АКТИВНЫЙ МАГНИТНЫЙ ПОДШИПНИК И СПОСОБ ОХЛАЖДЕНИЯ АКТИВНОГО МАГНИТНОГО ПОДШИПНИКА Российский патент 2019 года по МПК F16C32/04 F16C37/00 

Описание патента на изобретение RU2706854C1

Изобретение касается активного магнитного подшипника и способа охлаждения активного магнитного подшипника.

Активные магнитные подшипники применяются при сравнительно высоких частотах вращения турбомашин и в станкостроении или в технологии чистых помещений, так как у магнитных подшипников не возникает загрязняющего продукта истирания.

У активных магнитных подшипников электромагнитами создается соответствующая магнитная сила. При этом необходимый для этого ток должен постоянно адаптироваться посредством регулирующего контура. Для охлаждения активного магнитного подшипника, или, соответственно, компонентов, например, из DE 203 18 389 U1 известна магнитная опора, у которой с помощью высокотемпературного сверхпроводника создается магнитное поле. Необходимое для этого охлаждение имеет жидкий азот для поддержания сверхпроводника.

Также из DE 10 2005 032 674 A1 известен активный магнитный подшипник, у которого отвод тепла потерь усилителя должен осуществляться благодаря выполнению охлаждающих элементов на корпусе подшипника.

Исходя из этого, в основе изобретения лежит задача, создать активный магнитный подшипник, который предоставляет достаточную работоспособную опору в разных температурных диапазонах.

Решить поставленную задачу удается с помощью активного магнитного подшипника вала, вращающегося вокруг оси, имеющего

- стационарно установленную, обладающую магнитной проводимостью основную часть, которая охватывает вал,

- расположенные аксиально друг за другом отдельные части, которые образуют обладающую магнитной проводимостью основную часть,

- расположенную в пазах обладающей магнитной проводимостью основной части систему обмоток,

- аксиальное расстояние между соседними отдельными частями.

Решить поставленную задачу удается также с помощью способа охлаждения активного магнитного подшипника вала, вращающегося вокруг оси, имеющего

- стационарно установленную, обладающую магнитной проводимостью основную часть, которая охватывает вал,

- расположенные аксиально друг за другом отдельные части, которые образуют обладающую магнитной проводимостью основную часть,

- расположенную в пазах обладающей магнитной проводимостью основной части систему обмоток,

- проставки между соседними отдельными частями, при этом притекающим по существу аксиально к обладающей магнитной проводимостью основной части охлаждающим воздухом, который течет аксиально через аксиально проходящие каналы охлаждения в обладающей магнитной проводимостью основной части или в находящихся в промежутках между обмотками зазорах, чтобы по меньшей мере отчасти вытекать радиально на аксиально следующей проставке, которая находится между двумя находящимися аксиально на расстоянии друг от друга отдельными частями.

Вследствие аксиального разделения обладающей магнитной проводимостью основной части активного магнитного подшипника на находящиеся аксиально на расстоянии друг от друга отдельные части, которые предпочтительно имеют каждая аксиально шихтованный пакет стальных листов, теперь одному или нескольким независимым друг от друга потокам охлаждающего воздуха разрешается по меньшей мере частично выходить радиально через специальные аксиальные каналы охлаждения в обладающей магнитной проводимостью основной части и/или в аксиально проходящих пазах, и при этом охлаждать обладающую магнитной проводимостью основную часть и вместе с тем также систему обмоток магнитного подшипника.

Соседние отдельные части посредством проставок располагаются на расстоянии друг от друга. Так отдельные, по существу радиально расположенные перемычки между соседними отдельными частями создают радиальные каналы для охлаждающего воздуха между отдельными частями.

Альтернативно перемычкам проставки между соседними отдельными частями могут быть также выполнены в виде диска, который выполнен цельно и тоже имеет радиальные и/или аксиальные каналы охлаждения. Предпочтительно эти диски из не обладающего магнитной проводимостью материала, такого как, напр., пластмасса.

Изобретение, а также другие предпочтительные варианты осуществления изобретения поясняются подробно на схематично изображенных примерах осуществления.

При этом показано:

фиг.1: принципиальное расположение активного магнитного подшипника;

фиг.2: магнитная основная часть;

фиг.3: один из альтернативных вариантов осуществления магнитной основной части;

фиг.4: другой альтернативный вариант осуществления магнитной основной части;

фиг.5: частично перспективное изображение магнитной основной части;

фиг.6: поперечное сечение основной части, имеющей перемычки;

фиг.7: магнитная основная часть, имеющая отдельные части, расположенные неравномерно на расстоянии друг от друга;

фиг.8: магнитная основная часть, имеющая отдельные части, расположенные равномерно на расстоянии друг от друга.

На фиг.1 показан ротор активного магнитного подшипника 1, который удерживается силой опоры в центре сверления магнитной основной части 2 и с помощью соответствующих, не изображенных подробно способов регулирования и регулирующих устройств позиционируется внутри этого сверления обладающей магнитной проводимостью основной части 2. Также предусмотрен не изображенный подробно подшипник-ловитель, который при выходе из строя регулирования кратковременно берет на себя, в т.ч., функцию подшипника.

Ротор является частью вала 4 или механически соединен с валом 4 привода без возможности вращения. Такие приводы применяются, напр., у турбомашин, высокочастотных фрезерных шпинделей, насосов, ультрацентрифуг и пр.

На фиг.2 показан магнитный подшипник 1, имеющий обладающую магнитной проводимостью основную часть 2, которая в аксиальном направлении построена из отдельных частей 9. Эти отдельные части 9 находятся в аксиальном направлении на расстоянии друг от друга, при этом всегда между находящимися в аксиальном направлении на расстоянии друг от друга отдельными частями 9 предусмотрены проставки. При этом проставки могут представлять собой цельные диски 6, которые имеют радиальные и/или проходящие аксиально каналы 7 охлаждения.

Также эти проставки могут представлять собой отдельно размещенные на отдельной части 9 перемычки 10, которые распространяются радиально. При этом в основной части 2 тоже получаются радиальные и/или аксиально проходящие каналы 7 охлаждения.

Каждая отдельная часть 9 имеет задаваемое количество отдельных стальных листов, так что в соответствии с заданным количеством стальных листов, которые образуют отдельную часть 9, такая проставка может предусматриваться как система перемычек 10 или одного или нескольких дисков 6.

Аксиальная толщина d отдельной части 9 и/или осевая ширина расстояния w между соседними отдельными частями 9 может варьироваться по всей аксиальной длине основной части 2. Благодаря этим возможностям в конструкции основной части 2, может производиться выравнивание распределения температуры в магнитном подшипнике 1, в частности в основной части 2.

Обладающая магнитной проводимостью основная часть 2 в соответствии с фиг.3 имеет три отдельные части 9, при этом она всегда имеет между двумя находящимися аксиально на расстоянии друг от друга отдельными частями 9 диск 6 в качестве проставки, имеющие различные, изображенные в качестве примера отверстия для охлаждения или, соответственно, поперечные сечения для охлаждения.

На фиг.4 также показана магнитная основная часть 2, которая имеет четыре отдельные части 9, при этом поток 8 охлаждающего воздуха радиально через средний диск 6 и аксиально на соответствующих торцевых сторонах направляется в магнитную основную часть 2. Выход нагретого охлаждающего воздуха 8 осуществляется в двух аксиально наружных проставках, которые образуются в виде диска 6 или перемычками 10.

Но точки входа и выхода потоков охлаждающего воздуха могут адаптироваться к данному виду конструкции активного магнитного подшипника 1.

На фиг.5 в частично перспективном изображении показан магнитный подшипник 1, имеющий обладающую магнитной проводимостью основную часть 2, которая в аксиальном направлении построена из отдельных частей 9. Эти отдельные части 9 аксиально находятся на расстоянии друг от друга, при этом всегда между находящимися аксиально на расстоянии друг от друга отдельными частями 9 предусмотрены проставки. При этом проставки могут представлять собой цельные диски 6, которые имеют радиальные и/или проходящие аксиально каналы 7 охлаждения.

Также эти проставки могут представлять собой отдельно размещенные на отдельной части 9, не изображенные подробно на этом изображении перемычки 10, которые распространяются радиально. При этом в основной части 2 тоже получаются радиальные и/или аксиально проходящие каналы 7 охлаждения.

Каждая отдельная часть 9 имеет шихтовнную конструкцию, так что в соответствии с заданным количеством стальных листов, которые образуют отдельную часть 9, такая проставка может предусматриваться как система перемычек 10 или одного или нескольких дисков.

Аксиальная толщина d отдельной части 9 и/или осевая ширина расстояния w между соседними отдельными частями 9 может варьироваться по всей аксиальной длине основной части 2. Благодаря этим возможностям в конструкции основной части 2, может производиться выравнивание распределения температуры в магнитном подшипнике 1, в частности в основной части 2.

В имеющихся теперь аксиальных каналах 5, 14 охлаждения, а также радиальных каналах 7 охлаждения в проставках 6, 10 между отдельными частями 9 теперь может вестись течение 8 охлаждающего воздуха, которое по сути, либо втекает с одной стороны в обладающую магнитной проводимостью основную часть 2 и вытекает к проставкам и предусмотренным при этом радиальным каналам 7 охлаждения, как и течение, которое сначала через радиальные каналы 7 охлаждения проставок проникает в обладающую магнитной проводимостью основную часть 2 и там распределяется аксиально в имеющихся каналах 5, 14 охлаждения.

Аксиально имеющиеся каналы 5, 14 охлаждения могут, таким образом, представлять собой аксиально проходящие выемки, имеющиеся в обладающей магнитной проводимостью основной части 2. Также аксиальные каналы 5, 14 охлаждения могут находиться в промежутках пазов 15, которые не используются обмоткой 3.

Благодаря предлагаемому изобретением охлаждению активного магнитного подшипника 1 теперь возможна более компактная конструкция такого магнитного подшипника 1 даже при больших параметрах в условиях стесненной площади.

На фиг.6 показаны разные расположения и длины перемычек 10, которые находятся между отдельными частями 9. В поперечном сечении основной части 2 распространяются перемычки 10 в качестве проставок, на некоторой высоте зубца, то есть радиального прохождения зубца 11. Также перемычки 10 могут быть расположены на спинке 12 ярма и распространяться от дна 13 паза максимум до радиально наружного края магнитной основной части 2. Возможны также перемычки 10, которые распространяются от сверления статора до радиально наружного края магнитной основной части 2. Такие перемычки 10 в качестве проставок изображены также на фиг.4 справа.

На фиг.7 показана магнитная основная часть 2, которая имеет несколько отдельных частей 9 одинаковой аксиальной ширины d. Аксиальные расстояния w между отдельными частями 9 могут быть различными и постоянно увеличиваются, в частности к середине основной части 2. При этом также находящиеся внутри основной части 2 части обмоток и отдельные части 9 достаточно охлаждаются. При этом средние отдельные части 9 находятся на наибольшем аксиальном расстоянии.

На фиг.8 показана магнитная основная часть 2, которая имеет несколько отдельных частей 9 различной аксиальной ширины d, при этом аксиальные расстояния w между соседними отдельными частями 9 одинаковы. Аксиальные ширины d отдельных частей 9 могут быть различными и постоянно уменьшаются, в частности к середине основной части 2. При этом наименьшую аксиальную ширину d имеют указанные или указанная отдельная часть 9 в середине основной части 2. При этом также находящиеся внутри основной части 2 части обмотки и отдельные части 9 достаточно охлаждаются.

Охлаждение активного магнитного подшипника 1, имеющего вращающийся вокруг оси 16 вал и стационарно установленную, обладающую магнитной проводимостью основную часть 2, которая охватывает вал 4, при этом расположенные аксиально друг за другом отдельные части 9 образуют обладающую магнитной проводимостью основную часть 2, при этом в пазах обладающей магнитной проводимостью основной части 2 расположены одна или несколько обмоток 3 и между соседними отдельными частями 9 предусмотрены проставки 6, 10, осуществляется по сути собственным или посторонним потоком охлаждающего воздуха. Этот поток 8 охлаждающего воздуха предоставляется соответственно выполненными вентиляторами, радиальными и/или осевыми вентиляторами.

Одна из нескольких возможностей охлаждения осуществляется по существу аксиально притекающим к обладающей магнитной проводимостью основной части 2 охлаждающим воздухом, который течет через аксиально проходящие каналы 5 охлаждения в обладающей магнитной проводимостью основной части 2 или в находящихся в промежутках между обмотками 3 зазорах, чтобы по меньшей мере отчасти вытекать радиально на аксиально следующей проставке, которая находится между двумя находящимися аксиально на расстоянии друг от друга отдельными частями 9. При этом в качестве проставки предусмотрен диск 6 или проставка, образованная перемычками 10. Остающийся в основной части 2 поток охлаждающего воздуха аксиально направляется дальше, чтобы либо аксиально вытекать из основной части 2 либо у следующей проставки по меньшей мере, снова отчасти радиально, вытекать из основной части 2.

Потоки 8 охлаждающего воздуха в качестве примера изображены на фиг.2-5, с помощью соответствующих мер, таких как, например, другое направление вращения вышеупомянутых вентиляторов, они могут также направляться в обратном направлении.

Возможны и другие распределения потока охлаждающего воздуха, при этом решающим является всегда сохранение почти постоянного уровня температуры, прежде всего, в магнитной основной части 2.

Активный магнитный подшипник 1 и способ охлаждения такого активного магнитного подшипника 1 применяются, например, у компрессоров, насосов, центрифуг и транспортерных систем в пищевой, химической и фармацевтической промышленности. Прежде всего, при компактной или капсюлированной конструкции активного магнитного подшипника 1 обязательно достаточное охлаждение.

Похожие патенты RU2706854C1

название год авторы номер документа
СВЕРХПРОВОДЯЩИЙ МАГНИТНЫЙ ПОДШИПНИК И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2008
  • Артамонов Владимир Иванович
  • Вартанян Валерий Артаваздович
  • Ивлев Александр Сергеевич
  • Иванов Виктор Ефимович
  • Лыхин Владимир Алексеевич
  • Маевский Владимир Александрович
  • Сухарев Михаил Михайлович
  • Грибанов Сергей Владимирович
  • Курбатов Павел Александрович
  • Матвеев Валерий Александрович
  • Нижельский Николай Александрович
  • Полущенко Ольга Леонидовна
RU2383791C1
АКТИВНАЯ ЧАСТЬ ЭЛЕКТРИЧЕСКОЙ МАШИНЫ, РАДИАЛЬНЫЙ МАГНИТНЫЙ ПОДШИПНИК И СПОСОБ ИЗГОТОВЛЕНИЯ РАДИАЛЬНОГО МАГНИТНОГО ПОДШИПНИКА 2013
  • Ланг Маттиас
  • Ванг Венни
  • Хесле Маркус
RU2644570C2
МАГНИТНЫЙ ПОДШИПНИК 2014
  • Кочевин Федор Георгиевич
  • Киселев Павел Васильевич
RU2595998C2
Магнитный подшипник 2019
  • Зименкова Татьяна Сергеевна
  • Казначеев Сергей Александрович
  • Краснов Антон Сергеевич
RU2724913C1
БЕСКОНТАКТНЫЙ СВЕРХПРОВОДЯЩИЙ МАГНИТНЫЙ ПОДШИПНИК 2022
  • Руднев Игорь Анатольевич
  • Подливаев Алексей Игоревич
  • Абин Дмитрий Александрович
  • Покровский Сергей Владимирович
  • Осипов Максим Андреевич
  • Стариковский Александр Сергеевич
RU2803330C1
МАГНИТНОЕ ПОДШИПНИКОВОЕ УСТРОЙСТВО И СПОСОБ ОХЛАЖДЕНИЯ МАХОВИКА МАГНИТНОГО УПОРНОГО ПОДШИПНИКА 2015
  • Генар Дени Гийом
RU2699625C2
МАГНИТНЫЙ ПОДШИПНИК 2022
  • Амосков Виктор Михайлович
  • Арсланова Дарья Николаевна
  • Белов Александр Вячеславович
  • Васильев Вячеслав Николаевич
  • Кухтин Владимир Петрович
  • Капаркова Марина Викторовна
  • Ламзин Евгений Анатольевич
  • Ларионов Михаил Сергеевич
  • Неженцев Андрей Николаевич
  • Родин Игорь Юрьевич
  • Сычевский Сергей Евгеньевич
  • Фирсов Алексей Анатольевич
  • Шатиль Николай Александрович
RU2812255C1
ПОДШИПНИК СИСТЕМЫ ЭНЕРГОНЕЗАВИСИМОГО АКТИВНОГО МАГНИТНОГО ПОДВЕСА РОТОРА 2003
  • Гузельбаев Я.З.
  • Андрианов А.В.
RU2246644C1
УПОРНЫЙ МАГНИТНЫЙ ПОДШИПНИК (ВАРИАНТЫ) 1995
  • Дэнис М.Борови
  • Робин М.Миллер
  • Стивен Б.Николс
RU2138706C1
Радиальная электромагнитная опора для активного магнитного подшипника 2021
  • Андрианов Александр Васильевич
  • Исламов Максум Маратович
  • Сусликов Эдуард Вячеславович
RU2763352C1

Иллюстрации к изобретению RU 2 706 854 C1

Реферат патента 2019 года АКТИВНЫЙ МАГНИТНЫЙ ПОДШИПНИК И СПОСОБ ОХЛАЖДЕНИЯ АКТИВНОГО МАГНИТНОГО ПОДШИПНИКА

Изобретение касается активного магнитного подшипника и способа охлаждения активного магнитного подшипника. Активный магнитный подшипник (1) вала (4), вращающегося вокруг оси, имеет стационарно установленную, обладающую магнитной проводимостью основную часть (2), которая охватывает вал (4), расположенные аксиально друг за другом отдельные части (9), которые образуют обладающую магнитной проводимостью основную часть (2), расположенную в пазах обладающей магнитной проводимостью основной части (2) систему обмоток, аксиальное расстояние (w) между соседними отдельными частями (9). Между находящимися аксиально на расстоянии друг от друга отдельными частями (9) предусмотрены проставки. По меньшей мере одна отдельная часть (9) имеет аксиально проходящие каналы (5) охлаждения, которые впадают в промежутки между находящимися аксиально на расстоянии отдельными частями (9). Технический результат: создание активного магнитного подшипника, который предоставляет достаточную работоспособную опору в разных температурных диапазонах. 2 н. и 2 з.п. ф-лы, 8 ил.

Формула изобретения RU 2 706 854 C1

1. Активный магнитный подшипник (1) вала (4), вращающегося вокруг оси, имеющий:

- стационарно установленную, обладающую магнитной проводимостью основную часть (2), которая охватывает вал (4),

- расположенные аксиально друг за другом отдельные части (9), которые образуют обладающую магнитной проводимостью основную часть (2),

- расположенную в пазах обладающей магнитной проводимостью основной части (2) систему обмоток,

- аксиальное расстояние (w) между соседними отдельными частями (9), при этом между находящимися аксиально на расстоянии друг от друга отдельными частями (9) предусмотрены проставки, при этом по меньшей мере одна отдельная часть (9) имеет аксиально проходящие каналы (5) охлаждения, которые впадают в промежутки между находящимися аксиально на расстоянии отдельными частями (9).

2. Активный магнитный подшипник (1) по п. 1, отличающийся тем, что проставки выполнены в виде отдельных перемычек (10) между находящимися аксиально на расстоянии отдельными частями (9).

3. Активный магнитный подшипник (1) по п. 1, отличающийся тем, что проставки между находящимися аксиально на расстоянии друг от друга отдельными частями (9) выполнены цельно в виде диска (6).

4. Способ охлаждения активного магнитного подшипника (1) вала, вращающегося вокруг оси (16), имеющего:

- стационарно установленную, обладающую магнитной проводимостью основную часть (2), которая охватывает вал,

- расположенные аксиально друг за другом отдельные части (9), которые образуют обладающую магнитной проводимостью основную часть (2),

- расположенную в пазах обладающей магнитной проводимостью основной части систему обмоток,

- аксиальное расстояние между соседними отдельными частями (9),

- проставки между соседними отдельными частями,

отличающийся притекающим по существу аксиально к обладающей магнитной проводимостью основной части (2) охлаждающим воздухом, который течет аксиально через аксиально проходящие каналы (5, 14) охлаждения в обладающей магнитной проводимостью основной части (2) или в находящихся в промежутках между обмотками зазорах, чтобы по меньшей мере отчасти вытекать радиально на аксиально следующей проставке (6, 10), которая находится между двумя находящимися аксиально на расстоянии друг от друга отдельными частями (9).

Документы, цитированные в отчете о поиске Патент 2019 года RU2706854C1

DE 2825400 A1, 13.12.1979
US 2014239756 A1, 28.08.2014
US 2011050016 A1, 03.03.2011
DE 102005032674 A1, 18.01.2007
ЭЛЕКТРИЧЕСКАЯ МАШИНА С ОСЕВЫМ, РАДИАЛЬНО СМЕЩЕННЫМ ОХЛАЖДАЮЩИМ ПОТОКОМ И СООТВЕТСТВУЮЩИЙ СПОСОБ 2009
  • Элендер Гунтер
  • Меммингер Оливер
  • Шенбауэр Норберт
  • Зеннингер Карл
RU2516234C2

RU 2 706 854 C1

Авторы

Тзианетопоулоу Теодора

Келер Берт-Уве

Ланг Маттиас

Даты

2019-11-21Публикация

2017-07-18Подача