сахарные модификации и 5'-GalNAc3 конъюгат
Олигонуклеотиды, перечисленные в Таблице 102, испытали в дозозависимом исследовании антисмыслового ингибирования SRB-1 у мышей.
Верхний индекс «m» означает 2'-O-метил-модифицированный нуклеозид. Полная легенда к таблице представлена в Примере 74. Структура GalNAc3-3a показана ранее в Примере 39, а структура GalNAc3-7a показана в Примере 48.
Лечение
Исследование проводили по протоколу, описанному в Примере 93. Результаты представлены ниже в Таблице 103 и демонстрируют, что и 2'-МОЕ, и 2'-ОМе-модифицированные олигонуклеотиды, содержащие конъюгат GalNAc, были значительно более эффективными, чем соответствующие исходные олигонуклеотиды, не содержащие конъюгата. Результаты измерений массы тела, трансаминазы в печени, общего билирубина и АМК демонстрируют, что эти соединения хорошо переносятся.
Пример 95: Антисмысловое ингибирование in vivo под действием олигонуклеотидов, направленных на SRB-1, содержащих бициклические нуклеозиды и 5'-GalNAc3 конъюгат
Олигонуклеотиды, перечисленные в Таблице 104, испытали в дозозависимом исследовании антисмыслового ингибирования SRB-1 у мышей.
Нижний индекс «g» означает фтор-ГНК нуклеозид, нижний индекс «1» означает закрытый нуклеозид, содержащий мостик 2'-O-СН2-4'. Другие сокращения представлены в легенде таблицы Примера 74. Структура GalNAc3-1a показана ранее в Примере 9, структура GalNAc3-3а показана ранее в Примере 39, и структура GalNAc3-7a показана ранее в Примере 48.
Лечение
Исследование проводили по протоколу, описанному в Примере 93. Результаты представлены ниже в Таблице 105 и демонстрируют, что олигонуклеотиды, содержащие конъюгат GalNAc и различные бициклические нуклеозидные модификации, были значительно более эффективными, чем исходный олигонуклеотид, не содержащий конъюгата и содержащий бициклические нуклеозидные модификации. Кроме того, олигонуклеотид, содержащий конъюгат GalNAc и фтор-ГНК модификации, был существенно более эффективным, чем исходное соединение, не содержащее конъюгата и содержащее фтор-ГНК модификации. Результаты измерений массы тела, трансаминазы в печени, общего билирубина и АМК демонстрируют, что эти соединения хорошо переносятся.
Пример 96: Связывание белка плазмы антисмысловыми олигонуклеотидами, содержащими группу конъюгата GalNAc3
Олигонуклеотиды, перечисленные в Таблице 70, направленные на АроС-III, и олигонуклеотиды в Таблице 106, направленные на Аро(а), испытали в анализе ультрафильтрации для оценки связывания белка в плазме.
Легенда таблицы представлена в Примере 74. Структура GalNAc3-7a показана ранее в Примере 48.
Элементы для ультрафильтрации Ultrafree-MC (номинальное ограничение молекулярной массы 30000, слабосвязывающая регенерированная целлюлозная мембрана, Millipore, Бедфорд, штат Массачусетс) предварительно кондиционировали с 300 мкл 0,5% Tween 80 и центрифугировали при 2000 g в течение 10 минут, затем с 300 мкл 300 мкг/мл раствора контрольного олигонуклеотида в Н2О и центрифугировали при 2000 g в течение 16 минут. Для оценки неспецифического связывания с фильтрами каждого исследуемого олигонуклеотида из Таблиц 70 и 106, используемых в испытаниях, 300 мкл 250 нг/мл раствора олигонуклеотида в H2O при рН 7,4 поместили в предварительно кондиционированные фильтры и центрифугировали при 2000 g в течение 16 минут. Нефильтрованные и фильтрованные образцы анализировали твердофазным иммуноферментным анализом для определения концентраций олигонуклеотидов. Для получения средней концентрации для каждого образца использовали три экземпляра. Среднюю концентрацию фильтрованного образца относительно нефильтрованного образца использовали для определения процента олигонуклеотида, прошедшего через фильтр без плазмы (% выделения).
Замороженные образцы цельной плазмы, собранные в K3-ЭДТК и полученные от здоровых, не принимающих лекарства людей-добровольцев, яванских макак и мышей CD-I, приобрели у компании Bioreclamation LLC (Вестбери, штат Нью-Йорк). Исследуемые олигонуклеотиды добавляли к 1,2 мл аликвотам плазмы в двух концентрациях (5 и 150 мкг/мл). Аликвоту (300 мкл) каждого маркированного образца плазмы поместили на предварительно кондиционированный фильтровальный элемент и инкубировали при 37°С в течение 30 минут, затем сразу выполнили центрифугирование при 2000 g в течение 16 минут. Аликвоты фильтрованных и нефильтрованных маркированных образцов плазмы анализировали твердофазным иммуноферментным анализом для определения концентрации олигонуклеотида в каждом образце. Использовали три экземпляра каждой концентрации для определения среднего процента связанного и несвязанного олигонуклеотида в каждом образце. Среднюю концентрацию фильтрованного образца относительно концентрации нефильтрованного образца использовали для определения процента олигонуклеотида в плазме, не связанного с белками плазмы (% несвязанного). Окончательные значения несвязанного олигонуклеотида корректировали на неспецифическое связывание путем деления % несвязанного на % выделения для каждого олигонуклеотида. Окончательные значения % связанного олигонуклеотида определили вычитанием окончательных значений % несвязанного из 100. Результаты показаны в Таблице 107 для двух концентраций испытанного олигонуклеотида (5 и 150 мкг/мл) в плазме каждого вида. Результаты демонстрируют, что группы конъюгата GalNAc не оказывают существенного влияния на связывание белка плазмы. Кроме того, олигонуклеотиды, содержащие только PS межнуклеозидные связи и смешанные PO/PS связи, - оба варианта связывают белки плазмы, при этом олигонуклеотиды, содержащие только PS связи, связывают белки плазмы в несколько большей степени, чем олигонуклеотиды, содержащие смешанные PO/PS связи.
Пример 97: Модифицированные олигонуклеотиды, направленные на TTR, содержащие группу конъюгата GalNAc3
Олигонуклеотиды, представленные в Таблице 108, содержащие конъюгат GalNAc, предназначены для воздействия на TTR.
Легенда для Таблицы 108 представлена в Примере 74. Структура GalNAc3-1 показана в Примере 9. Структура GalNAc3-3a показана в Примере 39. Структура GalNAc3-7а показана в Примере 48. Структура GalNAc3-10a показана в Примере 46. Структура GalNAc3-13а показана в Примере 62. Структура GalNAc3-19a показана в Примере 70.
Пример 98: Оценка провоспалительного действия олигонуклеотидов, содержащих конъюгат GalNAc, в анализе hPMBC
Олигонуклеотиды, перечисленные в Таблице 109, исследовали на провоспалительное действие в анализе hPMBC, описанном в Примерах 23 и 24. (См. Таблицы 30, 83, 95 и 108, где представлено описание олигонуклеотидов). ISIS 353512 обладает высоким ответом, и его использовали в качестве положительного контроля, а другие олигонуклеотиды описаны в Таблицах 83, 95 и 108. Результаты, представленные в Таблице 109, получены с использованием крови, полученной от одного донора-добровольца. Результаты демонстрируют, что олигонуклеотиды, содержащие смешанные PO/PS межнуклеозидные связи, вызывают значительно более слабые провоспалительные реакции, по сравнению с теми же олигонуклеотидами, содержащими только PS связи. Кроме того, в этом анализе группа конъюгата GalNAc не оказывает существенного влияния.
Пример 99: Связывающие аффинности олигонуклеотидов, содержащих конъюгат GalNAc, в отношении асиалогликопротеинового рецептора
Связывающие аффинности олигонуклеотидов, перечисленных в Таблице 110 (см. Таблицу 76, в которой представлено описание олигонуклеотидов), в отношении асиалогликопротеинового рецептора испытали в анализе конкурентного связывания рецепторов. Конкурирующий лиганд, α1-кислый гликопротеин (AGP), инкубировали в 50 мМ ацетатно-натриевом буфере (рН 5) с 1 ед. нейраминидазы-агарозы в течение 16 часов при 37°С, а > 90% дезалилирование подтвердили анализом с сиаловой кислотой или эксклюзионной хроматографией (SEC). Для йодирования АГФ использовали монохлорид йода по способу, описанному авторами Atsma et al. (см. J Lipid Res. январь 1991 г.; 32(1): 173-81.) В этом способе дезалилированный α1-кислый гликопротеин (de-AGP) добавляли к 10 мМ хлориду йода, Na125I и 1 М глицина в 0,25 М NaOH. После инкубации в течение 10 минут при комнатной температуре, 125I-меченный de-AGP отделили от свободного 125I двукратным концентрированием смеси с использованием спин-колонки с номинальным отсечением по молекулярной массе 3 кДа. Белок испытали на эффективность мечения и чистоту на системе ВЭЖХ, оснащенной колонкой Agilent SEC-3 (7,8×300 мм) и счетчиком β-RAM. Конкуретные исследования с использованием 125I-меченного de-AGP и ASO, содержащих различные GalNAc-кластеры, выполнили следующим образом. Человеческие клетки HepG2 (106 клеток/мл) поместили на 6-луночные планшеты в 2 мл соответствующей питательной среды. Использовали среду MEM с добавлением 10% фетальной бычьей сыворотки (FBS), 2 мМ L-глутамина и 10 мМ HEPES. Клетки выращивали в течение 16-20 часов при 37°С с 5% и 10% СО2, соответственно. Перед экспериментом клетки промыли средой без FBS. Клетки выращивали в течение 30 минут при 37°С с 1 мл конкурентной смеси, содержащей соответствующую питательную среду с 2% FBS, 10-8 М 125I-меченным de-AGP и ASO, содержащим GalNAc-кластер в концентрациях в диапазоне от 10-11 до 10-5 М. Неспецифическое связывание определили в присутствии 10-2 М GalNAc сахара. Клетки дважды промыли средой без FBS для удаления несвязанного 125I-меченного de-AGP и конкурирующего GalNAc ASO. Клетки лизировали с использованием буфера RLT производства компании Qiagen, содержащего 1% β-меркаптоэтанола. Лизаты перенесли в круглодонные аналитические пробирки после быстрого 10-минутного цикла замораживания/оттаивания, и анализировали на γ-счетчике. Неспецифическое связывание вычли, а затем разделили импульсы белка 125I на значение импульсов при самой низкой концентрации GalNAc-ASO. Кривые ингибирования построили по уравнению моносайтового конкурентного связывания, используя алгоритм нелинейной регрессии для расчета связывающей аффиности (KD).
Результаты в Таблице 110 были получены в экспериментах, выполненных в пять разных дней. Результаты для олигонуклеотидов, отмеченных верхним индексом «а», представляют собой средние значения экспериментов, выполненных в два разных дня. Результаты демонстрируют, что олигонуклеотиды, содержащие группу конъюгата GalNAc на 5'-конце, связывают асиалогликопротеиновый рецептор человеческих клеток HepG2 с аффинностью, которая в 1,5-16 раз больше, чем для олигонуклеотидов, содержащих группу конъюгата GalNAc на 3'-конце.
Пример 100: Антисмысловое ингибирование in vivo под действием олигонуклеотидов, содержащих группу конъюгата GalNAc, направленных на Аро(а), in vivo
Олигонуклеотиды, перечисленные ниже в Таблице 111а, испытали в исследовании однократной дозы на продолжительность действия у мышей.
Структура GalNAc3-7a показана в Примере 48.
Лечение
Каждой самке трансгенных мышей, экспрессирующих человеческий Аро(а), один раз в неделю, в целом 6 доз, вводили подкожную инъекцию олигонуклеотида и дозы, перечисленной в Таблице 111b, или PBS. Каждая экспериментальная группа состояла из 3 животных. Образцы крови брали за день до введения дозы для определения исходных уровней белка Аро(а) в плазме, а также через 72 часа, 1 неделю и 2 недели после введения первой дозы. Дополнительные пробы крови брали через 3 недели, 4 недели, 5 недель и 6 недель после введения первой дозы. Уровни белка Аро(а) в плазме измеряли при помощи твердофазного иммуноферментного анализа. Результаты в Таблице 111b представлены как средний процент от уровней белка Аро(а) в плазме для каждой экспериментальной группы, нормализованных к исходным уровням (% BL). Результаты показывают, что олигонуклеотиды, содержащие группу конъюгата GalNAc, демонстрируют эффективное снижение экспрессии Аро(а). Этот мощный эффект наблюдали для олигонуклеотида, содержащего только PS межнуклеозидные связи, и для олигонуклеотида, содержащего смешанные РО и PS связи.
Пример 101: Антисмысловое ингибирование олигонуклеотидами, содержащими кластер GalNAc, связанный через стабильный фрагмент
Олигонуклеотиды, перечисленные в Таблице 112, испытали на ингибирование экспрессии мышиного АРОС-III in vivo. Мышам С57В 1/6 ввели однократную подкожную инъекцию олигонуклеотида, перечисленного в Таблице 112, или PBS. Каждая экспериментальная группа состояла из 4 животных. Каждой мыши, проходившей лечение с ISIS 440670, вводили дозу 2, 6, 20 или 60 мг/кг. Каждой мыши, проходившей лечение с ISIS 680772 или 696847, вводили 0,6, 2, 6 или 20 мг/кг. Группа конъюгата GalNAc в ISIS 696847 связана через стабильный фрагмент, тиофосфатную связь, вместо легко расщепляемой фосфодиэфир-содержащей связи. Животных усыпили через 72 часа после введения дозы. Уровни мРНК АРОС-III в печени измерили при помощи ПЦР в реальном времени. Уровни мРНК АРОС-III нормализовали к уровням мРНК циклофилина по стандартным протоколам. Результаты представлены в Таблице 112 как средний процент уровней мРНК АРОС-III для каждой экспериментальной группы, по сравнению с контрольной группой, обработанной солевым раствором. Результаты демонстрируют, что олигонуклеотиды, содержащие группу конъюгата GalNAc, были существенно более эффективными, чем олигонуклеотид, не содержащий группу конъюгата. Кроме того, олигонуклеотид, содержащий группу конъюгата GalNAc, связанную с олигонуклеотидом через расщепляемый фрагмент (ISIS 680772), был еще более эффективным, чем олигонуклеотид, содержащий группу конъюгата GalNAc, связанную с олигонуклеотидом через стабильный фрагмент (ISIS 696847).
Структура GalNAc3-7a показана в Примере 48.
Пример 102: Распределение в печени антисмысловых олигонуклеотидов, содержащих конъюгат GalNAc
Оценили распределение в печени ISIS 353382 (см. Таблицу 36), который не содержит конъюгата GalNAc, и ISIS 655861 (см. Таблицу 36), который содержит конъюгат GalNAc. Самцам мышей balb/c ввели однократную подкожную инъекцию ISIS 353382 или 655861 в дозе, перечисленной в Таблице 113. Каждая экспериментальная группа состояла из 3 животных, за исключением группы с дозой 18 мг/кг для ISIS 655861, которая состояла из 2 животных. Животных усыпили через 48 часов после введения дозы для определения распределения олигонуклеотидов в печени. Для измерения количества молекул антисмыслового олигонуклеотида на клетку, метку трис-бипиридина рутения (II) (MSD TAG, Meso Scale Discovery) конъюгировали с олигонуклеотидным образцом, используемым для обнаружения антисмысловых олигонуклеотидов. Результаты, представленные в Таблице 113, представляют собой средние концентрации олигонуклеотида для каждой экспериментальной группы в единицах измерения миллионов молекул олигонуклеотида на клетку. Результаты демонстрируют, что при равных дозах олигонуклеотид, содержащий конъюгат GalNAc, содержался в более высоких концентрациях в целом в печени и в гепатоцитах, чем олигонуклеотид, не содержащий конъюгата GalNAc. Кроме того, олигонуклеотид, содержащий конъюгат GalNAc, содержался в более низких концентрациях в непаренхиматозных клетках печени, чем олигонуклеотид, не содержащий конъюгата GalNAc. И тогда как концентрации ISIS 655861 в гепатоцитах и непаренхиматозных клетках печени были одинаковыми в расчете на одну клетку, содержание гепатоцитов в печени составляет приблизительно 80% по объему. Следовательно, основная часть олигонуклеотида ISIS 655861, содержащегося в печени, находилась в гепатоцитах, тогда как основная часть олигонуклеотида ISIS 353382, содержащегося в печени, находилась в непаренхиматозных клетках печени.
Пример 103: Продолжительность действия in vivo олигонуклеотидов, направленных на АРОС-III, содержащих конъюгат GalNAc3
Олигонуклеотиды, перечисленные ниже в Таблице 114, испытали в исследовании однократной дозы на продолжительность действия у мышей.
Структура GalNAc3-3a показана в Примере 39, a GalNAc3-19a показана в Примере 70.
Лечение
Самкам трансгенных мышей, экспрессирующим человеческий АРОС-III, ввели однократную подкожную инъекцию олигонуклеотида, перечисленного в Таблице 114, или PBS. Каждая экспериментальная группа состояла из 3 животных. Образцы крови из брали до введения дозы для определения исходных показателей и на 3, 7, 14, 21, 28, 35 и 42 день после введения дозы. Уровни триглицеридов и белка АРОС-III в плазме измеряли так, как описано в Примере 20. Результаты в Таблице 115 представлены как средний процент уровней триглицеридов и АРОС-III в плазме для каждой экспериментальной группы, нормализованных к исходным уровням. Сравнение результатов в Таблице 71 примера 79 с результатами, представленными ниже в таблице 115, демонстрирует, что олигонуклеотиды, содержащие смесь фосфодиэфирных и тиофосфатных межнуклеозидных связей, обладают увеличенной продолжительностью действия, чем эквивалентные олигонуклеотиды, содержащие только тиофосфатные межнуклеозидные связи.
Пример 104: Синтез олигонуклеотидов, содержащих конъюгат 5'-GalNAc2
Соединение 120 имеется в продаже, а синтез соединения 126 описан в Примере 49. Соединение 120 (1 г, 2,89 ммоль), HBTU (0,39 г, 2,89 ммоль) и HOBt (1,64 г, 4,33 ммоль) растворили в ДМФА (10 мл) и добавили N,N-диизопропилэтиламин (1,75 мл, 10,1 ммоль). Примерно через 5 минут в реакционную смесь добавили бензиловый эфир аминогексановой кислоты (1,36 г, 3,46 ммоль). Через 3 часа реакционную смесь вылили в 100 мл 1 М раствора NaHSO4 и экстрагировали 2×50 мл этилацетата. Органические слои объединили и промыли 3×40 мл насыщенного раствора NaHCO3 и 2 х насыщенным солевым раствором, высушили при помощи Na2SO4, отфильтровали и концентрировали. Продукт очистили силикагелевой колоночной хроматографией (ДХМ : ЕА : гексаны, 1:1:1) с получением соединения 231. Данные ЖХМС и ЯМР согласовались с указанной структурой. Соединение 231 (1,34 г, 2,438 ммоль) растворили в дихлорметане (10 мл) и добавили трифторуксусную кислоту (10 мл). После перемешивания при комнатной температуре в течение 2 часов, реакционную смесь концентрировали при пониженном давлении и выпарили вместе с толуолом (3×10 мл). Остаток высушили при пониженном давлении с получением соединения 232 в виде трифторацетатной соли. Синтез соединения 166 описан в Примере 54. Соединение 166 (3,39 г, 5,40 ммоль) растворили в ДМФА (3 мл). Раствор соединения 232 (1,3 г, 2,25 ммоль) растворили в ДМФА (3 мл) и добавили N,N-диизопропилэтиламин (1,55 мл). Реакционную смесь перемешивали при комнатной температуре в течение 30 минут, затем вылили в воду (80 мл), а водный слой экстрагировали EtOAc (2×100 мл). Органическую фазу отделили и промыли насыщенным водным раствором NaHCO3 (3×80 мл), 1 М NaHSO4 (3×80 мл) и насыщенным солевым раствором (2×80 мл), затем высушили (Na2SO4), отфильтровали и концентрировали. Остаток очистили силикагелевой колоночной хроматографией с получением соединения 233. Данные ЖХМС и ЯМР согласовались с указанной структурой. Соединение 233 (0,59 г, 0,48 ммоль) растворили в метаноле (2,2 мл) и этилацетате (2,2 мл). Добавили палладий на углероде (10 масс. % Pd/C, влажный, 0,07 г) и перемешивали реакционную смесь в атмосфере водорода в течение 3 часов. Реакционную смесь отфильтровали через слой целита и концентрировали с получением карбоновой кислоты. Карбоновую кислоту (1,32 г, 1,15 ммоль, не содержащая кластера кислота) растворили в ДМФА (3,2 мл). К ней добавили N,N-диизопропилэтиламин (0,3 мл, 1,73 ммоль) и PFP-ТФК (0,30 мл, 1,73 ммоль). Через 30 минут перемешивания при комнатной температуре реакционную смесь вылили в воду (40 мл) и экстрагировали EtOAc (2×50 мл). Выполнили стандартную процедуру выделения продукта, как описано выше, с получением соединения 234. Данные ЖХМС и ЯМР согласовались с указанной структурой. Олигонуклеотид 236 получили по общему способу, описанному в Примере 46. Кластерная часть GalNAc2 (GalNAc2-24a) группы конъюгата GalNAc2-24 может быть комбинирована с любым расщепляемым фрагментом, содержащимся в олигонуклеотиде, с получением различных групп конъюгата. Структура GalNAc2-24 (GalNAc2-24a-CM) представлена ниже:
Пример 105: Синтез олигонуклеотидов, содержащих конъюгат GalNAc1-25
Синтез соединения 166 описан в Примере 54. Олигонуклеотид 236 получили по общему способу, описанному в Примере 46.
Альтернативно, олигонуклеотид 236 синтезировали по схеме, изображенной ниже, а соединение 238 использовали для получения олигонуклеотида 236 по способам, описанным в Примере 10.
Кластерная часть GalNAc1 (GalNAc1-25a) группы конъюгата GalNAc1-25 может быть комбинирована с любым расщепляемым фрагментом, содержащимся в олигонуклеотиде, с получением различных групп конъюгата. Структура GalNAc1-25 (GalNAc1-25a-CM) представлена ниже:
Пример 106: Антисмысловое ингибирование in vivo под действием олигонуклеотидов, направленных на SRB-1, содержащих 5'-GalNAc2 или 5'-GalNAc3 конъюгат
Олигонуклеотиды, перечисленные в Таблицах 116 и 117, испытали в дозозависимых исследованиях антисмыслового ингибирования SRB-1 у мышей.
Лечение
Шестинедельным самцам мышей C57BL/6 (Jackson Laboratory, Бар-Харбор, штат Мэн) ввели однократную подкожную инъекцию 2, 7 или 20 мг/кг ISIS №440762; или 0,2, 0,6, 2, 6 или 20 мг/кг ISIS №686221, 686222 или 708561; или солевого раствора. Каждая экспериментальная группа состояла из 4 животных. Мышей усыпили через 72 часа после последнего введения. Уровни мРНК SRB-1 в печени измерили при помощи ПЦР в реальном времени. Уровни мРНК SRB-1 нормализовали к уровням мРНК циклофилина по стандартным протоколам. Антисмысловые олигонуклеотиды снижают уровни мРНК SRB-1 дозозависимым образом, и результаты ED50 представлены в таблицах 116 и 117. Хотя в предшествующих исследованиях показано, что трехвалентные GalNAc-сопряженные олигонуклеотиды существенно более эффективны, чем двухвалентные GalNAc-сопряженные олигонуклеотиды, которые в свою очередь существенно более эффективны, чем одновалентные GalNAc-сопряженные олигонуклеотиды {см., например, Khorev et al., Bioorg. & Med. Chem., Vol. 16, 5216-5231 (2008)), обработка антисмысловыми олигонуклеотидами, содержащими одновалентные, двухвалентные и трехвалентные кластеры GalNAc, приводит к снижению уровней мРНК SRB-1 с одинаковой эффективностью, как показано в Таблицах 116 и 117.
Легенда к таблице представлена в Примере 93. Структура GalNAc3-13a показана ранее в Примере 62, а структура GalNAc2-24a показана в Примере 104.
Легенда к таблице представлена в Примере 93. Структура GalNAc1-25a показана в Примере 105.
Оценили также концентрации олигонуклеотидов, представленных в Таблицах 116 и 117, в печени, используя способы, описанные в Примере 75. Результаты, показанные ниже в Таблицах 117а и 117b, представляют собой средние значения общего содержания антисмысловых олигонуклеотидов в тканях для каждой экспериментальной группы, измеренные по УФ, в единицах измерения мкг олигонуклеотида на грамм ткани печени. Результаты демонстрируют, что олигонуклеотиды, содержащие группу конъюагата GalNAc, накапливаются в печени в существенно более высоких количествах, чем при той же дозе олигонуклеотида, не содержащего группу конъюгата GalNAc. Кроме того, антисмысловые олигонуклеотиды, содержащие один, два или три лиганда GalNAc в своих соответствующих группах конъюгата, накапливаются в печени в равных количествах. Этот результат является неожиданным с учетом данных, представленных выше в литературном источнике Khorev et al., и он согласуется с данными активности, представленными выше в Таблицах 116 и 117.
Пример 107: Синтез олигонуклеотидов, содержащих конъюгат GalNAc1-26 или GalNAc1-27
Олигонуклеотид 239 синтезировали связыванием соединения 47 (см. Пример 15) с кислотой 64 (см. Пример 32), используя HBTU и DIEA в ДМФА. Полученное амид-содержащее соединение фосфитилировали, затем присоединили к 5'-концу олигонуклеотида по способам, описанным в Примере 10. Кластерная часть GalNAc1 (GalNAc1-26a) группы конъюгата GalNAc1-26 может быть комбинирована с любым расщепляемым фрагментом, содержащимся в олигонуклеотиде, с получением различных групп конъюгата. Структура GalNAc1-26 (GalNAc1-26a-CM) представлена ниже:
Для присоединения группы конъюгата GalNAc1 к 3'-концу олигонуклеотида амид, образованный по реакции соединений 47 и 64, присоединили к твердой подложке по способам, описанным в Примере 7. Затем выполнили синтез олигонуклеотида по способам, описанным в Примере 9, с получением олигонуклеотида 240.
Кластерная часть GalNAc1 (GalNAc1-27a) группы конъюгата GalNAc1-27 может быть комбинирована с любым расщепляемым фрагментом, содержащимся в олигонуклеотиде, с получением различных групп конъюгата. Структура GalNAc1-27 (GalNAc1-27a-CM) представлена ниже:
Пример 108: Антисмысловое ингибирование in vivo под действием олигонуклеотидов, содержащих группу конъюгата GalNAc, направленных на Аро(а), in vivo
Олигонуклеотиды, перечисленные ниже в Таблице 118, испытали в исследовании однократной дозы на мышах.
Структура GalNAc3-7a показана в Примере 48.
Лечение
Самцам трансгенных мышей, экспрессирующим человеческий Аро(а), ввели однократную подкожную инъекцию олигонуклеотида и дозы, перечисленных в Таблице 119, или PBS. Каждая экспериментальная группа состояла из 4 животных. Образцы крови брали за день до введения дозы для определения исходных уровней белка Аро(а) в плазме, а также через 1 неделю после введения первой дозы. Образцы крови брали дополнительно еженедельно в течение около 8 недель. Уровни белка Аро(а) в плазме измеряли при помощи твердофазного иммуноферментного анализа. Результаты в Таблице 119 представлены как средний процент от уровней белка Аро(а) в плазме для каждой экспериментальной группы, нормализованных к исходным уровням (% BL). Результаты показывают, что антисмысловые олигонуклеотиды снижают экспрессию белка Аро(а). Кроме того, олигонуклеотиды, содержащие группу конъюгата GalNAc, демонстрируют еще более эффективное снижение экспрессии Аро(а), чем олигонуклеотид не содержащий группу конъюгата.
Пример 109: Синтез олигонуклеотидов, содержащих конъюгат GalNAc1-28 или GalNAc1-29
Олигонуклеотид 241 синтезировали по таким же способам, как описаны в Примере 71, с получением фосфорамидитного промежуточного соединения, после чего выполнили приемы, описанные в Примере 10, для синтеза олигонуклеотида. Кластерная часть GalNAc1 (GalNAc1-28a) группы конъюгата GalNAc1-28 может быть комбинирована с любым расщепляемым фрагментом, содержащимся в олигонуклеотиде, с получением различных групп конъюгата. Структура GalNAc1-28 (GalNAc1-28a-CM) представлена ниже:
Для присоединения группы конъюгата GalNAc1 к 3'-концу олигонуклеотида использовали такие же способы, как описаны в Примере 71, с получение гидроксильного промежуточного соединения, которое затем присоединили к твердой подложке по способам, описанным в Примере 7. Затем выполнили синтез олигонуклеотида по способам, описанным в Примере 9, с получением олигонуклеотида 242.
Кластерная часть GalNAc1 (GalNAc1-29a) группы конъюгата GalNAc1-29 может быть комбинирована с любым расщепляемым фрагментом, содержащимся в олигонуклеотиде, с получением различных групп конъюгата. Структура GalNAc1-29 (GalNAc1-29a-CM) представлена ниже:
Пример 110: Синтез олигонуклеотидов, содержащих конъюгат GalNAc1-30
Олигонуклеотид 246, содержащий группу конъюгата GalNAc1-30, где Y выбран из О, S, замещенного или незамещенного C1-С10 алкила, амино, замещенного амино, азидо, алкенила или алкинила, синтезировали так, как показано выше. Кластерная часть GalNAc1 (GalNAc1-30а) группы конъюгата GalNAc1-30 может быть комбинирована с любым расщепляемым фрагментом, содержащимся в олигонуклеотиде, с получением различных групп конъюгата. В некоторых вариантах реализации Y представляет собой часть расщепляемого фрагмента. В некоторых вариантах реализации Y представляет собой часть стабильного фрагмента, а расщепляемый фрагмент находится в олигонуклеотиде. Структура GalNAc1-30a представлена ниже:
Пример 111: Синтез олигонуклеотидов, содержащих конъюгат GalNAc2-31 или GalNAc2-32
Олигонуклеотид 250, содержащий группу конъюгата GalNAc2-31, где Y выбран из О, S, замещенного или незамещенного C1-С10 алкила, амино, замещенного амино, азидо, алкенила или алкинила, синтезировали так, как показано выше. Кластерная часть lNAc2 (GalNAc2-31a) группы конъюгата GalNAc2-31 может быть комбинирована с любым расщепляемым фрагментом, содержащимся в олигонуклеотиде, с получением различных групп конъюгата. В некоторых вариантах реализации Y-содержащая группа, которая находится непосредственно возле 5'-конца олигонуклеотида, представляет собой часть расщепляемого фрагмента. В некоторых вариантах реализации Y-содержащая группа, которая находится непосредственно возле 5'-конца олигонуклеотида, представляет собой часть стабильного фрагмента, а расщепляемый фрагмент находится в олигонуклеотиде. Структура GalNAc2-31a представлена ниже:
Синтез олигонуклеотида, содержащего конъюгат GalNAc2-32, представлен ниже.
Олигонуклеотид 252, содержащий группу конъюгата GalNAc2-32, где Y выбран из О, S, замещенного или незамещенного C1-С10 алкила, амино, замещенного амино, азидо, алкенила или алкинила, синтезировали так, как показано выше. Кластерная часть lNAc2 (GalNAc2-32a) группы конъюгата GalNAc2-32 может быть комбинирована с любым расщепляемым фрагментом, содержащимся в олигонуклеотиде, с получением различных групп конъюгата. В некоторых вариантах реализации Y-содержащая группа, которая находится непосредственно возле 5'-конца олигонуклеотида, представляет собой часть расщепляемого фрагмента. В некоторых вариантах реализации Y-содержащая группа, которая находится непосредственно возле 5'-конца олигонуклеотида, представляет собой часть стабильного фрагмента, а расщепляемый фрагмент находится в олигонуклеотиде. Структура GalNAc2-32a представлена ниже:
Пример 112: Модифицированные олигонуклеотиды, содержащие конъюгат GalNAc1
Олигонуклеотиды в Таблице 120, направленные на SRB-1, были синтезированы с группой конъюгата GalNAc1 для дополнительной проверки эффективности олигонуклеотидов, содержащих группы конъюгата, которые содержат один лиганд GalNAc.
Пример 113: Антисмысловое ингибирование in vivo под действием олигонуклеотидов, направленных на калликреин В плазмы (фактор Флетчера) 1, содержащих кластер GalNAc
Олигонуклеотиды, представленные в Таблице 121, были сконструированы для направленного воздействия на человеческий калликреин плазмы В (фактор Флетчера) 1 или прекалликреин (ПКП).
Пример 114: Антисмысловое ингибирование ПКП человека в клетках HepaRG™T антисмысловыми олигонуклеотидами с 2'-МОЕ модификациями сахара
Были сконструированы антисмысловые олигонуклеотиды, нацеленные на нуклеиновую кислоту ПКП, и было протестировано их влияние на мРНК ПКП in vitro. Для скрининга применяли клетки HepaRG™, которые представляют собой терминально дифференцированные печеночные клетки, полученные из линии печеночных клеток-предшественников человека, и которые сохраняют многие характеристики первичных гепатоцитов человека (Lubberstedt М. et al., J. Pharmacol. Toxicol. Methods 2011 63: 59-68).
Химерные антисмысловые олигонуклеотиды в представленных ниже таблицах были сконструированы как 5-10-5 МОЕ гэпмеры. Гэпмеры имеют 20 нуклеозидов в длину, причем центральный сегмент гэп состоит из десяти 2'-дезоксинуклеозидов и окружен сегментами крыльев с 5' конца и с 3' конца, содержащими по пять нуклеозидов каждый. Каждый нуклеозид в 5' сегменте крыла и каждый нуклеозид в 3' сегменте крыла содержит 2'-O-метоксиэтильную модификацию. Межнуклеозидные связи в каждом гэпмере представляют собой тиофосфатные связи. Все остатки цитозина в каждом гэпмере представляют собой 5-метилцитозины. «Сайт инициации» обозначает самый крайний 5' нуклеозид, на который направлен гэпмер в последовательности гена человека. «Сайт терминации» обозначает самый крайний 3' нуклеозид, на который направлен гэпмер в последовательности гена человека. Каждый гэпмер, перечисленный в представленных ниже таблицах, нацелен на мРНК ПКП человека, обозначенную в данном описании как SEQ ID NO: 1 (с номером доступа GENBANK NM_000892.3) или геномную последовательность ПКП человека, обозначенную в данном описании как SEQ ID NO: 10 (номер доступа GENBANK NT_016354.19, усеченную по нуклеотидам с 111693001 по 111730000). «н/д» означает, что антисмысловой олигонуклеотид не нацелен на данную конкретную последовательность гена.
Культивированные клетки HepaRG™ с плотностью 20000 клеток на лунку трансфицировали с использованием электропорации с 3000 нМ антисмыслового олигонуклеотида. После периода обработки длительностью около 24 часов, РНК выделяли из клеток и уровни мРНК ПКП измеряли методом количественной ПЦР в реальном времени. Набор человеческих праймерных зондов RTS3454 (прямая последовательность CCAAAAAAGGTGCACCAGTAACA, обозначенная в данном описании как SEQ ID NO: 20; обратная последовательность CCTCCGGGACTGTACTTTAATAGG, обозначенная в данном описании как SEQ ID NO: 21; последовательность зонда CACGCAAACATTTCACAAGGCAGAGTACC, обозначенная в данном описании как SEQ ID NO: 22) использовали для измерения уровней мРНК. Уровни мРНК ПКП были скорректированы в соответствии с общим содержанием РНК, измеренным с помощью RIBOGREEN®. Антисмысловые олигонуклеотиды испытывали в сериях экспериментов с одинаковыми условиями выращивания. Результаты каждого эксперимента представлены в отдельных таблицах, показанных ниже. Результаты представлены как процент ингибирования ПКП относительно необработанных контрольных клеток.
Пример 115: Антисмысловое ингибирование ПКП человека в клетках HepaRG™ антисмысловыми олигонуклеотидами с 2'-МОЕ модификациями сахара
Были сконструированы дополнительные антисмысловые олигонуклеотиды, нацеленные на нуклеиновую кислоту ПКП, и протестировано их влияние на мРНК ПКП in vitro.
Химерные антисмысловые олигонуклеотиды в представленных ниже таблицах были сконструированы как 5-10-5 МОЕ гэпмеры, 4-9-4 МОЕ гэпмеры, 4-10-4 МОЕ гэпмеры, 4-10-3 МОЕ гэпмеры, 3-10-4 МОЕ гэпмеры или 3-10-3 МОЕ гэпмеры. Гэпмеры 5-10-5 МОЕ имеют 20 нуклеозидов в длину, причем центральный сегмент гэп состоит из десяти 2'-дезоксинуклеозидов и окружен сегментами крыльев с 5' конца и с 3' конца, содержащими по пять нуклеозидов каждый. Длина 4-9-4 МОЕ гэпмеров составляет 17 нуклеозидов, причем центральный сегмент гэп состоит из девяти 2'-дезоксинуклеозидов и окружен сегментами крыльев с 5' конца и 3' конца, содержащими по четыре нуклеозида каждый. Длина 4-10-4 МОЕ гэпмеров составляет 18 нуклеозидов, причем центральный сегмент гэп состоит из десяти 2'-дезоксинуклеозидов и окружен сегментами крыльев с 5' конца и 3' конца, содержащими по четыре нуклеозида каждый. Длина 4-10-3 МОЕ гэпмеров составляет 17 нуклеозидов, причем центральный сегмент гэп состоит из десяти 2'-дезоксинуклеозидов и окружен сегментами крыльев с 5' конца и 3' конца, содержащими четыре и три нуклеозида, соответственно. Гэпмеры 3-10-4 МОЕ имеют 17 нуклеозидов в длину, причем центральный гэп состоит из десяти 2'-дезоксинуклеозидов и окружен сегментами крыльев с 5' конца и с 3' конца, содержащими три и четыре нуклеозида соответственно. Гэпмеры 3-10-3 МОЕ имеют 16 нуклеозидов в длину, причем центральный гэп состоит из десяти 2'-дезоксинуклеозидов и окружен сегментами крыльев с 5' конца и с 3' конца, содержащими по три нуклеозида каждый. Каждый нуклеозид в 5' сегменте крыла и каждый нуклеозид в 3' сегменте крыла содержит 2'-О-метоксиэтильную модификацию. Межнуклеозидные связи в каждом гэпмере представляют собой тиофосфатные связи. Все остатки цитозина в каждом гэпмере представляют собой 5-метилцитозины. «Сайт инициации» обозначает самый крайний 5' нуклеозид, на который направлен гэпмер в последовательности гена человека. «Сайт терминации» обозначает самый крайний 3' нуклеозид, на который направлен гэпмер в последовательности гена человека. Каждый гэпмер, перечисленный в представленных ниже таблицах, нацелен на SEQ ID NO: 1 или SEQ ID NO: 10. «н/д» означает, что антисмысловой олигонуклеотид не нацелен на данную конкретную последовательность гена.
Культивированные клетки HepaRG™ с плотностью 20000 клеток на лунку трансфицировали с использованием электропорации с 5000 нМ антисмыслового олигонуклеотида. После периода обработки длительностью около 24 часов, РНК выделяли из клеток и уровни мРНК ПКП измеряли методом количественной ПЦР в реальном времени. Набор человеческих праймерных зондов RTS3454 использовали для измерения уровней мРНК. Уровни мРНК ПКП были скорректированы в соответствии с общим содержанием РНК, измеренным с помощью RIBOGREEN®. Антисмысловые олигонуклеотиды испытывали в сериях экспериментов с одинаковыми условиями выращивания. Результаты каждого эксперимента представлены в отдельных таблицах, показанных ниже. Результаты представлены как процент ингибирования ПКП относительно необработанных контрольных клеток.
Пример 116: Антисмысловое ингибирование ПКП человека в клетках HepaRG™ антисмысловыми олигонуклеотидами с МОЕ, дезокси и cEt модификациями сахара
Были сконструированы дополнительные антисмысловые олигонуклеотиды, нацеленные на нуклеиновую кислоту ПКП, и протестировано их влияние на мРНК ПКП in vitro.
Химерные антисмысловые олигонуклеотиды в представленных ниже таблицах были сконструированы как дезокси, МОЕ и cEt гэпмеры. Длина гэпмеров составляет 16 нуклеозидов, причем нуклеозид содержит модификацию сахара МОЕ, модификацию сахара cEt или дезокси модификацию. В колонке «Химизм» описаны модификации сахара для каждого олигонуклеотида. «k» указывает на модификацию сахара cEt; число показывает количество дезоксинуклеозидов; в противном случае, «d» показывает дезоксинуклеозид; и «е» указывает на модификацию 2'-O-метоксиэтил. Межнуклеозидные связи в каждом гэпмере представляют собой тиофосфатные связи. Все остатки цитозина в каждом олигонуклеотиде представляют собой 5-метилцитозины. «Сайт инициации» обозначает самый крайний 5' нуклеозид, на который направлен гэпмер в последовательности гена человека. «Сайт терминации» обозначает самый крайний 3' нуклеозид, на который направлен гэпмер в последовательности гена человека. Каждый гэпмер, перечисленный в представленных ниже таблицах, нацелен на мРНК ПКП человека, обозначенную в данном описании как SEQ ID NO: 1, или на геномную последовательность ПКП человека, обозначенную в данном описании как SEQ ID NO: 10. «н/д» означает, что антисмысловой олигонуклеотид не нацелен на данную конкретную последовательность гена.
Культивированные клетки HepaRG™ с плотностью 20000 клеток на лунку трансфицировали с использованием электропорации с 1000 нМ антисмыслового олигонуклеотида. После периода обработки длительностью около 24 часов, РНК выделяли из клеток и уровни мРНК ПКП измеряли методом количественной ПЦР в реальном времени. Набор человеческих праймерных зондов RTS3454 использовали для измерения уровней мРНК. В данный анализ также включили ISIS 531231. Уровни мРНК ПКП были скорректированы в соответствии с общим содержанием РНК, измеренным с помощью RIBOGREEN®. Антисмысловые олигонуклеотиды испытывали в сериях экспериментов с одинаковыми условиями выращивания. Результаты каждого эксперимента представлены в отдельных таблицах, показанных ниже. Результаты представлены как процент ингибирования ПКП относительно необработанных контрольных клеток.
Пример 117: Дозозависимое антисмысловое ингибирование ПКП человека в клетках HepaRG™
Гэпмеры из описанных выше исследований, демонстрирующие значительное ингибирование мРНК ПКП in vitro, были отобраны и протестированы в различных дозах на клетках HepaRG™. Клетки были высеяны с плотностью 20000 клеток на лунку и трансфицированы с использованием электропорации с концентрациями антисмыслового олигонуклеотида, равными 0,12 мкМ, 0,37 мкМ, 1,11 мкМ, 3,33 мкМ и 10,00 мкМ. После периода обработки около 16 часов, РНК выделяли из клеток и измеряли уровни мРНК ПКП методом количественной ПЦР в реальном времени. Набор человеческих праймерных зондов RTS3454 использовали для измерения уровней мРНК. Уровни мРНК ПКП были скорректированы в соответствии с общим содержанием РНК, измеренным с помощью RIBOGREEN®. Антисмысловые олигонуклеотиды испытывали в сериях экспериментов с одинаковыми условиями выращивания. Результаты каждого эксперимента представлены в отдельных таблицах, показанных ниже. Результаты представлены как процент ингибирования ПКП относительно необработанных контрольных клеток.
Для каждого олигонуклеотида дополнительно приведена полумаксимальная ингибирующая концентрация (IC50). Уровни мРНК ПКП были существенно снижены дозозависимым образом в обработанных антисмысловым олигонуклеотидом клетках.
Пример 118: Дозозависимое антисмысловое ингибирование ПКП человека в клетках HepaRG™
Гэпмеры из описанных выше исследований, демонстрирующие значительное ингибирование мРНК ПКП in vitro, были отобраны и протестированы в различных дозах на клетках HepaRG™. Клетки были высеяны с плотностью 20000 клеток на лунку и трансфицированы с использованием электропорации с концентрациями антисмыслового олигонуклеотида, равными 0,19 мкМ, 0,56 мкМ, 1,67 мкМ и 5,00 мкМ. После периода обработки около 16 часов, РНК выделяли из клеток и измеряли уровни мРНК ПКП методом количественной ПЦР в реальном времени. Набор человеческих праймерных зондов RTS3454 использовали для измерения уровней мРНК. Уровни мРНК ПКП были скорректированы в соответствии с общим содержанием РНК, измеренным с помощью RIBOGREEN®. Антисмысловые олигонуклеотиды испытывали в сериях экспериментов с одинаковыми условиями выращивания. Результаты каждого эксперимента представлены в отдельных таблицах, показанных ниже. Результаты представлены как процент ингибирования ПКП относительно необработанных контрольных клеток, «н/д» означает, что измерения для конкретного антисмыслового олигонуклеотида и данной конкретной дозы не проводили.
Для каждого олигонуклеотида дополнительно приведена полумаксимальная ингибирующая концентрация (IC50). Уровни мРНК ПКП были существенно снижены дозозависимым образом в обработанных антисмысловым олигонуклеотидом клетках.
Пример 119: Дозозависимое антисмысловое ингибирование ПКП человека в клетках HepaRG™
Гэпмеры из описанных выше исследований, демонстрирующие значительное ингибирование мРНК ПКП in vitro, были отобраны и протестированы в различных дозах на клетках HepaRG™. Клетки были высеяны с плотностью 20000 клеток на лунку и трансфицированы с использованием электропорации с концентрациями антисмыслового олигонуклеотида, равными 0,11 мкМ, 0,33 мкМ, 1,00 мкМ и 3,00 мкМ. После периода обработки около 16 часов, РНК выделяли из клеток и измеряли уровни мРНК ПКП методом количественной ПЦР в реальном времени. Набор человеческих праймерных зондов RTS3454 использовали для измерения уровней мРНК. Уровни мРНК ПКП были скорректированы в соответствии с общим содержанием РНК, измеренным с помощью RIBOGREEN®. Антисмысловые олигонуклеотиды испытывали в сериях экспериментов с одинаковыми условиями выращивания. Результаты каждого эксперимента представлены в отдельных таблицах, показанных ниже. Результаты представлены как процент ингибирования ПКП относительно необработанных контрольных клеток, «н/д» означает, что измерения для конкретного антисмыслового олигонуклеотида и данной конкретной дозы не проводили.
Для каждого олигонуклеотида дополнительно приведена полумаксимальная ингибирующая концентрация (IC50). Уровни мРНК ПКП были существенно снижены дозозависимым образом в обработанных антисмысловым олигонуклеотидом клетках.
Пример 120: Эффективность антисмысловых олигонуклеотидов, нацеленных на ПКП человека, у трансгенных мышей
Трансгенных мышей, несущих фрагмент последовательности гена KLKB1 человека размером 37390 пар оснований (хромосома 4: положение 187148672-187179625, номер доступа: NC_000004.11), лечили антисмысловыми олигонуклеотидами ISIS, отобранными в описанных выше исследованиях, и оценивали их эффективность в данной модели.
Лечение
Группам трансгенных мышей 2 раза в неделю на протяжении 3 недель вводили подкожной инъекцией 2,5 мг/кг/неделю, 5,0 мг/кг/неделю, 10 мг/кг/неделю или 20 мг/кг/неделю ISIS 546232, ISIS 546251, ISIS 546254, ISIS 546343, ISIS 546828, ISIS 547455, ISIS 547457, ISIS 547927 и ISIS 548048. Одной группе трансгенных мышей 2 раза в неделю на протяжении 3 недель вводили подкожные инъекции PBS. Мышей усыпляли через 48 часов после введения последней дозы, и собирали органы и плазму для дальнейшего анализа.
Анализ РНК
Для оценки влияния олигонуклеотидов ISIS на снижение уровня мишени, РНК извлекали из ткани печени для анализа ПКП человека с помощью ПЦР в реальном времени. Результаты представлены как процент ингибирования мРНК ПКП относительно контроля с PBS. Как показано в таблице 169, лечение антисмысловыми олигонуклеотидами ISIS приводило к существенному снижению мРНК ПКП по сравнению с контролем с PBS.
Анализ белка
Уровни белка ПКП в плазме были оценены во всех группах. Результаты представлены как процент ингибирования белка ПКП относительно контроля с PBS. Как показано в таблице 170, лечение антисмысловыми олигонуклеотидами ISIS приводило к существенному снижению уровней белка ПКП по сравнению с контролем с PBS
Пример 121: Влияние антисмысловых олигонуклеотидов ISIS, нацеленных на ПКП человека, у яванских макак
Яванских макак лечили антисмысловыми олигонуклеотидами ISIS, отобранными в исследованиях, описанных выше. Была оценена эффективность и переносимость антисмысловых олигонуклеотидов. Испытанные человеческие антисмысловые олигонуклеотиды являются перекрестно реактивными с геномной последовательностью резуса (номер доступа GENBANK NW_001118167.1, усеченная по по нуклеотидам с 2358000 по 2391000 и обозначенная в настоящем документе как SEQ ID NO: 18). Сайт инициации мишени каждого олигонуклеотида к SEQ ID NO: 18 представлен в таблице 171. «Рассогласование» указывает на количество нуклеотидов в олигонуклеотиде, рассогласованных с последовательностью макаки резус. Чем выше комплементарность между человеческим олигонуклеотидом и последовательностью макаки резус, тем вероятнее, что человеческий олигонуклеотид может перекрестно реагировать с последовательностью макак резус, «н/д» указывает на то, что олигонуклеотид содержит более чем 3 рассогласованных основания с последовательностью гена макаки резус
Лечение
Перед началом исследования обезьян выдерживали на карантине 30 дней, в течение которых ежедневно следили за общим состоянием здоровья животных. Возраст обезьян составлял 2-4 года, а масса от 2 до 4 кг. Десяти группам по четыре случайным образом распределенных самца яванских макак вводили подкожные инъекции олигонуклеотида ISIS или PBS. Раствор PBS или олигонуклеотиды ISIS в дозе 40 мг/кг вводили сначала в режиме нагрузки, состоящем из четырех доз в течение первой недели исследования (дни 1, 3, 5, и 7), и затем в поддерживающем режиме, состоящем из еженедельного введения, начиная с 14-го дня (недели 2-13). Подкожные инъекции вводили с поворотом по часовой стрелке, в 4 участках спины; один участок на одну дозу. Участки инъекции намечали с помощью татуировки при успокоении кетамином, и расстояние между участками составляло не менее 3 см.
В течение периода испытаний обезьян не менее одного раза в сутки наблюдали на наличие признаков заболевания или недомогания. О животных, испытывающих более чем мимолетную или слабую боль или недомогание вследствие лечения, травмы или болезни, немедленно сообщали ответственному ветеринару и руководителю исследования. Животных с ослабленным здоровьем или в состоянии возможной агонии идентифицировали для дальнейшего наблюдения и возможного усыпления. Например, двух обезьян, которых лечили с помощью ISIS 547445, усыпили вследствие вялого поведения, лежачего положения, отсутствия реакции на раздражители и ослабления дыхания. Описанные в примерах протоколы одобрены Комитетом по содержанию и использованию лабораторных животных (IACUC).
Снижение мишени
Анализ РНК
На 87 или 88 день, через 48 часов после введения последней дозы из печеночной ткани выделили РНК для анализа ПКП с помощью ПЦР в реальном времени, используя набор праймерных зондов RTS3455 (прямая последовательность CCTGTGTGGAGGGTCACTCA, обозначенная в настоящем документе как SEQ ID NO: 23; обратная последовательность CCACTATAGATGCGCCAAACATC, обозначенная в данном описании как SEQ ID NO: 24; последовательность зонда CCCACTGCTTTGATGGGCTTCCC, обозначенная в данном описании как SEQ ID NO: 25). Результаты нормализовали к конститутивному гену, циклофилину. Результаты представлены как процент ингибирования мРНК ПКП относительно контроля с PBS. Как показано в таблице 172, лечение антисмысловыми олигонуклеотидами ISIS приводило к существенному снижению мРНК ПКП по сравнению с контролем с PBS.
Анализ белка
Около 0,9 мл крови отбирали у всех доступных животных до введения дозы, на 17 день, на 31 день, на 45 день, на 59 день и на 73 день, и помещали в пробирки, содержащие 3,2% цитрата натрия. Пробирки центрифугировали (3000 об./мин. в течение 10 минут при комнатной температуре) для получения плазмы. Уровни белка ПКП определяли с помощью твердофазного иммуноферментного анализа. Результаты, выраженные как процент ингибирования относительно контрольного образца с PBS, представлены в таблице 173. Результаты демонстрируют, что олигонуклеотиды ISIS существенно снижают уровни белка ПКП.
Исследования переносимости
Функция печени
Для оценки влияния олигонуклеотидов ISIS на печеночную функцию, обезьян выдерживали без пищи в течение ночи. Во всех экспериментальных группах отбирали образцы крови объемом около 1,5 мл. Кровь собирали в пробирки без антикоагулянта для отделения сыворотки. Пробирки выдерживали при комнатной температуре в течение не менее 90 минут, а затем центрифугировали при 3000 об./мин в течение 10 минут. Уровни различных маркеров функции печени измеряли с помощью анализатора химического состава Toshiba 120FR NEO (Toshiba Co., Япония). Результаты представлены в таблице 174 и демонстрируют, что антисмысловые олигонуклеотиды не оказывают воздействия на функцию печени, выходящего за пределы ожидаемого диапазона для антисмысловых олигонуклеотидов.
Гематология
Чтобы оценить влияние олигонуклеотидов ISIS на гематологические параметры яванских макак, образцы крови объемом около 1,2 мл крови отбирали до введения дозы и на 87 день или 88 день у каждого из доступных экспериментальных животных в пробирки, содержащие K2-ЭДТА. Образцы анализировали на содержание красных кровяных телец (RBC), содержание белых кровяных телец (WBC), количество тромбоцитов, содержание гемоглобина и на гематокрит, используя анализатор гематологии ADVIA2120i (SIEMENS, США). Данные представлены в таблице 175.
Данные показывают, что лечение большинство олигонуклеотидов не вызывает каких-либо изменений гематологических параметров за пределами ожидаемого диапазона для антисмысловых олигонуклеотидов в указанной дозе.
Функция почек
Для оценки влияния олигонуклеотидов ISIS на функцию почек обезьян выдерживали без пищи в течение ночи. Во всех экспериментальных группах отбирали образцы крови объемом около 1,5 мл. Кровь собирали в пробирки без антикоагулянта для отделения сыворотки. Пробирки выдерживали при комнатной температуре в течение не менее 90 минут, а затем центрифугировали при 3000 об./мин в течение 10 минут. Уровни АМК и креатинина измеряли с помощью анализатора химического состава Toshiba 120FR NEO (Toshiba Co., Япония). Результаты, представленные в таблице 176, выражены в мг/дл. Данные химического анализа плазмы показывают, что большинство олигонуклеотидов ISIS не оказывали какого-либо влияния на почечную функцию за пределами ожидаемого для антисмысловых олигонуклеотидов диапазона. В частности, лечение с применением ISIS 546254 хорошо переносилось с точки зрения функции почек обезьян.
Функцию почек оценивали также с помощью анализа мочи. Свежую мочу всех животных собирали, используя чистый лоток для клеток на мокром льду. За день до сбора свежей мочи животным в течение ночи не давали пищу, оставив только воду. Уровни общего белка и креатинина измеряли с помощью автоматического анализатора химического состава Toshiba 120FR NEO (Toshiba Co., Япония), и рассчитали также соотношение белка к креатинину. Результаты представлены в таблице 177.
Анализ уровня С-реактивного белка
Для оценки возможного воспалительного действия олигонуклеотидов ISIS у яванских макак обезьян выдерживали без пищи в течение ночи. Во всех экспериментальных группах отбирали образцы крови объемом около 1,5 мл. Кровь собирали в пробирки без антикоагулянта для отделения сыворотки. Пробирки выдерживали при комнатной температуре в течение не менее 90 минут, а затем центрифугировали при 3000 об./мин в течение 10 минут. С-реактивный белок (CRP), который синтезируется в печени и служит маркером воспаления, измеряли с помощью анализатора химического состава Toshiba 120FR NEO (Toshiba Co., Япония). Таким же образом измеряли комплемент С3, и данные представлены как процент от исходных значений. Результаты представлены в таблице 178 и показывают, что лечение олигонуклеотидами ISIS не вызывало воспаления у обезьян.
Пример 122: Антисмысловое ингибирование мРНК мышиного ПКП в первичных гепатоцитах мышей
Были сконструированы антисмысловые олигонуклеотиды, нацеленные на нуклеиновую кислоту ПКП мышей, и было протестировано их влияние на мРНК ПКП in vitro. Культивированные первичные гепатоциты мышей с плотностью 10000 клеток на лунку трансфицировали с помощью реагента Cytofectin с концентрациями антисмыслового олигонуклеотида 12,5 нМ, 25,0 нМ, 50,0 нМ, 100,0 нМ и 200,0 нМ. После периода обработки длительностью около 24 часов РНК выделяли из клеток и измеряли уровни мРНК ПКП мышей с помощью количественной ПЦР в реальном времени, используя мышиный набор праймерных зондов RTS3313 (прямая последовательность TGCCTGCTGTTCAGCTTTCTC, обозначенная в настоящем документе как SEQ ID NO: 2228; обратная последовательность TGGCAAAGTCCCTGTAATGCT, обозначенная в данном описании как SEQ ID NO: 2229; последовательность зонда CGTGACTCCACCCAAAGAGACAAATAAACG, обозначенная в данном описании как SEQ ID NO: 2230). Уровни мРНК ПКП скорректировали в соответствии с общим содержанием РНК, измеренным с помощью RIBOGREEN.
Химерные антисмысловые олигонуклеотиды были сконструированы как 5-10-5 МОЕ гэпмеры. Гэпмеры имеют 20 нуклеотидов в длину, причем центральный сегмент гэп состоит из десяти 2'-дезоксинуклеозидов и с обеих сторон (с 5' конца и с 3' конца) окружен сегментами крыльев, содержащими по 5 нуклеозидов каждый. Каждый нуклеозид в 5' сегменте крыла и каждый нуклеозид в 3' сегменте крыла содержит 2'-O-метоксиэтильную модификацию. Межнуклеозидные связи в каждом гэпмере представляют собой тиофосфатные связи. Все остатки цитозина в каждом гэпмере представляют собой 5-метилцитозины. Результаты дедмонстрируют, что уровни мРНК ПКП были существенно снижены дозозависимым образом.
В одном конкретном примере ISIS 482584 (GGCATATTGGTTTTTGGAAT; SEQ ID NO: 2244) обеспечивал снижение мРНК ПКП дозозависимым образом с полумаксимальной ингибирующей концентрацией (IC50) 84 нМ (см. таблицу 179). ISIS 482584 нацелен на SEQ ID NO: 11 (номер доступа GENBANK NM_008455.2) и имеет сайт-мишень инициации 1586 и сайт-мишень терминации 1605. «Сайт-мишень инициации» указывает 5'-крайний нуклеотид, на который нацелен гэпмер. «Сайт-мишень терминации» указывает 3'-крайний нуклеотид, на который нацелен гэпмер.
Пример 123: Антисмысловое ингибирование мРНК ПКП у мышей BALB/c
Испытали влияние ISIS 482584 на мРНК мышиного ПКП in vivo.
Лечение
Шесть групп самцов мышей BALB/c лечили, используя 2,5 мг/кг, 5,0 мг/кг, 10,0 мг/кг, 20,0 мг/кг, 40,0 мг/кг или 80,0 мг/кг ISIS 482584, которые вводили подкожно дважды в неделю в течение 3 недель (еженедельные дозы 5,0 мг/кг, 10,0 мг/кг, 20,0 мг/кг, 40,0 мг/кг, 80,0 мг/кг или 160 мг/кг). Контрольную группу мышей BALB/c лечили с PBS, который вводили подкожно дважды в неделю в течение 3 недель. Через два дня после введения последней дозы антисмыслового олигонуклеотида или PBS мышей из всех групп усыпили с помощью 150 мг/кг кетамина, смешанного с 10 мг/кг ксилазина, введенных внутрибрюшинной инъекцией. Для анализа РНК собрали печень.
Анализ РНК
РНК выделили из ткани печени для проведения анализа ПКП с помощью ПЦР в реальном времени. Уровни мРНК ПКП измеряли с использованием мышиного набора праймерных зондов (прямая последовательность ACAAGTGCATTTTACAGACCAGAGTAC, обозначенная в настоящем документе как SEQ ID NO: 2231; обратная последовательность GGTTGTCCGCTGACTTTATGCT, обозначенная в данном описании как SEQ ID NO: 2232; последовательность зонда AAGCACAGTGCAAGCGGAACACCC, обозначенная в данном описании как SEQ ID NO: 2233). Результаты представлены как процент ингибирования ПКП относительно контроля с PBS. Как показано в таблице 180, лечение с ISIS 482584 привело к существенному дозозависимому снижению мРНК ПКП в сравнении с контролем с PBS.
Анализ белка
Плазму собирали в пробирки, содержащие цитрат натрия в качестве антикоагулянта. Образцы пропускали через SDS-полиакриламидный гель с градиентом 4-12% (Invitrogen), затем анализировали иммуноблоттингом с мышиным антителом ПКП (R&D Systems). Блоты инкубировали со вторичными, мечеными флуорофором антителами (LI-COR) и визуализировали на приборе Odyssey Imager (LI-COR). Результаты представлены как процент ингибирования ПКП относительно контроля с PBS. Как показано в таблице 181, лечение с ISIS 482584 привело к существенному дозозависимому снижению белка ПКП плазмы в сравнении с контролем с PBS.
н.д. = нет данных
Пример 124: In vivo влияние антисмыслового ингибирования мышиного ПКП в мышиной модели ангионевротического отека
Наследственный ангионевротический отек (НАЕ) характеризуется локальным опуханием и увеличением сосудистой проницаемостью подкожных тканей (Morgan, В.Р. N. Engl. J. Med. 363: 581-83, 2010). Причиной является дефицит ингибитора С1, белка системы комплемента. В данном исследовании использовали две мышиные модели, включая традиционную мышиную модель дефицита C1-INH и модель опухоли, вызванной каптоприлом, которые обусловливают проницаемость сосудов, что является признаком НАЕ. Реверсирование сосудистой проницаемости сопровождается повышенными уровнями высокомолекулярного кининогена (HMWK) в плазме.
В первой модели ангионевротический отек индуцировали введением каптоприла, известного антигипертензивного агента, который увеличивает сосудистую проницаемость у мышей и воспроизводит патологию наследственного ангионевротического отека.
Во второй модели, ангионевротический отек индуцировали лечением ISIS 461756, антисмысловым олигонуклеотидом, который нацелен на мРНК мышиного ингибитора С1, что увеличивает сосудистую проницаемость у мышей и воспроизводит патологию наследственного ангионевротического отека. ISIS 461756 (SEQ ID NO: 2245; AAAGTGGTTGATACCCTGGG) представляет собой 5-10-5 МОЕ гэпмер, нацеленный на нуклеозиды 1730-1749 NM_009776.3 (SEQ ID NO: 2243).
Влияние HOE-140 и ISIS 482584, антисмыслового олигонуклеотидного ингибитора ПКП, оценивали в мышиных моделях сосудистой проницаемости, индуцированной каптоприлом и ISIS 461756. Некоторые группы мышей лечили с помощью НОЕ-140, селективного антагониста рецептора брадикинина В2, который блокирует расширение сосудов и проницаемость сосудов (Cruden and Newby, Expert Opin. Pharmacol. 9: 2383-90, 2008). Других мышей лечили с помощью ISIS 482584, который ингибирует экспрессию мРНК ПКП. Эффективность лечения с применением НОЕ-140 сравнили с эффективностью лечения с применением ISIS 482584.
Лечение
Различные экспериментальные группы для данного анализа представлены в таблице 182.
Группа 1 состояла из 4 мышей C57BL/6J-Tyrc-2J, которым подкожно вводили PBS дважды в неделю в течение 4 недель. Другого лечения для группы 1, которая служила контрольной группой для измерения базовых уровней сосудистой проницаемости, не проводилось.
Группа 2 состояла из 8 мышей C57BL/6J-Tyrc-2J, которым подкожно вводили PBS дважды в неделю в течение 4 недель. В конце лечения мышам внутрибрюшинно вводили 20 мкг каптоприла. Группа 2 служила контрольной группой с PBS для индуцированной каптоприлом сосудистой проницаемости.
Группа 3 состояла из 8 мышей C57BL/6J-Tyrc-2J, которым подкожно вводили PBS дважды в неделю в течение 4 недель. На 14 день мышам вводили 50 мг/кг антисмыслового олигонуклеотида, направленного на ингибитор C1, ISIS 461756, который вводили подкожно дважды в неделю в течение 2 недель. В конце периода лечения мышам внутрибрюшинно вводили 20 мкг каптоприла. Группа 3 служила контрольной группой с PBS для индуцированной каптоприлом и ISIS 461756 сосудистой проницаемости.
Группа 4 состояла из 8 мышей C57BL/6J-Tyrc-2J, которым подкожно вводили PBS дважды в неделю в течение 4 недель. На 14 день мышам вводили 50 мг/кг антисмыслового олигонуклеотида, направленного на ингибитор C1, ISIS 461756, который вводили подкожно дважды в неделю в течение 2 недель. В конце периода лечения мышам внутрибрюшинно вводили 20 мкг каптоприла. Затем мышам также внутрибрюшинно вводили 30 мкг НОЕ-140. Группа 4 служила положительным контролем ингибирования сосудистой проницаемости с НОЕ-140.
Группа 5 состояла из 8 мышей C57BL/6J-Tyrc-2J, которым вводили 40 мг/кг контрольного олигонуклеотида ISIS 141923, 5-10-5 МОЕ гэпмера без известной мишени у мышей (CCTTCCCTGAAGGTTCCTCC; SEQ ID NO: 2246), который вводили подкожно дважды в неделю в течение 4 недель. На 14 день мышам вводили 50 мг/кг антисмыслового олигонуклеотида, направленного на ингибитор C1, ISIS 461756, который вводили подкожно дважды в неделю в течение 2 недель. В конце периода лечения мышам внутрибрюшинно вводили 20 мкг каптоприла. Группа 5 служила контрольной группой для индуцированной каптоприлом и ISIS 461756 сосудистой проницаемости.
Группа 6 состояла из 8 мышей C57BL/6J-Tyrc-2J, которым подкожно вводили 40 мг/кг ISIS 482584 дважды в неделю в течение 4 недель. В конце периода лечения мышам внутрибрюшинно вводили 20 мкг каптоприла. Группа 6 служила экспериментальной группой лечения для исследования влияния ПКП ASO на индуцированную каптоприлом сосудистую проницаемость.
Группа 7 состояла из 8 мышей C57BL/6J-Tyrc-2J, которым подкожно вводили 40 мг/кг ISIS 482584 дважды в неделю в течение 4 недель. На 14 день мышам вводили 50 мг/кг антисмыслового олигонуклеотида, направленного на ингибитор C1, ISIS 461756, который вводили подкожно дважды в неделю в течение 2 недель. В конце периода лечения мышам внутрибрюшинно вводили 20 мкг каптоприла. Группа 7 служила экспериментальной группой лечения для исследования влияния ПКП ASO на индуцированную каптоприлом и ISIS 461756 сосудистую проницаемость.
Затем всем группам вводили инъекции 30 мг/кг раствора Evans Blue в хвостовую вену. Мышей усыпляли через 30 минут после введения раствора Evans Blue, и извлекали ободочную кишку, стопы, уши и кишечник. Образцы крови получали пункцией сердца.
Количественное определение сосудистой проницаемости
Собранные ткани стоп, ободочной кишки, ушей и кишечника по отдельности помещали на ночь в раствор формамида для выщелачивания красителя Evans Blue. Раствор формамида, содержащий ткань уха и стопы, нагревали до 55°С и оставляли на ночь. Затем интенсивность окрашивания раствора формамида с инфундировавшим красителем измеряли при OD600 нм, и результаты приведены в таблице 183. Мыши, демонстрирующие проявления ангионевротического отека, захватывают больше красителя и, таким образом, демонстрируют более высокие значения OD.
показано в таблице 183, лечение ISIS 482584 предупреждает возникновение сосудистой проницаемости у мышей, получавших каптоприл (группа 6), и у мышей, получавших каптоприл и ISIS 461756 (группа 7), по сравнению с соответствующими контрольными группами с PBS (группы 2 и 3). Степень сосудистой проницаемости у мышей из групп 6 и 7 также была снижена в большинстве тканей, по сравнению с мышами, которых лечили контрольным олигонуклеотидом, ISIS 141923 (группа 5), где сосудистую проницаемость индуцировали каптоприлом и ISIS 461756. Степень сосудистой проницаемости в ткани ободочной кишки и ступней в обеих экспериментальных группах (группа 6 и 7) была сравнима с исходными значениями, которые наблюдали у мышей, которым вводили только PBS (группа 1). Снижение сосудистой проницаемости у мышей, которым вводили ISIS 482584, было сравнимо со снижением, наблюдаемым у мышей, которых лечили антагонистом рецептора брадикинина 2, НОЕ140, который служил в данном анализе положительным контролем.
Следовательно, антисмысловое ингибирование мРНК ПКП может иметь преимущество для лечения и предупреждения сосудистой проницаемости, которая является симптомом НАЕ.
Количественное определение высокомолекулярного кининогена (HMWK)
Количественное определение HMWK вестерн-блоттингом из образцов крови.
Образцы из групп 1 и 2 имеют низкие уровни HMWK по сравнению с группами 6 и 7, что указывает на то, что сосудистая проницаемость в группах 6 и 7 реверсирована. Образцы из групп 1 и 2 имеют повышенное содержание продукта расщепления HMWK по сравнению с группами 6 и 7. Таким образом, недостаток HMWK обусловлен расщеплением HMWK под действием ПКП до продуктов расщепления (в том числе брадикинина и HKa).
Пример 125: In vivo влияние антисмыслового ингибирования мышиного ПКП на базовую проницаемость и индуцированную каптоприлом проницаемость у мышей
Базовая проницаемость представляет собой степень сосудистой проницаемости в тканях ранее не подверженных экспериментам и лечению мышей. Было оценено влияние ISIS 482584 с точки зрения предотвращения сосудистой проницаемости, базовой или индуцированной каптоприлом.
Лечение
Различные экспериментальные группы для данного анализа представлены в таблице 184.
Группа 1 состояла из 8 мышей и получала PBS, который вводили подкожно два раза в неделю в течение 4 недель. Другого лечения для группы 1, которая служила контрольной группой для измерения базовых уровней сосудистой проницаемости, не проводилось.
Группа 2 состояла из 8 мышей и получала PBS, который вводили подкожно два раза в неделю в течение 4 недель. В конце периода лечения мышам внутрибрюшинно вводили 20 мкг каптоприла. Группа 2 служила группой отрицательного контроля для индуцированной каптоприлом сосудистой проницаемости.
Группа 3 состояла из 8 мышей и получала PBS, который вводили подкожно два раза в неделю в течение 4 недель. В конце периода лечения мышам внутрибрюшинно вводили 30 мкг НОЕ-140. Группа 3 служила положительным контролем для ингибирования базовой сосудистой проницаемости.
Группа 4 состояла из 8 мышей и получала PBS, который вводили подкожно два раза в неделю в течение 4 недель. В конце периода лечения мышам внутрибрюшинно вводили 20 мкг каптоприла. Мышам также внутрибрюшинно вводили 30 мкг НОЕ-140. Группа 4 служила положительным контролем ингибирования индуцированной каптоприлом сосудистой проницаемости.
Группа 5 состояла из 8 мышей, которым подкожно вводили 40 мг/кг ISIS 482584 два раза в неделю в течение 4 недель. Группа 5 служила экспериментальной группой лечения для исследования влияния ISIS 482584 на базовую сосудистую проницаемость.
Группа 6 состояла из 8 мышей, которым подкожно вводили 40 мг/кг ISIS 482584 два раза в неделю в течение 4 недель. В конце периода лечения мышам внутрибрюшинно вводили 20 мкг каптоприла. Группа 6 служила экспериментальной группой лечения для исследования влияния ISIS 482584 на индуцированную каптоприлом сосудистую проницаемость.
Затем всем группам вводили инъекции 30 мг/кг раствора Evans Blue. Мышей усыпляли через 30 минут после введения раствора Evans Blue, и извлекали ободочную кишку, стопы, уши и кишечник.
Количественное определение сосудистой проницаемости
Собранные ткани стоп, ободочной кишки, кишечника и ушей по отдельности помещали на ночь в раствор формамида для выщелачивания красителя Evans Blue. Раствор формамида, содержащий ткань стопы и уха, нагревали до 55°С и оставляли на ночь. Затем интенсивность окрашивания раствора формамида с инфундировавшим красителем измеряли при OD600 нм, и результаты приведены в таблице 185. Мыши, демонстрирующие проявления ангионевротического отека, захватывают больше красителя и, таким образом, демонстрируют более высокие значения OD.
Как показано в таблице 185, мыши, которых лечили ISIS 482584, демонстрируют сниженную базовую сосудистую проницаемость по сравнению с контролем с PBS (группа 5 в сравнении с группой 1). Снижение базовой сосудистой проницаемости в результате лечения с применением ISIS 482584 сравнимо со снижением, вызванным лечением НОЕ-140 (группа 3, которая служила положительным контролем). Мыши, которых лечили с применением ISIS 482584, демонстрировали также снижение индуцированной каптоприлом сосудистой проницаемости в большинстве тканей, по сравнению с контролем с PBS (группа 6 в сравнении с группой 2). Снижение индуцированной каптоприлом сосудистой проницаемости в результате лечения с применением ISIS 482584 сравнимо со снижением, вызванным лечением НОЕ-140 (группа 4, которая служила положительным контролем).
Пример 126: Дозозависимое влияние антисмыслового ингибирования мышиного ПКП на индуцированную каптоприлом сосудистую проницаемость
Было оценено влияние различных доз ISIS 482584 на индуцированную каптоприлом сосудистую проницаемость.
Лечение
Различные экспериментальные группы для данного анализа представлены в таблице 186.
Группа 1 состояла из 4 мышей и получала PBS, который вводили подкожно два раза в неделю в течение 3 недель. Другого лечения для группы 1, которая служила контрольной группой для измерения базовых уровней сосудистой проницаемости, не проводилось.
Группа 2 состояла из 8 мышей и получала PBS, который вводили подкожно два раза в неделю в течение 3 недель. В конце периода лечения мышам внутрибрюшинно вводили 20 мкг каптоприла. Группа 2 служила контрольной группой для индуцированной каптоприлом сосудистой проницаемости.
Группа 3 состояла из 4 мышей и получала PBS, который вводили подкожно два раза в неделю в течение 3 недель. В конце периода лечения мышам внутрибрюшинно вводили 20 мкг каптоприла. Мышам также внутрибрюшинно вводили 30 мкг Icatibant (НОЕ-140). Группа 4 служила положительным контролем ингибирования индуцированной каптоприлом сосудистой проницаемости.
Группы 4, 5, 6, 7, 8 и 9 состояли из 8 мышей каждая и получали 2,5 мг/кг, 5 мг/кг, 10 мг/кг, 20 мг/кг, 40 мг/кг или 80 мг/кг (что соответствовало 5 мг/кг, 10 мг/кг, 20 мг/кг, 40 мг/кг, 80 мг/кг или 160 мг/кг в неделю), соответственно, ISIS 482584, который вводили подкожно два раза в неделю в течение 3 недель. В конце периода лечения мышам всех групп внутрибрюшинно вводили 20 мкг каптоприла. Группы 4-9 служили экспериментальными группами лечения для исследования влияния различных доз ISIS 482584 на индуцированную каптоприлом сосудистую проницаемость.
Затем всем группам вводили инъекции 30 мг/кг раствора Evans Blue в хвостовую вену. Мышей усыпляли через 30 минут после введения раствора Evans Blue, и извлекали ободочную кишку, стопы, уши и кишечник. Образцы крови получали пункцией сердца.
Количественное определение сосудистой проницаемости
Собранные ткани помещали на ночь в раствор формамида для выщелачивания красителя Evans Blue. Раствор формамида, содержащий ткань стопы и уха, нагревали до 55°С и оставляли на ночь. Затем интенсивность окрашивания раствора формамида с инфундировавшим красителем измеряли при OD600 нм, и результаты приведены в таблице 187. Мыши, демонстрирующие проявления ангионевротического отека, захватывают больше красителя и, таким образом, демонстрируют более высокие значения OD.
Как показано в таблице 187, у мышей, которым вводили более высокие дозы ISIS 482584 (группы 4, 5 и 6), уровни индуцированной каптоприлом сосудистой проницаемости были снижены, по сравнению с соответствующей контрольной группой с PBS (группа 2). Уменьшение сосудистой проницаемости у мышей из этих групп лечения (группы 4 и 5) было сравнимым с уровнями базовой сосудистой проницаемости (как показано для группы 1), а также с показателями мышей, получавших НОЕ-140 (группа 3).
Количественное определение транссудации
Кровь, полученную пункцией сердца, сразу смешивали с 3-кратным объемом ледяного этанола. Раствор центрифугировали при 15000 g в течение 20 минут при 4°С, чтобы удалить клеточный дебрис и осажденные белки плазмы. Этанольные экстракты дополнительно очищали ультрафильтрацией через фильтр с НОММ 10 кДа. После этого, интенсивность окрашивания экстрагированного этанолом раствора плазмы измеряли при OD620 нм. Результаты представлены в таблице 188 как процент возрастания или уменьшения значений OD относительно показателей контрольной группы 1 с PBS. Ожидалось, что ткани мышей, демонстрирующих проявления ангионевротического отека, будет демонстрировать более высокую транссудацию красителя из плазмы и, таким образом, значения OD будут более низкими, тогда как экспериментальные могут демонстрировать более высокие значения OD за счет уменьшения транссудации. Мыши, которым вводили 160 мг/кг/неделю и 80 мг/кг/неделю ISIS 482584 (группы 4 и 5), продемонстрировали меньшую транссудацию, по сравнению с отрицательным контролем с PBS, получавшим каптоприл (группа 2). Результаты групп 4 и 5 были сравнимы с положительным контролем, получавшим НОЕ-140 (группа 3).
Пример 127: Дозозависимое влияние антисмыслового ингибирования мышиного ПКП на базовую проницаемость у мышей
Было оценено влияние различных доз ISIS 482584 на базовую сосудистую проницаемость.
Лечение
Различные экспериментальные группы для данного анализа представлены в таблице 189.
Группа 1 состояла из 8 мышей и получала PBS, который вводили подкожно два раза в неделю в течение 3 недель. Другого лечения для группы 1, которая служила контрольной группой для измерения базовых уровней сосудистой проницаемости, не проводилось.
Группа 2 состояла из 4 мышей и получала PBS, который вводили подкожно два раза в неделю в течение 3 недель. В конце периода лечения мышам внутрибрюшинно вводили 30 мкг НОЕ-140. Группа 2 служила положительным контролем для ингибирования базовой сосудистой проницаемости.
Группы 3, 4, 5, 6, 7 и 8 состояли из 8 мышей каждая и получали 2,5 мг/кг, 5 мг/кг, 10 мг/кг, 20 мг/кг, 40 мг/кг или 80 мг/кг (что соответствовало 5 мг/кг, 10 мг/кг, 20 мг/кг, 40 мг/кг, 80 мг/кг или 160 мг/кг в неделю), соответственно, ISIS 482584, который вводили подкожно два раза в неделю в течение 3 недель. Группы 4-9 служили экспериментальными группами лечения для исследования влияния различных доз ISIS 482584 на базовую сосудистую проницаемость.
Затем всем группам вводили инъекции 30 мг/кг раствора Evans Blue в хвостовую вену. Мышей усыпляли через 30 минут после введения раствора Evans Blue, извлекали ободочную кишку, стопы и уши и исследовали на предмет нарушений проницаемости. Образцы крови получали пункцией сердца.
Количественное определение сосудистой проницаемости
Собранные ткани стоп, ободочной кишки и ушей помещали на ночь в раствор формамида для выщелачивания красителя Evans Blue. Раствор формамида, содержащий ткань стопы и уха, нагревали до 55°С и оставляли на ночь. Затем интенсивность окрашивания раствора формамида с инфундировавшим красителем измеряли при OD600 нм, и результаты приведены в таблице 190. Более высокие значения OD связаны с более высокими уровнями проницаемости.
Как показано в таблице 190, большинство тканей мышей, которым вводили ISIS 482584 во всех дозах (группы 3-8), продемонстрировали сниженную базовую сосудистую проницаемость, по сравнению с контролем с PBS (группа 1). Уменьшение базовой сосудистой проницаемости леченных олигонуклеотидом ISIS групп было сравнимым с показателями в группе положительного контроля, получавшей НОЕ-140 (группа 2).
Количественное определение транссудации
Кровь, полученную пункцией сердца, сразу смешивали с 3-кратным объемом ледяного этанола. Раствор центрифугировали при 15000 g в течение 20 минут при 4°С, чтобы удалить клеточный дебрис и осажденные белки плазмы. Этанольные экстракты дополнительно очищали ультрафильтрацией через фильтр с НОММ 10 кДа. После этого, интенсивность окрашивания экстрагированного этанолом раствора плазмы измеряли при OD620 нм. Результаты представлены в таблице 191 как процент возрастания или уменьшения значений OD относительно показателей контрольной группы 1 с PBS. Ожидалось, что группы лечения могут демонстрировать более высокие значения OD за счет уменьшения транссудации. Все мыши в группах, которым вводили олигонуклеотид ISIS, продемонстрировали значительно сниженную транссудацию, по сравнению с отрицательным контролем с PBS.
Количественное определение высокомолекулярного кининогена (HMWK)
Количественное определение HMWK вестерн-блоттингом из образцов крови представлено в таблицах 192 и 193.
Как показано в таблице 192, в группах, которым вводили 482584, наблюдали более высокие уровни HMWK по сравнению с контролем с PBS, возрастающие дозозависимым образом. Лечение антисмысловым олигонуклеотидом против ПКП приводит к стабилизации HMWK. Таким образом, сосудистая проницаемость снижалась в группах, которым вводили ISIS 482584, дозозависимым образом. Как показано в таблице 193, в группах, которым вводили ISIS 482584, наблюдали более низкое содержание продукта расщепления HMWK по сравнению с контролем с PBS, снижающийся дозозависимым образом. Таким образом, снижение HMWK обусловлено расщеплением HMWK под действием ПКП до продуктов расщепления (в том числе брадикинина и HKa). Данные представлены в единицах интенсивности, по результатам измерения денситометром.
Пример 128: Комбинированная терапия антисмысловыми олигонуклеотидами, нацеленными на ПКП и фактор 12, при индуцированной каптоприлом сосудистой проницаемости у мышей
Мышей лечили различными дозами ISIS 410944, 5-10-5 МОЕ гэпмера, нацеленного на фактор 12 (GCATGGGACAGAGATGGTGC; SEQ ID NO: 2247), и ISIS 482584 в модели индуцированной каптоприлом сосудистой проницаемости.
Лечение
Различные экспериментальные группы для данного анализа представлены в таблице 194.
Группа 1 состояла из 4 мышей и получала PBS, который вводили подкожно два раза в неделю в течение 3 недель. Другого лечения для группы 1, которая служила контрольной группой для измерения базовых уровней сосудистой проницаемости, не проводилось.
Группа 2 состояла из 8 мышей и получала PBS, который вводили подкожно два раза в неделю в течение 3 недель. В конце периода лечения мышам внутрибрюшинно вводили 20 мкг каптоприла. Группа 2 служила контрольной группой для индуцированной каптоприлом сосудистой проницаемости.
Группа 3 состояла из 4 мышей и получала PBS, который вводили подкожно два раза в неделю в течение 3 недель. В конце периода лечения мышам внутрибрюшинно вводили 20 мкг каптоприла. Мышам также внутрибрюшинно вводили 30 мкг НОЕ-140. Группа 3 служила группой положительного контроля для ингибирования индуцированной каптоприлом сосудистой проницаемости.
Группы 4, 5, 6, 7, и 8 состояли из 8 мышей каждая и получали 2,5 мг/кг, 5 мг/кг, 10 мг/кг, 20 мг/кг или 40 мг/кг (что соответствовало 5 мг/кг, 10 мг/кг, 20 мг/кг, 40 мг/кг или 80 мг/кг в неделю), соответственно, ISIS 482584 и ISIS 410944, каждый из которых вводили подкожно два раза в неделю в течение 3 недель. В конце периода лечения мышам всех групп внутрибрюшинно вводили 20 мкг каптоприла. Группы 4-8 служили экспериментальными группами лечения для исследования влияния ISIS 410944 и ISIS 482584 на индуцированную каптоприлом сосудистую проницаемость.
Затем всем группам вводили инъекции 30 мг/кг раствора Evans Blue в хвостовую вену. Мышей усыпляли через 30 минут после введения раствора Evans Blue, и извлекали ободочную кишку, стопы, уши и кишечник.
Количественное определение сосудистой проницаемости
Собранные ткани стоп, ободочной кишки и ушей помещали на ночь в раствор формамида для выщелачивания красителя Evans Blue. Раствор формамида, содержащий ткань стопы и уха, нагревали до 55°С и оставляли на ночь. Затем интенсивность окрашивания раствора формамида с инфундировавшим красителем измеряли при OD600 нм, и результаты приведены в таблице 195. Более высокие значения OD связаны с более высокими уровнями проницаемости.
Как показано в таблице 195, большинство тканей мышей, которым вводили комбинацию ISIS 482584 and ISIS 410944 во всех дозах (группы 3-8), продемонстрировали сниженную сосудистую проницаемость, по сравнению с контролем с PBS (группа 1). Уменьшение сосудистой проницаемости в группах, которым вводили олигонуклеотид ISIS, было сравнимым с показателями в базовой контрольной группе с PBS (группа 1), а также в группе положительного контроля, получавшей НОЕ-140 (группа 2). Комбинация антисмысловых олигонуклеотидов, нацеленных на ПКП и фактор 12, приводит к синергетическому снижению проницаемости. Ожидалось также наблюдение соответствующего синергетического снижения транссудации.
Пример 129: Влияние комбинированной терапии антисмысловыми олигонуклеотидами, нацеленными на ПКП и фактор 12, на базовую сосудистую проницаемость у мышей
Мышей лечили различными дозами ISIS 410944, антисмыслового олигонуклеотида, нацеленного на фактор 12, и ISIS 482584 в модели базовой сосудистой проницаемости.
Лечение
Различные экспериментальные группы для данного анализа представлены в таблице 196.
Группа 1 состояла из 8 мышей и получала PBS, который вводили подкожно два раза в неделю в течение 3 недель. Другого лечения для группы 1, которая служила контрольной группой для измерения базовых уровней сосудистой проницаемости, не проводилось.
Группа 2 состояла из 4 мышей и получала PBS, который вводили подкожно два раза в неделю в течение 3 недель. В конце периода лечения мышам внутрибрюшинно вводили 30 мкг НОЕ-140. Группа 2 служила положительным контролем для ингибирования базовой сосудистой проницаемости.
Группы 3, 4, 5, 6 и 7 состояли из 8 мышей каждая и получали 2,5 мг/кг, 5 мг/кг, 10 мг/кг, 20 мг/кг или 40 мг/кг (что соответствовало 5 мг/кг, 10 мг/кг, 20 мг/кг, 40 мг/кг или 80 мг/кг в неделю), соответственно, ISIS 482584 и ISIS 410944, каждый из которых вводили подкожно два раза в неделю в течение 3 недель. Группы 3-7 служили экспериментальными группами лечения для исследования влияния ISIS 410944 и ISIS 482584 на базовую сосудистую проницаемость.
Затем всем группам вводили инъекции 30 мг/кг раствора Evans Blue в хвостовую вену. Мышей усыпляли через 30 минут после введения раствора Evans Blue, и извлекали ободочную кишку, стопы, уши и кишечник.
Количественное определение сосудистой проницаемости
Собранные ткани стоп, ободочной кишки, кишечника и ушей помещали на ночь в раствор формамида для выщелачивания красителя Evans Blue. Раствор формамида, содержащий ткань стопы и уха, нагревали до 55°С и оставляли на ночь. Затем интенсивность окрашивания раствора формамида с инфундировавшим красителем измеряли при OD600 нм, и результаты приведены в таблице 197. Более высокие значения OD связаны с более высокими уровнями проницаемости.
Как показано в таблице 197, большинство тканей мышей, которым вводили комбинацию ISIS 482584 and ISIS 410944 во всех дозах (группы 2-7), продемонстрировали сниженную сосудистую проницаемость, по сравнению с контролем с PBS (группа 1). Уменьшение сосудистой проницаемости леченных олигонуклеотидом ISIS групп было сравнимым с показателями в группе положительного контроля, получавшей НОЕ-140 (группа 2). Комбинация антисмысловых олигонуклеотидов, нацеленных на ПКП и фактор 12, приводит к синергетическому снижению проницаемости. Ожидалось также наблюдение соответствующего синергетического снижения транссудации.
Пример 130: Ингибирование активации белка фактора 12 под действием ISIS 482584
Оценили влияние антисмыслового ингибирования мРНК ПКП на активацию белка фактора 12.
Лечение
Различные экспериментальные группы для данного анализа представлены в таблице 198.
Группа 1 состояла из 8 мышей и получала PBS, который вводили подкожно два раза в неделю в течение 3 недель. Другого лечения для группы 1, которая служила контрольной группой для измерения активации фактора 12, не проводилось.
Группы 2, 3, 4, 5 и 6 состояли из 8 мышей каждая и получали 2,5 мг/кг, 5 мг/кг, 10 мг/кг, 20 мг/кг или 40 мг/кг (что соответствовало 5 мг/кг, 10 мг/кг, 20 мг/кг, 40 мг/кг или 80 мг/кг в неделю), соответственно, ISIS 482584, который вводили подкожно два раза в неделю в течение 3 недель. Группы 2-6 служили экспериментальными группами для измерения влияния ISIS 482584 на активацию фактора 12.
В конце периода лечения у мышей собирали плазму для амидолитического анализа фактора 12 в плазме на основе фактора 12а Spectrozyme®.
Анализ активации фактора 12 в плазме
Плазму (5 мкл) добавляли к 85 мкл PBS с 1 мкг/мл сульфата декстрана (500 кДа) в 96-луночном полипропиленовом микропланшете и инкубировали раствор в течение 5 минут при комнатной температуре. Добавляли Spectrozyme® FXIIa (10 мкл 2 мМ раствора) и 0,2 мМ раствор KALLISTOP™, и измеряли кинетику поглощения при 405 нм. Активацию фактора 12 измеряли в линейной фазе накопления поглощения. Результаты представлены в таблице 199 как процент активации фактора 12, измеренной в контрольном образце с PBS. Как показано в таблице 199, ингибирование ПКП под действием ISIS 482584 приводит к снижению активации фактора 12 его субстратом, подразумевая, что указанный ПКП необходим для надлежащей активации фактора 12.
Пример 131: In vivo влияние антисмыслового ингибирования мышиного ПКП на сосудистую проницаемость, индуцированную антисмысловым олигонуклеотидом С1-INH
Сосудистая проницаемость, индуцированная ISIS 461756, антисмысловым олигонуклеотидом, который направлен на мРНК ингибитора мышиного С1, увеличивает сосудистую проницаемость у мышей и воспроизводит патологию наследственного ангионевротического отека. Исследовали влияние ISIS 482584 на данную модель.
Лечение
Одну группу из 8 мышей лечили с применением 40 мг/кг ISIS 482584, который подкожно вводили два раза в неделю в течение 3 недель (недельная доза 80 мг/кг). Вторую группу из 8 мышей лечили с применением 40 мг/кг контрольного олигонуклеотида, ISIS 141923, который подкожно вводили два раза в неделю в течение 3 недель (недельная доза 80 мг/кг). Третью группу из 8 мышей лечили с применением PBS, который подкожно вводили два раза в неделю в течение 3 недель. На 14 день всем группам подкожно вводили 12,5 мг/кг ISIS 461756, два раза в неделю в течение 3 недель (недельная доза 25 мг/кг). Контрольную группу мышей лечили с PBS, который подкожно вводили два раза в неделю в течение 3 недель, но им не вводили ISIS 461756.
В конце периода лечения всем группам в хвостовую вену ввели инъекцию 30 мг/кг раствора Evans Blue. Мышей усыпляли через 30 минут после введения раствора Evans Blue, и извлекали ободочную кишку, стопы, уши и кишечник. Для анализа РНК собрали также печень.
Анализ РНК
РНК выделили из печени для проведения анализа С1-INH и мРНК ПКП с помощью ПЦР в реальном времени. Набор праймерных зондов для C1-INH представляет собой RTS3218 (прямая последовательность GAGTCCCCCAGAGCCTACAGT, обозначенная в настоящем документе как SEQ ID NO: 2234; обратная последовательность TGTCATTTGTTATTGTGATGGCTACA, обозначенная в настоящем документе как SEQ ID NO: 2235; последовательность зонда CTGCCCTCTACCTGGCCAACAACCA, обозначенная в настоящем документе как SEQ ID NO: 2236). Набор праймерных зондов для ПКП представляет собой RTS3287 (прямая последовательность ACAAGTGCATTTTACAGACCAGAGTAC, обозначенная в настоящем документе как SEQ ID NO: 2237; обратная последовательность GGTTGTCCGCTGACTTTATGCT, обозначенная в настоящем документе как SEQ ID NO: 2238; последовательность зонда AAGCACAGTGCAAGCGGAACACCC, обозначенная в настоящем документе как SEQ ID NO: 2239). Результаты представлены в таблице 200 как процент ингибирования по сравнению с контрольным образцом с PBS, не обработанным ISIS 461756. Данные демонстрируют, что ISIS 461756 существенно снижает экспрессию мРНК C1-INH и что обработка с применением ISIS 482584 существенно снижает экспрессию ПКП.
Количественное определение сосудистой проницаемости
Собранные ткани стоп, ободочной кишки и кишечника помещали на ночь в раствор формамида для выщелачивания красителя Evans Blue. Раствор формамида, содержащий ткань стопы, нагревали до 55°С и оставляли на ночь. Затем интенсивность окрашивания раствора формамида с инфундировавшим красителем измеряли при OD600 нм. Данные представлены в таблице 201 как процент увеличения или снижения по сравнению с контрольным образцом с PBS, не обработанным ISIS 461756. Данные демонстрируют, что лечение с применением ISIS 482584 предотвращает сосудистую проницаемость, индуцированную ISIS 461756.
Пример 132: In vivo влияние антисмыслового ингибирования мышиного ПКП в модели индуцированного FeCl3 тромбоза нижней полой вены
ISIS 482584, который демонстрирует существенное in vitro и in vivo ингибирование ПКП, проверили в мышиной модели индуцированного FeCl3 тромбоза нижней полой вены.
Лечение
Трем группам по 8 самцов мышей BALB/c подкожно вводили 10 мг/кг, 20 мг/кг или 40 мг/кг ISIS 482584, два раза в неделю в течение 3 недель (недельные дозы 20 мг/кг, 40 мг/кг или 80 мг/кг). Две контрольнце группы по 12 мышей BALB/c лечили PBS, который подкожно вводили два раза в неделю в течение 3 недель. Через два дня после введения последней дозы антисмыслового олигонуклеотида или PBS мышей из всех групп усыпили с помощью 150 мг/кг кетамина, смешанного с 10 мг/кг ксилазина, введенных внутрибрюшинной инъекцией. Образование тромба индуцировали с помощью FeCl3 во всех группах усыпленных мышей, за исключением первой контрольной группы.
У мышей, подвернутых обработке FeCl3, образование тромба индуцировали накладыванием кусочка фильтровальной бумаги (2×4 мм), предварительно пропитанной 10% раствором FeCl3, непосредственно на полую вену. Через 3 минуты воздействия фильтровальную бумагу убирали. Через тридцать минут после нанесения фильтровальной бумаги вырезали вену фиксированной длины, содержащую тромб, для проведения анализа тромбоцитов. Для анализа РНК собрали печень.
Количественное определение состава тромбоцитов
Для количественного определения тромбоцитов в полой вене как меры образования тромба использовали количественное определение тромбоцитарного фактора 4 (PF-4) с помощью ПЦР в реальном времени. Уровни мРНК PF-4 измеряли с использованием мышиного набора праймерных зондов mPF4_LTS_00086 (прямая последовательность AGACCCATTTCCTCAAGGTAGAACT, обозначенная в настоящем документе как SEQ ID NO: 2240; обратная последовательность CGCAGCGACGCTCATG, обозначенная в настоящем документе как SEQ ID NO: 2241; последовательность зонда TCTTTGGGTCCAGTGGCACCCTCTT, обозначенная в настоящем документе как SEQ ID NO: 2242). Результаты представлены как процент PF-4 у мышей, которым вводили олигонуклеотид ISIS, по сравнению с двумя контрольными группами, которым вводили PBS. Как показано в таблице 202, лечение с применением ISIS 482584 привело к существенному снижению PF-4 в сравнении с контролем с PBS. Таким образом, снижение ПКП под действием соединения, предложенного в настоящем документе, подходит для подавления образования тромба.
Пример 133: In vivo влияние антисмыслового ингибирования мышиного ПКП в анализе кровотечения из хвоста
Измеряли кровотечение из хвоста для проверки того, вызывает ли лечение с применением ISIS 48254 чрезмерное кровотечение или кровопотерю у мышей.
Лечение
Группам по 10 самцов мышей BSLB/c подкожно вводили 10 мг/кг, 20 мг/кг или 40 мг/кг ISIS 482584, два раза в неделю в течение 3 недель (недельные дозы 20 мг/кг, 40 мг/кг или 80 мг/кг). Контрольную группу из 8 мышей BALB/c лечили с PBS, который вводили подкожно дважды в неделю в течение 3 недель.
Анализ кровотечения из хвоста
Через два дня после введения последней дозы олигонуклеотида ISIS или PBS мышей помещали в камеру для испытания кровотечения из хвоста. Мышей усыпляли в камере с помощью изофлурана. Затем стерильными ножницами отрезали небольшие кусочки хвоста (примерно 4 мм от кончика). Отрезанный хвост сразу помещали в пробирку Falcon объемом 15 мл, содержащую около 10 мл 0,9% буферного раствора NaCl, нагретого до 37°С. Кровь собирали в течение 40 минут. Наполненные солевым раствором пробирки взвешивали до и после кровотечения. Результаты приведены в таблице 203.
Лечение с применением ISIS 482584 не оказало существенного влияния на кровотечение. Эти данные позволяют предположить, что геморрагический потенциал соединений, предложенных в настоящем документе, является низким. Полученные данные вместе с результатами, представленными в примере 19, позволяют предположить, что ингибирование ПКП соединениями, описанными в настоящем документе, подходит для обеспечения антитромботической активности без сопутствующего риска кровотечения.
Пример 134: In vivo влияние антисмыслового ингибирования мышиного ПКП в модели индуцированного FeCl3 тромбоза брыжеечных сосудов
ISIS 482584 исследовали в мышиной модели индуцированного FeCl3 тромбоза брыжеечных сосудов.
Лечение
Группу из 6-8 швейцарских мышей Вебстер лечили с применением 40 мг/кг ISIS 482584, который подкожно вводили два раза в неделю в течение 3 недель (недельная доза 80 мг/кг). Контрольную группу 6 швейцарских мышей Вебстер лечили с PBS, который вводили подкожно дважды в неделю в течение 3 недель. Через два дня после введения последней дозы антисмыслового олигонуклеотида или PBS мышей из всех групп усыпили с помощью 75 мг/кг кетамина, смешанного с 25 мг/кг ксилазина, введенных подкожной инъекцией.
Для окрашивания тромбоцитов подкожно ввели инъекцию красителя родамина 6G в дозе 5 мг/кг. Для окрашивания фибрина в хвостовую вену ввели инъекцию антифибриногенного антитела, меченного реагентом Alexa-647, в дозе 1 мг/кг. Брюшную полость вскрывали путем срединного разреза. Висцеральную брыжейку распределяли на покровном стекле, и брыжеечные артериолы (70-120 мкм) располагали для наблюдения под микроскопом. Образование тромба индуцировали накладыванием хлопковых нитей (2×0,3 мм), предварительно пропитанных 6% раствором FeCl3, непосредственно на целевой сосуд. Через три минуты воздействия нить убирали и считывали интенсивность окрашивания обоих красителей с помощью флуоресцентной микроскопии (конфокальный лазерный сканирующий микроскоп Olympus FluoView 1000) с соответствующими фильтрами в течение 70 минут.
Результаты агрегации тромбоцитов в контрольных и экспериментальных группах, выраженные в условных единицах (у.е.), представлены в таблице 204. Агрегация тромбоцитов была снижена у мышей, которым вводили ISIS 482584 в дозе 80 мг/кг/неделю, по сравнению с мышами, которым вводили PBS. Результаты образования фибрина в контрольных и экспериментальных группах, также выраженные в условных единицах (у.е.), представлены в таблице 205. Образование фибрина было снижено у мышей, которым вводили ISIS 482584 в дозе 80 мг/кг/неделю, по сравнению с мышами, которым вводили PBS. Таким образом, полученные результаты позволяют предположить, что ISIS 482584 подавляет образование тромба.
Пример 135: In vivo влияние антисмыслового ингибирования мышеного ПКП в модели индуцированного стенозом тромбоза нижней полой вены
ISIS 482584 исследовали в модели индуцированного стенозом тромбоза нижней полой вены (IVC). Снижение кровотока и эндотелиальное повреждение являются характерными признаками указанной модели, также известной как модель св. Томаса.
Лечение
Четырем группам по 6-8 мышей BALB/c подкожно вводили 5 мг/кг, 10 мг/кг, 20 мг/кг или 40 мг/кг ISIS 482584, два раза в неделю в течение 3 недель (недельные дозы 10 мг/кг, 20 мг/кг, 40 мг/кг или 80 мг/кг). Контрольную группу из 8 мышей BALB/c лечили с PBS, который вводили подкожно дважды в неделю в течение 3 недель. Через два дня после введения последней дозы антисмыслового олигонуклеотида или PBS мышей из всех групп усыпили с помощью ингаляции 2,5% изофлурана. IVC мышей обнажали посредством срединного надреза брюшины ниже левой почечной вены, и отделяли от брюшной аорты тупой диссекцией. Шелковую нить 6-0 (Ethicon, Великобритания) помещали за кровеносным сосудом непосредственно под левой почечной веной, а металлическую нить 4-0 (Ethicon, Великобритания) помещали вдоль над IVC для закрепления шелковой нити сверху. Затем металлическую нить удаляли. Два хирургических зажима для нервных окончаний и сосудов (Braun Medical Inc, штат Пенсильвания) помещали в два разных положения под перевязкой на 20 секунд каждый, после чего их удаляли. Затем содержимое брюшной полости извлекали и закрывали брюшную полость. Через 24 часа IVC вскрывали и проверяли на образование тромба. Образованные тромбы собирали и фиксировали в 10% формалине в течение 24 часов.
Тромбы взвешивали, а результаты, выраженные в миллиграммах, представлены в таблице 206. Результаты демонстрируют, что лечение увеличивающимися дозами ISIS 482584 приводит к соответствующему снижению массы тромбов. Результаты демонстрируют, что антисмысловое ингибирование ПКП подходит для подавления образования тромба.
Пример 136: Ингибирование мышиного ПКП антисымсловым олигонуклеотидом, содержащим группу конъюгата GalNAc3
ISIS 482584 и ISIS 722059, представленные в следующей таблице, испытали на их влияние на мРНК мышиного ПКП in vivo.
Нижние индексы: «е» означает 2'-МОЕ модифицированный нуклеозид; «d» означает β-D-2'-дезоксирибонуклеозид; «s» означает тиофосфатные межнуклеозидные связи (PS); «о» означает фосфодиэфирные межнуклеозидные связи (РО); и «o'» означает ОР(=O)(ОН)-. Верхний индекс «m» означает 5-метилцитозины. Структура «GalNAc3-7» показана в Примере 48.
Лечение
Четырем группам по четыре мыши C57Bl/6J-Tyrc-2J подкожно вводили 5,0 мг/кг, 10,0 мг/кг, 20,0 мг/кг или 40,0 мг/кг ISIS 482584, два раза в неделю в течение 3 недель (недельные дозы 10,0 мг/кг, 20,0 мг/кг, 40,0 мг/кг или 80,0 мг/кг). Четырем группам по четыре мыши BALB/c подкожно вводили 1,0 мг/кг, 2,0 мг/кг, 4,0 мг/кг или 8,0 мг/кг ISIS 722059, два раза в неделю в течение 3 недель (недельные дозы 2,0 мг/кг, 4,0 мг/кг, 8,0 мг/кг или 16,0 мг/кг). Контрольную группу из четырех мышей BALB/c лечили с PBS, который вводили подкожно дважды в неделю в течение 3 недель. Через три дня после введения последней дозы антисмыслового олигонуклеотида или PBS мышей из всех групп усыпили с помощью распыленного в воздухе изофлурана в концентрации 2,5% в качестве ударной дозы, а затем 1-2% изофлурана из распылителя в качестве поддерживающей дозы. Затем выполнили смещение шейных позвонков. После усыпления собрали печень для анализа РНК.
Анализ РНК
РНК выделили из ткани печени для проведения анализа ПКП с помощью ПЦР в реальном времени. Уровни мРНК ПКП измеряли с использованием мышиного набора праймерных зондов (прямая последовательность ACAAGTGCATTTTACAGACCAGAGTAC, обозначенная в настоящем документе как SEQ ID NO: 2231; обратная последовательность GGTTGTCCGCTGACTTTATGCT, обозначенная в данном описании как SEQ ID NO: 2232; последовательность зонда AAGCACAGTGCAAGCGGAACACCC, обозначенная в данном описании как SEQ ID NO: 2233). Результаты представлены как процент ингибирования ПКП относительно контроля с PBS. Как показано ниже в таблице 208, Isis 722059, содержащий группу конъюгата GalNAc3, значительно более эффективно снижает мРНК ПКП, чем исходный антисмысловый олигонуклеотид, Isis 482584. Такое результат согласуется с результатами представленных выше примеров, в которых антисмысловые олигонуклеотиды, содержащие группу конъюгата GalNAc3, были существенно более эффективными, чем их исходные антисмысловые олигонуклеотиды, в отношении многих генов-мишеней, как у мышей, так и у людей. Таким образом, можно предположить, что антисмысловые олигонуклеотиды против человеческого ПКП, содержащие группу конъюгата GalNAc3, будут таким же образом снижать мРНК человеческого ПКП, значительно более эффективно, чем их исходные антисмысловые олигонуклеотиды, которые не содержат группу конъюгата.
Пример 137: Ингибирование человеческого ПКП антисмысловым олигонуклеотидом, содержащим группу конъюгата GalNAc3
ISIS 546254 и ISIS 721744, представленные в следующей таблице, испытали на их влияние на мРНК человеческого ПКП in vitro.
Нижние индексы: «е» означает 2'-МОЕ модифицированный нуклеозид; «d» означает β-D-2'-дезоксирибонуклеозид; «s» означает тиофосфатную межнуклеозидную связь (PS); и «о» означает фосфодиэфирную межнуклеозидную связь (РО). Верхний индекс «ь» означает 5-метилцитозин. Структура «GalNAc3-7» представлена в Примере 48, и «GalNAc3-7a-о'» означает группу конъюгата GalNAc3-7, в которой расщепляемый фрагмент представляет собой -O-Р(=O)(ОН)-.
Совместные культуры первичных гепатоцитов человека, которые содержали стромальные клетки для имитации физиологического микроокружения печени in vitro (HepatoPac, набор HPHU-TX-96S, Hepregen, Медфорд, штат Массачусетс), использовали по инструкциям производителя Концентрацию олигонуклеотида Isis, указанную в представленной ниже таблице, или PBS добавляли в каждую лунку без какого-либо трансфицирующего агента. Через 96 часов клетки лизировали и выделяли из клеток РНК. Уровни мРНК ПКП измеряли с помощью количественной ПЦР в реальном времени, используя набор праймерных зондов RTS3454, и нормализовали к общему содержанию РНК, измеренному с помощью RIBOGREEN®. Результаты, представленные в следующей таблице, выражены как процент ингибирования уровней мРНК ПКП по сравнению с клетками, обработанными PBS; и значения IC50 рассчитывали с помощью 4-параметрической логистической модели (JMP Software, Кэри, штат Северная Каролина). Результаты показывают, что в условиях свободного поглощения, в которых не использованы никакие реагенты или электроимпульсные приемы для искусственного ускорения входа олигонуклеотидов в клетки, олигонуклеотиды, содержащие конъюгат GalNAc, были существенно более эффективными, чем исходный олигонуклеотид, который не содержит конъюгат GalNAc.
название | год | авторы | номер документа |
---|---|---|---|
КОМПОЗИЦИИ И СПОСОБЫ МОДУЛИРОВАНИЯ ЭКСПРЕССИИ HBV И TTR | 2014 |
|
RU2670614C9 |
КОМПОЗИЦИИ И СПОСОБЫ МОДУЛИРОВАНИЯ ЭКСПРЕССИИ АПОЛИПОПРОТЕИНА (A) | 2014 |
|
RU2824214C1 |
КОМПОЗИЦИИ И СПОСОБЫ МОДУЛИРОВАНИЯ ЭКСПРЕССИИ HBV И TTR | 2014 |
|
RU2782034C2 |
КОМПОЗИЦИИ И СПОСОБЫ МОДУЛИРОВАНИЯ ЭКСПРЕССИИ АПОЛИПОПРОТЕИНА C-III | 2014 |
|
RU2650510C2 |
КОМПОЗИЦИИ И СПОСОБЫ МОДУЛИРОВАНИЯ ЭКСПРЕССИИ ФАКТОРА КОМПЛЕМЕНТА В | 2015 |
|
RU2701645C2 |
КОМПОЗИЦИИ И СПОСОБЫ | 2014 |
|
RU2686080C2 |
КОМПОЗИЦИИ И СПОСОБЫ МОДУЛИРОВАНИЯ ЭКСПРЕССИИ АПОЛИПОПРОТЕИНА (А) | 2014 |
|
RU2699985C2 |
СОПРЯЖЕННЫЕ АНТИСМЫСЛОВЫЕ СОЕДИНЕНИЯ И ИХ ПРИМЕНЕНИЕ | 2014 |
|
RU2697152C2 |
КОМПОЗИЦИИ И СПОСОБЫ МОДУЛИРОВАНИЯ ЭКСПРЕССИИ АНГИОПОЭТИН-ПОДОБНОГО БЕЛКА 3 | 2015 |
|
RU2734658C2 |
КОМПОЗИЦИИ ДЛЯ МОДУЛИРОВАНИЯ ЭКСПРЕССИИ SOD-1 | 2015 |
|
RU2704619C2 |
Изобретение относится к области биотехнологии. Описана группа изобретений, включающая соединение для снижения количества РНК прекалликреина (ПКП), содержащее модифицированный олигонуклеотид, содержащий по меньшей мере одну модифицированную межнуклеозидную связь, модифицированный сахар или модифицированное основание, и группу конъюгата, соль вышеуказанного соединения, фармацевтическую композицию для лечения, предупреждения или облегчения протекания заболевания, расстройства или состояния, связанного с ПКП, пролекарство для снижения количества РНК прекалликреина (ПКП), применение соединения, соли, фармацевтической композиции или пролекарства для предупреждения, лечения или облегчения заболевания, расстройства или состояния, связанного с ПКП. В одном из вариантов реализации соединение содержит модифицированный олигонуклеотид согласно следующей формуле: Tes Ges mCes Aes Aes Gds Tds mCds Tds mCds Tds Tds Gds Gds mCds Aes Aes Aes mCes Ae (SEQ ID NO: 570). Изобретение расширяет арсенал средств для снижения количества РНК прекалликреина. 9 н. и 32 з.п. ф-лы, 194 табл., 137 пр.
1. Соединение для снижения количества РНК прекалликреина (ПКП), содержащее
(a) модифицированный олигонуклеотид, содержащий по меньшей мере одну модифицированную межнуклеозидную связь, модифицированный сахар или модифицированное основание, и
(b) группу конъюгата, содержащую атом или группу атомов,
причем модифицированный олигонуклеотид состоит из 12-30 связанных нуклеозидов и имеет последовательность азотистых оснований, содержащую по меньшей мере 8, по меньшей мере 9, по меньшей мере 10, по меньшей мере 11, по меньшей мере 12, по меньшей мере 13, по меньшей мере 14, по меньшей мере 15, по меньшей мере 16, по меньшей мере 17, по меньшей мере 18, по меньшей мере 19 или по меньшей мере 20 последовательных азотистых оснований последовательности азотистых оснований SEQ ID NO: 570, где группа конъюгата ковалентно связана с модифицированным олигонуклеотидом на 5'-конце модифицированного олигонуклеотида.
2. Соединение по п. 1, отличающееся тем, что последовательность азотистых оснований модифицированного олигонуклеотида по меньшей мере на 80%, по меньшей мере на 81%, по меньшей мере на 82%, по меньшей мере на 83%, по меньшей мере на 84%, по меньшей мере на 85%, по меньшей мере на 86%, по меньшей мере на 87%, по меньшей мере на 88%, по меньшей мере на 89%, по меньшей мере на 90%, по меньшей мере на 91%, по меньшей мере на 92%, по меньшей мере на 93%, по меньшей мере на 94%, по меньшей мере на 95%, по меньшей мере на 96%, по меньшей мере на 97%, по меньшей мере на 98%, по меньшей мере на 99% или на 100% комплементарна SEQ ID NO: 10.
3. Соединение по п. 1 или 2, состоящее из одноцепочечного модифицированного олигонуклеотида и группы конъюгата.
4. Соединение по любому из пп. 1-3, отличающееся тем, что по меньшей мере одна межнуклеозидная связь модифицированного олигонуклеотида представляет собой модифицированную межнуклеозидную связь.
5. Соединение по п. 4, отличающееся тем, что по меньшей мере одна модифицированная межнуклеозидная связь модифицированного олигонуклеотида представляет собой тиофосфатную межнуклеозидную связь.
6. Соединение по п. 4, отличающееся тем, что модифицированный олигонуклеотид содержит по меньшей мере 1 фосфодиэфирную межнуклеозидную связь.
7. Соединение по п. 4, отличающееся тем, что модифицированный олигонуклеотид содержит по меньшей мере 2 фосфодиэфирные межнуклеозидные связи.
8. Соединение по п. 4, отличающееся тем, что модифицированный олигонуклеотид содержит по меньшей мере 3 фосфодиэфирные межнуклеозидные связи.
9. Соединение по п. 4, отличающееся тем, что модифицированный олигонуклеотид содержит по меньшей мере 4 фосфодиэфирные межнуклеозидные связи.
10. Соединение по п. 4, отличающееся тем, что каждая межнуклеозидная связь модифицированного олигонуклеотида выбрана из фосфодиэфирной межнуклеозидной связи и тиофосфатной межнуклеозидной связи.
11. Соединение по п. 5, отличающееся тем, что каждая межнуклеозидная связь модифицированного олигонуклеотида представляет собой тиофосфатную связь.
12. Соединение по любому из пп. 1-11, отличающееся тем, что по меньшей мере один нуклеозид модифицированного олигонуклеотида содержит модифицированное азотистое основание.
13. Соединение по п. 12, отличающееся тем, что модифицированное азотистое основание представляет собой 5-метилцитозин.
14. Соединение по любому из пп. 1-13, отличающееся тем, что модифицированный олигонуклеотид содержит по меньшей мере один модифицированный сахар.
15. Соединение по п. 14, отличающееся тем, что модифицированный сахар представляет собой 2'-модифицированный сахар, БНК или ТГП.
16. Соединение по п. 15, отличающееся тем, что модифицированный сахар представляет собой любой из 2'-O-метоксиэтил модифицированного сахара, 2'-O-метил модифицированного сахара, стерически затрудненного этила, ЗНК и 3'-фтор-ГНК.
17. Соединение по любому из пп. 1-16, отличающееся тем, что модифицированный олигонуклеотид содержит:
сегмент гэп, состоящий из 10 связанных дезоксинуклеозидов;
сегмент 5'-крыла, состоящий из 5 связанных нуклеозидов; и
сегмент 3'-крыла, состоящий из 5 связанных нуклеозидов;
причем сегмент гэп расположен между сегментом 5'-крыла и сегментом 3'-крыла и, при этом каждый нуклеозид каждого сегмента крыла содержит модифицированный сахар.
18. Соединение по любому из пп. 1-17, отличающееся тем, что модифицированный олигонуклеотид состоит из 20 связанных нуклеозидов.
19. Соединение по любому из пп. 1-17, отличающееся тем, что модифицированный олигонуклеотид состоит из 19 связанных нуклеозидов.
20. Соединение по любому из пп. 1-17, отличающееся тем, что модифицированный олигонуклеотид состоит из 18 связанных нуклеозидов.
21. Соединение для снижения количества РНК прекалликреина (ПКП), состоящее из группы конъюгата, содержащей атом или группу атомов, и модифицированного олигонуклеотида согласно следующей формуле: Tes Ges mCes Aes Aes Gds Tds mCds Tds mCds Tds Tds Gds Gds mCds Aes Aes Aes mCes Ae (SEQ ID NO: 570); где
A = аденин,
mC = 5'-метилцитозин,
G = гуанин,
T = тимин,
e = 2'-O-метоксиэтил-модифицированный нуклеозид,
d = 2'-дезоксинуклеозид, и
s = тиофосфатная межнуклеозидная связь,
отличающееся тем, что группа конъюгата ковалентно связана с модифицированным олигонуклеотидом на 5'-конце модифицированного олигонуклеотида.
22. Соединение по любому из пп. 1-21, отличающееся тем, что группа конъюгата содержит только один лиганд.
23. Соединение по любому из пп. 1-21, отличающееся тем, что группа конъюгата содержит только два лиганда.
24. Соединение по любому из пп. 1-21, отличающееся тем, что группа конъюгата содержит три или более лигандов.
25. Соединение по любому из пп. 1-21, отличающееся тем, что группа конъюгата содержит только три лиганда.
26. Соединение по п. 25, отличающееся тем, что каждый лиганд представляет собой N-ацетилгалактозамин.
27. Соединение по п. 25, отличающееся тем, что группа конъюгата содержит:
28. Соединение по п. 25, отличающееся тем, что группа конъюгата содержит:
29. Соединение по п. 25, отличающееся тем, что группа конъюгата содержит:
30. Соединение по п. 25, отличающееся тем, что группа конъюгата содержит линкер конъюгата, необязательно, где линкер конъюгата содержит по меньшей мере одну фосфорную связывающую группу или нейтральную связывающую группу.
31. Соединение по любому из пп. 1-30, отличающееся тем, что группа конъюгата содержит расщепляемый фрагмент, выбранный из: фосфодиэфира, амида или сложного эфира.
32. Соединение для снижения количества РНК прекалликреина (ПКП), содержащее модифицированный олигонуклеотид и группу конъюгата, содержащую атом или группу атомов, где модифицированный олигонуклеотид представляет собой гэпмер, состоящий из сегмента 5'-крыла, центрального сегмента гэп и сегмента 3'-крыла, причем:
сегмент 5'-крыла состоит из пяти 2'-O-метоксиэтил нуклеозидов,
центральный сегмент гэп состоит из десяти β-D-дезоксирибонуклеозидов и
сегмент 3'-крыла состоит из пяти 2'-O-метоксиэтил нуклеозидов,
причем группа конъюгата ковалентно связана с модифицированным олигоуклеотидом на 5'-конце модифицированного олигонуклеотида, где модифицированный олигонуклеотид имеет последовательность азотистых оснований 5'-TGCAAGTCTCTTGGCAAACA-3' (SEQ ID NO: 570), где каждый цитозин представляет собой 5-метилцитозин, и где межнуклеозидные связи модифицированного олигонуклеотида представляют собой ssoosssssssssssooss в направлении от 5' к 3', где каждый s означает тиофосфатную связь, а каждый о означает фосфодиэфирную связь.
33. Соль соединения, состоящего из модифицированного олигонуклеотида и группы конъюгата, для снижения количества РНК прекалликреина (ПКП), где анион соединения имеет следующую структуру:
(SEQ ID NO: 570).
34. Соединение для снижения количества РНК прекалликреина (ПКП), состоящее из модифицированного олигонуклеотида и группы конъюгата, согласно следующей структуре:
(SEQ ID 570) или его соль.
35. Фармацевтическая композиция для лечения, предупреждения или облегчения протекания заболевания, расстройства или состояния, связанного с ПКП, содержащая терапевтически эффективное количество соединения по любому из пп. 1-32 и 34 или соли по п. 33 и по меньшей мере один из фармацевтически приемлемого носителя или разбавителя.
36. Фармацевтическая композиция по п. 35, отличающаяся тем, что фармацевтически приемлемый разбавитель представляет собой фосфатно-солевой буфер (PBS).
37. Фармацевтическая композиция по п. 36, которая состоит по существу из соединения или соли и PBS.
38. Пролекарство для снижения количества РНК прекалликреина (ПКП), содержащее соединение по любому из пп. 1-32 и 34 или соль по п. 33.
39. Применение соединения по любому из пп. 1-32 и 34, соли по п. 33, фармацевтической композиции по любому из пп. 35-37 или пролекарства по п. 38 для предупреждения, лечения или облегчения заболевания, расстройства или состояния, связанного с ПКП.
40. Применение по п. 39, отличающееся тем, что заболевание, расстройство или состояние, связанное с ПКП, представляет собой наследственный ангионевротический отек (НАЕ), отек, ангионевротический отек, припухлость, ангионевротический отек век, отек глаза, отек желтого пятна, отек мозга, тромбоз, эмболию, тромбоэмболию, тромбоз глубоких вен, легочную эмболию, инфаркт миокарда, инсульт или инфаркт.
41. Применение соединения по любому из пп. 1-32 и 34, соли по п. 33, фармацевтической композиции по любому из пп. 35-37 или пролекарства по п. 38 для лечения воспалительного заболевания или тромбоэмболического заболевания, при этом воспалительное заболевание представляет собой по меньшей мере одно из сосудистой проницаемости и отека.
WO 2013003808 A1, 03.01.2013 | |||
US 20100093085 A1, 15.04.2010 | |||
US 20020082227 A1, 27.06.2002 | |||
НУКЛЕОЗИДЫ С МОДИФИЦИРОВАННЫМИ САХАРАМИ И ОЛИГОНУКЛЕОТИДЫ | 1995 |
|
RU2145964C1 |
Авторы
Даты
2019-10-16—Публикация
2015-05-01—Подача