Двухслойный суперконденсатор Российский патент 2019 года по МПК H01G11/58 

Описание патента на изобретение RU2707962C1

Изобретение относится к электротехнической промышленности, к основным элементам электрического оборудования, в частности к двухслойным электрическим конденсаторам.

В настоящее время широко распространены два типа энергозапасающих устройств - аккумуляторы и суперконденсаторы [Vladimir S. Bagotsky, Alexander М. Skundin, Yurij M. Volfkovich. Electrochemical Power Sources: Batteries, Fuel Cells, and Supercapacitors. Wiley ISBN: 978-1-118-46023-8]. Аккумуляторы характеризуются относительно высокой удельной энергией (до 250 Втч/кг), но ограниченной мощностью (не более 2 кВт/кг), суперконденсаторы, в том числе, двухслойные суперконденсаторы, имеют скромную удельную энергию (десятки Втч/кг), но способны заряжаться и разряжаться за доли секунды, т.е. развивают удельную мощность до сотен кВт/кг). Температурный предел работоспособности обычных аккумуляторов составляет от -20 до +50°С (для расширения этого диапазона принимаются жесточайшие меры, а снижение температуры всегда сопряжено с ухудшением электрических характеристик); обычные суперконденсаторы с водными электролитами работают в том же диапазоне, а переход на неводные электролиты позволяет несколько расширить температурный интервал работоспособности. Снижение температуры сильнее сказывается на ухудшении характеристик аккумуляторов, поскольку скорость токообразующих электрохимических реакций сильно снижается с понижением температуры. Двухслойные суперконденсаторы не имеют такого недостатка, т.к. их функционирование не связано с химическими реакциями.

Известно, что применение электролитов на основе ионных жидкостей, в принципе, позволяет существенно расширить интервал рабочих температур различных электрохимических устройств, в том числе, суперконденсаторов [Mathieu Salanne. Ionic Liquids for Supercapacitor Applications. Top Curr Chem (Z) (2017) 375:63]. В упомянутом обзоре описаны суперконденсаторы с ионными жидкостями, работоспособные в диапазоне температур от -50 до +80°С.

Патент США [US Pat. No. 8475676, 02.07.2013] защищает электролит для суперконденсатора, представляющий раствор тетрафторбората метилтриэтиламмония в пропионитриле, обеспечивающий функционирование суперконденсатора с электродами на основе углерода в диапазоне температур от -50 до +95°С. Этот патент является наиболее близким аналогом заявляемого изобретения.

В патенте КНР [CN 107424848, 24.05.2016] описан суперконденсатор с электролитом, представляющим собой раствор тетрафторбората N,N-диметилпирролидинаммония в смеси сульфолана и ацетонитрила. Диапазон рабочих температур такого суперконденсатора определен как от -40 до +85°С.

Патент КНР [CN 101593625, 02.12.2009] защищает электролит, состоящий из раствора оксалатдифторбората тетраэтиламмония в растворителе, выбранном из группы: ацетонитрил, пропионитрил, метоксипропионитрил, этиленкарбонат, пропиленкарбонат, диметилкарбонат, диэтилкарбонат, метилэтилкарбонат, гамма-бутиролактон, тетрагидрофуран или сульфолан. Растворителем могут быть также смеси указанных компонентов. Такой электролит, по мнению заявителей, обеспечивает работу суперконденсатора при температурах до -30°С.

Техническим результатом является расширение температурного диапазона работы суперконденсаторов до интервала от -140 до +150°С.

Указанный технический результат достигается тем, что в качестве электролита для суперконденсатора с электродами на основе активированного углерода предлагается использовать бинарную систему «фреон-ионная жидкость».

Изобретение поясняется чертежами, где показание:

На фиг. 1 - Вольтамперометрическая кривая, полученная при скорости развертки потенциала 0.01 В/с при температуре +90°С;

На фиг. 2 - Вольтамперометрическая кривая, полученная при скорости развертки потенциала 0.01 В/с при температуре -140°С;

На фиг. 3 - Зависимость удельной емкости электродов прототипа, измеренной при скорости развертки потенциала 0.01 В/с, от температуры;

На фиг. 4 - Зарядная и разрядная кривые макета суперконденсатора при температуре 90°С и токе 30 мА.

Для лучшего понимания сущности предлагаемого изобретения приводится пример изготовления двухслойного суперконденсатора и его характеристики. Приведенный пример не ограничивают заявленных характеристик изобретения, а служит только для пояснения сущности заявленного изобретения.

Пример. Двухслойный суперконденсатор был изготовлен в виде двухэлектродной электрохимической ячейки в герметичном корпусе из нержавеющей стали. Ячейка герметизировалась двойным тефлоновым уплотнением, находящимся вне зоны нагрева (при испытаниях при повышенных температурах). Электрохимическая группа представляла собой симметричный электрохимический конденсатор, состоящий из двух электродов, разделенных волокнистым стеклянным сепаратором (толщиной 1 мм). Электроды изготавливались из активированной углеродной ткани СН-900 (производства компании Кигагау, Япония). СН-900 является микропористой тканью с площадью удельной поверхности, превышающей 1500 м2/г. (Марка углеродной ткани не является предметом изобретения и может быть изменена на любую другую подходящую ткань, или электроды из активированного угля вообще могут не иметь формы ткани). Электроды размером 20×20 мм и массой около 0.04 г, разделенные сепаратором, сжимались токовыми коллекторами из нержавеющей стали давлением около 5 кг/см2, что позволяло обеспечить хороший контакт. В качестве электролита использована бинарная система дифторхлорметан (фреон-22 Тпл. -157.4°С, Ткип. -40.85°С) - ионная жидкость (тетрафторборат 1-бутил-3-метилимидазолия Тпл. -82°С). Концентрация ионной жидкости составляла 1 М. Для измерений при повышенных температурах ячейка нагревалась с помощью программируемого ленточного нагревателя до нужных значений температур с одновременным контролем и регистрацией давления. Для измерений при пониженных температурах ячейка помещалась в криотермостат и охлаждалась с помощью жидкого азота. Значения емкости рассчитывали по данным вольтамперометрии. Вольтаперограммы снимались с помощью потенциостата-гальваностата Р-20Х8 фирмы "Элинс" (Россия). Из элементарной физики известно, что при приложении к конденсатору с емкостью С напряжения U, линейно изменяющегося во времени t с постоянной скоростью ν=dU/dt, через этот конденсатор протекает ток I, определяемый следующим фундаментальным уравнением

На фиг. 1 показана вольтамперограмма, зарегистрированная при температуре +90°С и скорости развертки напряжения 0.01 В/с, а на фиг. 2 - аналогичная вольтамперограмма, полученная при температуре -140°С.

Вид вольтамперограмм, приведенных на фиг. 1 и фиг. 2, типичен для конденсаторов с малым (фиг. 1) или заметным (фиг. 2) омическим сопротивлением [Vladimir S. Bagotsky, Alexander М. Skundin, Yurij M. Volfkovich. Electrochemical Power Sources: Batteries, Fuel Cells, and Supercapacitors. Wiley ISBN: 978-1-118-46023-8].

Фиг. 3 показывает зависимость удельной емкости, отнесенной к единице массы электродов, от температуры. Температурная зависимость изображена в координатах уравнения Аррениуса, при этом видно, что при температурах выше комнатной емкость относительно мало изменяется с изменением температуры, а при отрицательных температурах этот эффект выражен гораздо сильнее.

При температуре +20°С емкость, измеренная при скорости развертки напряжения 0.01 В/с, составляет 42.5 Ф/г, что типично для суперконденсаторов с неводным электролитом [Vladimir S. Bagotsky, Alexander М. Skundin, Yurij M. Volfkovich. Electrochemical Power Sources: Batteries, Fuel Cells, and Supercapacitors. Wiley ISBN: 978-1-118-46023-8]. При температуре -40°C емкость снижается всего до 35 Ф/г. При температуре -100°С емкость составляет 6.3 Ф/г, т.е. всего в 6.7 раза меньше, чем при комнатной температуре. Это значение вполне приемлемо для оборудования, предназначенного для работы в арктических районах или на большой высоте. И даже при температуре -140°С удельная емкость еще сохраняется на уровне 0.3 Ф/г, т.е. подтверждается работоспособность суперконденсатора, хотя и с пониженными характеристиками. При температуре +150°С удельная емкость составляет 75 Ф/г. Следует отметить, что, изменяя марку фреона и природу ионной жидкости, можно изменять температурный диапазон работы без повышенного давления, а также изменять рабочее напряжение суперконденсатора.

На фиг. 4 приведены типичные зарядная и разрядная кривые макета суперконденсатора при температуре 90°С.

Таким образом, пример реализации заявленного изобретения доказывает достижение технического результата, выражающегося в расширении температурного диапазона работы суперконденсаторов до интервала от -140 до +150°С.

Похожие патенты RU2707962C1

название год авторы номер документа
ЛИТИЙ-ИОННЫЙ АККУМУЛЯТОР 2016
  • Цивадзе Аслан Юсупович
  • Андреев Владимир Николаевич
  • Кулова Татьяна Львовна
  • Скундин Александр Мордухаевич
  • Кузьмина Анна Александровна
RU2633529C1
ГИБКИЙ ГИБРИДНЫЙ ЭЛЕКТРОД ДЛЯ СУПЕРКОНДЕНСАТОРА И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2020
  • Ефимов Михаил Николаевич
  • Абаляева Валентина Васильевна
  • Карпачева Галина Петровна
  • Ефимов Олег Николаевич
RU2748557C1
Модельный гибридный суперконденсатор с псевдоемкостными электродами 2020
  • Масалович Мария Сергеевна
  • Загребельный Олег Анатольевич
  • Логинов Владимир Владимирович
  • Шилова Ольга Алексеевна
  • Иванова Александра Геннадьевна
RU2735854C1
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИТНОГО МАТЕРИАЛА ДЛЯ ЭЛЕКТРОДА СУПЕРКОНДЕНСАТОРА 2012
  • Попов Владимир Олегович
  • Липкин Алексей Валерьевич
  • Ярополов Александр Иванович
  • Шумакович Галина Петровна
  • Морозова Ольга Владимировна
  • Панкратов Дмитрий Васильевич
  • Васильева Ирина Сергеевна
  • Зейфман Юлия Сергеевна
  • Отрохов Григорий Владимирович
RU2495509C1
ЭЛЕКТРОЛИТ ДЛЯ СУПЕРКОНДЕНСАТОРА 2014
  • Уваров Николай Фавстович
  • Брежнева Лариса Ильинична
  • Улихин Артем Сергеевич
  • Матейшина Юлия Григорьевна
RU2552357C1
ЭЛЕКТРОДНЫЙ МАТЕРИАЛ ИЗ ОКСИДА МАРГАНЦА СО СТРУКТУРОЙ БИРНЕССИТА ИЛИ ВЕРНАДИТА И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2020
  • Архарова Наталья Андреевна
  • Истомин Сергей Яковлевич
  • Левин Эдуард Евгеньевич
  • Орехов Антон Сергеевич
  • Преснов Денис Евгеньевич
  • Пуголовкин Леонид Витальевич
  • Цирлина Галина Александровна
RU2762313C1
СУПЕРКОНДЕНСАТОР С НЕОРГАНИЧЕСКИМ ТВЁРДЫМ ЭЛЕКТРОЛИТОМ И УГЛЕРОДНЫМИ ЭЛЕКТРОДАМИ 2015
  • Искакова Анастасия Алексеевна
  • Улихин Артем Сергеевич
  • Уваров Николай Фавстович
  • Матейшина Юлия Григорьевна
  • Брежнева Лариса Ильинична
  • Ухина Арина Викторовна
RU2592863C1
ЭЛЕКТРОДНЫЙ МАТЕРИАЛ ДЛЯ КОНДЕНСАТОРА ЭЛЕКТРИЧЕСКОГО, СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ И СУПЕРКОНДЕНСАТОР ЭЛЕКТРИЧЕСКИЙ 2010
  • Агупов Владимир Кузьмич
  • Чайка Михаил Юрьевич
  • Беседин Владимир Викторович
  • Глотов Антон Валерьевич
  • Четвериков Сергей Николаевич
RU2427052C1
СУПЕРКОНДЕНСАТОР С НЕОРГАНИЧЕСКИМ КОМПОЗИЦИОННЫМ ТВЕРДЫМ ЭЛЕКТРОЛИТОМ (ВАРИАНТЫ) 2012
  • Улихин Артем Сергеевич
  • Матейшина Юлия Григорьевна
  • Уваров Николай Фастович
RU2522947C2
Суперконденсатор на основе наноструктурированного углеродного материала 2023
  • Елецкий Петр Михайлович
  • Бородина Ольга Алексеевна
  • Лебедева Марина Валерьевна
  • Мозылева Мария Андреевна
  • Козлов Денис Владимирович
  • Яковлев Вадим Анатольевич
RU2820678C1

Иллюстрации к изобретению RU 2 707 962 C1

Реферат патента 2019 года Двухслойный суперконденсатор

Изобретение относится к области электротехники, а именно к двухслойному электрохимическому суперконденсатору на основе ионных жидкостей. Согласно изобретению в двухслойном суперконденсаторе, содержащем электроды из активированного углерода, электролит выполнен из смеси фреона и ионной жидкости, при этом фреон представляет собой дифторхлорметан (фреон-22), а ионная жидкость - тетрафторборат 1-бутил-3-метилимидазолия. Расширение температурного диапазона работы суперконденсатора, который находится в интервале от -140°С до +150°С, при сохранении рабочих характеристик суперконденсатора, является техническим результатом изобретения. 4 ил., 1 пр.

Формула изобретения RU 2 707 962 C1

Двухслойный суперконденсатор, содержащий электроды, выполненные из активированного углерода, и неводный электролит, отличающийся тем, что в качестве неводного электролита используют бинарную систему фреон - ионная жидкость, содержащую дифторхлорметан и тетрафторборат 1-бутил-3-метилимидазолия.

Документы, цитированные в отчете о поиске Патент 2019 года RU2707962C1

CN 101593625 A, 02.12.2009
CN 107424848 A, 01.12.2017
ЭЛЕКТРОЛИТ ДЛЯ СУПЕРКОНДЕНСАТОРА 2014
  • Уваров Николай Фавстович
  • Брежнева Лариса Ильинична
  • Улихин Артем Сергеевич
  • Матейшина Юлия Григорьевна
RU2552357C1
US 20010046142 A1, 25.02.2010
CN 108538633 A, 14.09.2018.

RU 2 707 962 C1

Авторы

Грызлов Дмитрий Юрьевич

Кулова Татьяна Львовна

Скундин Александр Мордухаевич

Андреев Владимир Николаевич

Мельников Валерий Павлович

Даты

2019-12-03Публикация

2018-12-18Подача