Способ измерения нагрузок на рельсы при воздействии колес железнодорожного подвижного состава Российский патент 2019 года по МПК B61K9/08 G01L5/16 G01M5/00 

Описание патента на изобретение RU2704141C1

Изобретение относится к области метрологии и предназначено для определения нагрузок (вертикальных и боковых сил), воздействующих на поверхность катания и боковую грань головки рельса при его контактном взаимодействии с колесом подвижного состава.

Известен способ (см. Вериго М.Ф., Коган А.Я. Взаимодействие пути и подвижного состава. / Под ред. М.Ф. Вериго. - М.: Транспорт, 1986. с. 490), заключающийся в том, что располагают пару тензорезисторов симметрично с двух сторон в месте с минимальной толщиной шейки рельса, включают тензорезисторы в схему моста Уинстона таким образом, чтобы ток в диагонали моста был пропорционален абсолютному значению суммы их деформаций, по которым определяют вертикальную силу от колеса на рельс, дополнительно устанавливают две пары тензорезисторов, которые располагают сверху и снизу в местах с одинаковой толщиной шейки, тензорезисторы включают в мостовую схему Уинстона таким образом, чтобы ток в диагонали моста был пропорционален разности изгибающих моментов, затем измеряют вертикальные и боковые силы, воздействующие на рельс, используя их численные зависимости от суммы деформаций и разностей изгибающих моментов, причем необходимые численные зависимости получают, нагружая рельс вертикальными и боковыми силами разного значения и для каждого значения сил фиксируя значения суммы деформаций и разности изгибающих моментов (принят за аналог).

Недостатком данного технического решения является зависимость точности измерения вертикальной и боковой сил от качества наклейки тензорезисторов. Поэтому при изменении внешних условий или обнаружении погрешностей установки тензорезисторов на рельс требуется их демонтаж и повторная установка, что приводит к дополнительным затратам материальных и временных ресурсов, а также отсутствует возможность тарировки тензометрической схемы для устранения погрешности расположения тензорезисторов на рельсе, компенсации изгиба рельса в вертикальной плоскости, вызванного изменением жесткости подрельсового основания.

Известен способ (см. патент РФ № 2623665 МПК G01L 5/16, опубл. 28.06.2017) измерения трех компонентов нагрузки в сечении рельса при контактном, взаимодействии с колесом железнодорожного подвижного состава, включающий электрическое соединение наклеенных в зонах шейки рельса тензорезисторов в измерительные мосты, подключение мостов к входу измерительных каналов тензометрической аппаратуры, позволяющей регистрировать отклик в измерительных каналах на приращение входных факторов, градуировку измерительных каналов по определенному плану эксперимента с вычислением градуировочных коэффициентов и систематических погрешностей, визуальное представление результатов измерения, причем тензорезисторы, наклеенные в четырех зонах шейки рельса, соединяют в три измерительных моста, каждый мост подключают к отдельному измерительному каналу тензометрической аппаратуры, градуировку выполняют по трехфакторному плану эксперимента комбинациями входных факторов - вертикальной силы, боковой силы и опрокидывающего момента, градуировочные коэффициенты определяют умножением матрицы плана эксперимента на матрицу правую обобщенную обратную к матрице отклика, систематические погрешности измерений определяют как разницу между приложенными и восстановленными по отклику значениями факторов плана, результаты измерения представляют в виде сочетания восстановленного по отклику значения входного фактора и максимального значения систематической погрешности, полученной при градуировке (принят за прототип).

Недостатком способа, принятого за прототип, является невысокая точность измерений из-за нелинейности подрельсового основания, когда жесткость зависит от значения вертикальной силы, т.е. возникает необходимость при выполнении измерений обеспечить неизменность жесткости подрельсового основания, равной жесткости реализованной при градуировке. В градуировочных коэффициентах не учитывается поперечный изгибающий момент, вызывающий прогиб рельса в вертикальной плоскости.

Техническая задача изобретения - повышение точности измерений за счет корректировки результатов с учетом изменения жесткости подрельсового основания и градуировки измерительных каналов вертикальной силой с различной жесткостью подрельсового основания.

Поставленная задача решается за счет того, что в четырех зонах шейки рельса устанавливают тензорезисторы и подключают их ко входам измерительных каналов тензометрической аппаратуры, проводят градуировку измерительных каналов по определенному плану эксперимента с вычислением градуировочных коэффициентов, причем при градуировке дополнительно измеряют прогиб рельса, по которому вводят поправки на изменение жесткости подрельсового основания, градуировку выполняют по четырехфакторному плану эксперимента комбинацией четырех факторов: вертикальной силы, эксцентриситета приложения вертикальной силы, боковой силы и прогиба рельса, а результат измерения компонентов нагрузки определяют, как произведение градуировочной квадратной матрицы 4×4 на приращения сигналов в тензометрических каналах, возникающих при контактном взаимодействии рельса с колесом.

На фиг. 1 изображены рельс и его поперечное сечение с наклеенными тензорезисторами и воздействующие факторы, на фиг. 2 - схема приложения нагрузки на рельс без прогиба в вертикальной плоскости, фиг. 3 - схема приложения нагрузки с прогибом в вертикальной плоскости.

Предложенный способ был реализован следующим образом. На рельс 5 типа Р65 в сечении А-А в четырех зонах шейки рельса на высоте от подошвы 45 мм и 129 мм с двух сторон шейки рельса устанавливали тензорезисторы 1, 2, 3, 4 типа ПКС-12-200, зарегистрированного в Государственном реестре средств измерений № 57245-14. Тензорезисторы подключали к входам измерительных каналов быстродействующей тензометрической системе «Динамика-3» (зарегистрирована в Государственном реестре средств измерений за № 66973-17). Градуировку проводили по четырехфакторному плану эксперимента комбинацией четырех факторов: вертикальной силы, эксцентриситета приложения вертикальной силы, боковой силы и прогиба рельса. Для измерения прогиба рельса в вертикальной плоскости на шейку рельса наклеивали ориентированную вертикально линейку 6 с диапазоном измерений от 0 до 150 мм и ценой деления, равной 0,5 мм. На расстоянии 2000 мм от рельса располагали лазерный уровень 7, луч 8 которого направляли на отметку линейки 0 мм. Прогиб рельса р в вертикальной плоскости определяли по смещению лазерного луча относительно отметки 0 мм линейки. На рельс последовательно воздействовали четырьмя факторами:

I-ый фактор - вертикальная сила Fν=100 кН без эксцентриситета с прогибом р;

II-ой фактор - изгибающий момент, вызванный эксцентриситетом вертикальной силы Fν=100 кН, эксцентриситет е=10 мм;

III-ий фактор - вертикальная сила Fν=100 кН и боковая сила Fb,=25 кН;

IV-ый фактор - вертикальная сила Fν=100 кН без эксцентриситета и без прогиба рельсошпальной решетки в вертикальной плоскости. Для исключения прогиба рельсошпальной решетки под рельс на расстоянии 0,5 м от точки приложения силы подкладывались упоры, препятствующие смещению рельса в вертикальной плоскости.

При воздействии каждого фактора определяли приращения сигналов в тензометрических каналах, которые представлены в виде матрицы приращений размерностью 4×4:

где

i - номер тензометрического канала, номер строки, j - номер фактора, номер столбца.

Значения приращений ai,j сигналов в тензометрических каналах, полученные экспериментально при воздействии I-IV факторов в процессе градуировки, приведены в таблице 1.

Измеренное экспериментальное значение прогиба рельса при воздействии фактором I, II, III составило р=4 мм. При воздействии фактора IV значение прогиба не превышало 0,5 мм.

Используя данные о приращениях в тензометрических каналах при градуировке (таблица 1), определяли градуировочные коэффициенты. Для вертикальной силы градуировочные коэффициенты определили делением приращений сигналов в тензометрических каналах при воздействии фактора I на значение вертикальной силы Fν по формуле:

где ai,1 - i-ый элемент 1-го столбца матрицы приращений (см. табл. 1).

Для вертикальной силы с эксцентриситетом градуировочные коэффициенты определили, вычитая из приращений сигналов при воздействии фактора III приращения сигналов при воздействии фактора II и деля полученную разность на изгибающий момент, равный произведению вертикальной силы на эксцентриситет Fν⋅е по формуле:

где

a i,2 - i-ый элемент 2-го столбца матрицы приращений (см. табл. 1).

Градуировочные коэффициенты для боковой силы определили, вычитая из приращений сигналов при воздействии фактора III приращения сигналов при воздействии фактора I и деля разность на боковую силу Fb по формуле:

где

a i,3 - i-ый элемент 3-го столбца матрицы приращений (см. табл. 1).

Градуировочные коэффициенты для прогиба рельса определили, вычитая из приращений сигналов при воздействии фактора IV приращения сигналов при воздействии фактора I и деля разность на экспериментальное значение прогиба рельса р по формуле:

где

а i,4 - i-ый элемент 4-го столбца матрицы приращений (таблица 1).

Результаты определения градуировочных коэффициентов в виде матрицы приведены в табл. 2:

Используя полученные градуировочные коэффициенты bi,j (см. табл. 2), определили градуировочную матрицу по правилам вычисления обратной матрицы:

Рельс нагружали комбинацией нескольких факторов, имитирующих воздействие колеса железнодорожного подвижного состава. Действительные значения воздействующих факторов приведены в табл. 3.

Определяли значения приращений сигналов в каналах тензометрической системы (см. табл. 4)

Умножали полученные для каждого испытания приращения сигналов на обратную матрицу ci,j и определяли результат измерений каждого из воздействующих факторов. Результаты измерений приведены в табл. 5.

На основании действительных значений факторов (см. табл. 3) и результатов их измерений (см. табл. 5) определили относительные погрешности измерения вертикальной и боковой сил по формуле:

где - действительное значение силы, кН; Fr - результат измерения силы, кН.

Результаты оценки относительных погрешностей вертикальной и боковой сил приведены в табл. 6.

Как видно из табл. 6, заявляемый способ обеспечивает относительную погрешность измерения вертикальной силы не более 3%, а боковой силы - 2% в широком диапазоне жесткости подрельсового основания от 107 до 1012 Н/м3, что соответствует изменению прогиба рельса в вертикальной плоскости до 8 мм.

Заявляемый способ, по сравнению с прототипом, позволяет исключить влияние на результаты измерений вертикальных и боковых сил неопределенности жесткости подрельсового основания. При этом снижаются затраты на проведение измерений, за счет отсутствия необходимости изменения конструкции пути и проведения мероприятий по поддержанию заданной жесткости подрельсового основания.

Похожие патенты RU2704141C1

название год авторы номер документа
СПОСОБ ИЗМЕРЕНИЯ ТРЁХ КОМПОНЕНТОВ НАГРУЗКИ В СЕЧЕНИИ РЕЛЬСА ПРИ КОНТАКТНОМ ВЗАИМОДЕЙСТВИИ С КОЛЕСОМ ЖЕЛЕЗНОДОРОЖНОГО ПОДВИЖНОГО СОСТАВА 2016
  • Коссов Валерий Семенович
  • Красюков Николай Федорович
  • Лунин Андрей Александрович
  • Гапанович Валентин Александрович
RU2623665C1
СПОСОБ ИЗМЕРЕНИЯ БОКОВЫХ СИЛ, ДЕЙСТВУЮЩИХ ОТ КОЛЕСА НА РЕЛЬС, И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2019
  • Бороненко Юрий Павлович
  • Рахимов Рустам Вячеславович
  • Даукша Анфиса Сергеевна
RU2720188C1
Способ оценки напряженно-деформированного состояния пути 2017
  • Коган Александр Яковлевич
  • Суслов Олег Александрович
  • Кажаев Александр Николаевич
RU2659365C1
Способ мониторинга технического состояния железнодорожного пути и устройство для его осуществления 2021
  • Бороненко Юрий Павлович
  • Третьяков Александр Владимирович
  • Рахимов Рустам Вячеславович
  • Зимакова Мария Викторовна
  • Петров Антон Анатольевич
  • Третьяков Олег Александрович
  • Некрасова Анастасия Владимировна
RU2780704C2
Способ контроля поверхности катания железнодорожных колёс в движении 2016
  • Бехер Сергей Алексеевич
  • Степанова Людмила Николаевна
  • Коломеец Андрей Олегович
  • Попков Артем Антонович
RU2625256C1
Устройство для определения давления колеса на рельс 1990
  • Агафонов Генадий Федорович
  • Даниленко Эдуард Иванович
  • Грачев Анатолий Викторович
  • Фролов Лев Николаевич
  • Романов Владимир Михайлович
SU1794739A1
СПОСОБ ИЗМЕРЕНИЯ ФИЗИЧЕСКОЙ ВЕЛИЧИНЫ 2009
  • Зубов Евгений Георгиевич
  • Шевчук Вячеслав Васильевич
RU2422784C1
Устройство для определения давления колеса на рельс 1990
  • Агафонов Генадий Федорович
  • Даниленко Эдуард Иванович
  • Грачев Анатолий Викторович
  • Фролов Лев Николаевич
  • Романов Владимир Михайлович
SU1794740A1
Устройство сбора информации и способ оценки результатов взаимодействия между колесом и рельсом 2017
  • Третьяков Александр Владимирович
  • Елисеев Кирилл Валентинович
  • Зимакова Мария Викторовна
  • Петров Антон Анатольевич
  • Козлов Павел Викторович
RU2682567C1
СПОСОБ КОНТРОЛЯ СОСТОЯНИЯ ДЛИННОМЕРНОГО ОБЪЕКТА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ Ж/Д 2017
  • Земеров Валерий Николаевич
RU2676176C1

Иллюстрации к изобретению RU 2 704 141 C1

Реферат патента 2019 года Способ измерения нагрузок на рельсы при воздействии колес железнодорожного подвижного состава

Изобретение относится к области метрологии и предназначено для определения нагрузок (вертикальных и боковых сил), воздействующих на поверхность катания и боковую грань головки рельса при его контактном взаимодействии с колесом подвижного состав. Сущность: осуществляют установку в четырех зонах шейки рельса тензорезисторов и подключение их к входам измерительных каналов тензометрической аппаратуры, позволяющей регистрировать отклик в измерительных каналах на приращение входных факторов, градуировку измерительных каналов по определенному плану эксперимента с вычислением градуировочных коэффициентов. При градуировке дополнительно измеряют прогиб рельса, характеризующий изменение жесткости подрельсового основания, градуировку выполняют по четырехфакторному плану эксперимента комбинацией четырех факторов: вертикальной силы, изгибающего момента, боковой силы и прогиба рельса, а результат измерения компонентов нагрузки определяют, как произведение градуировочной квадратной матрицы 4×4 на приращения сигналов в тензометрических каналах, возникающих при контактном взаимодействии рельса с колесом. Технический результат: исключение влияния на результаты измерений вертикальных и боковых сил неопределенности жесткости подрельсового основания, тем самым повышая точность измерений. 6 табл., 3 ил.

Формула изобретения RU 2 704 141 C1

Способ измерения нагрузок на рельсы при воздействии колес железнодорожного подвижного состава, включающий установку в четырех зонах шейки рельса тензорезисторов и подключение их к входам измерительных каналов тензометрической аппаратуры, позволяющей регистрировать отклик в измерительных каналах на приращение входных факторов, градуировку измерительных каналов по определенному плану эксперимента с вычислением градуировочных коэффициентов, отличающийся тем, что при градуировке дополнительно измеряют прогиб рельса, характеризующий изменение жесткости подрельсового основания, градуировку выполняют по четырехфакторному плану эксперимента комбинацией четырех факторов: вертикальной силы, изгибающего момента, боковой силы и прогиба рельса, а результат измерения компонентов нагрузки определяют, как произведение градуировочной квадратной матрицы 4×4 на приращения сигналов в тензометрических каналах, возникающих при контактном взаимодействии рельса с колесом.

Документы, цитированные в отчете о поиске Патент 2019 года RU2704141C1

Способ оценки напряженно-деформированного состояния пути 2017
  • Коган Александр Яковлевич
  • Суслов Олег Александрович
  • Кажаев Александр Николаевич
RU2659365C1
Электрическое контактное приспособление для сигнализационных установок 1928
  • Мейер М.К.
SU9780A1
СПОСОБ ИЗМЕРЕНИЯ ТРЁХ КОМПОНЕНТОВ НАГРУЗКИ В СЕЧЕНИИ РЕЛЬСА ПРИ КОНТАКТНОМ ВЗАИМОДЕЙСТВИИ С КОЛЕСОМ ЖЕЛЕЗНОДОРОЖНОГО ПОДВИЖНОГО СОСТАВА 2016
  • Коссов Валерий Семенович
  • Красюков Николай Федорович
  • Лунин Андрей Александрович
  • Гапанович Валентин Александрович
RU2623665C1
Устройство для определения давления колеса на рельс 1990
  • Агафонов Генадий Федорович
  • Даниленко Эдуард Иванович
  • Грачев Анатолий Викторович
  • Фролов Лев Николаевич
  • Романов Владимир Михайлович
SU1794739A1
EP 3382361 A1, 03.10.2018.

RU 2 704 141 C1

Авторы

Бехер Сергей Алексеевич

Сыч Татьяна Викторовна

Коломеец Андрей Олегович

Бобров Алексей Леонидович

Даты

2019-10-24Публикация

2019-01-09Подача