Зонд сканирующего микроскопа Российский патент 2019 года по МПК G01Q60/24 B82Y35/00 G01Q70/02 

Описание патента на изобретение RU2708530C1

Изобретение относится к сканирующей зондовой микроскопии, а именно к устройствам, обеспечивающим получение информации о топологии и других свойствах поверхности объекта, для изучения поверхности тел методом атомно-силовой микроскопии и нанотехнологии.

Зонд сканирующего микроскопа применяется в туннельной, атомно-силовой и других видах сканирующей зондовой микроскопии, а также в автономных системах измерения рельефа поверхностей путем сканирования их зондом, в устройствах диагностики и неразрушающего контроля неравномерности поверхностей, включая динамику их изменения с помощью известных методов, предназначенных для применения в микроскопии.

Известен зонд для сканирующей емкостной микроскопии, состоящий из консоли с укрепленной на одном ее конце иглой, закрепленной на чипе другой стороной, и имеющий проводящий слой, расположенный, по крайней мере, на поверхности зонда со стороны иглы. На поверхности зонда со стороны иглы установлен проводящий экран, отделенный от проводящего слоя первой диэлектрической прослойкой (RU № 2289862, G12В21/02, 2006.)

Недостатком данного устройства является функционально узкая область применения, ограниченная предназначением только для измерения емкости образцов, покрытых тонким слоем диэлектрика, и затруднена для использования в туннельной, атомно-силовой и других видов сканирующей зондовой микроскопии.

Известен зонд для сканирующего микроскопа, содержащий кварцевый резонатор с иглой, закрепленной на одном его конце, причем другой конец установлен на держателе-платформе (Franz J. Giessibl, High - speed force sensor for force microscopy and profilometry utilizing a quartz fork, Applied Physics Letters, 1998, Volume 73, No. 26, p. 3956-3958; Appl. Phys. Lett. 1999, Volume 74, p. 4070.)

Недостатком устройства является его низкая надежность, связанная с применением кварцевого резонатора и нестабильностью его характеристик, возникающей из-за приклейки его одним концом к держателю-платформе. Это так же затрудняет процедуру замены иглы без замены всего дорогостоящего зонда и сужает его функциональные возможности.

Наиболее близким к заявляемому техническому решению относится зонд сканирующего микроскопа, состоящий из последовательно соединённых иглы нанозонда, консоли, держателя, датчика частоты собственных колебаний консоли и оптического датчика движения консоли, оптически связанного с консолью. (Миронов В.Л. Основы сканирующей зондовой микроскопии. М.: Техносфера, 2004, с. 76–92.)

Недостатками прототипа является то, что во время сближения и подвода иглы к образцу возникает жёсткий контакт иглы с поверхностью, вызывающий повышенный износ иглы и, часто, ее повреждение, требующее дорогостоящих замен. Кроме того, износ или повреждение иглы, меняет случайным образом размер иглы, внося априори неизвестную погрешность измерения, обусловленную изменением формы иглы, что ухудшает точность, надежность и достоверность измерения зондом.

Технической проблемой изобретения является создание устройства, позволяющего компенсировать в реальном времени повышенный износ и повреждение игл, требующих их замены.

Техническим результатом изобретения является повышение точности и надёжности зонда сканирующего микроскопа.

Поставленная проблема и технический результат достигается тем, что зонд сканирующего микроскопа состоит из иглы и консоли, закрепленной в держателе. Согласно изобретению, игла выполнена в виде однослойной углеродной нанотрубки, на свободном конце консоли выполнено отверстие для свободного прохождения сквозь него иглы, с двух сторон от которого расположены свободные концы пары упругих элементов зажима, установленного на консоли, и пара упругих элементов захвата, расположенного над элементами зажима. Со стороны держателя пары элементов зажима и захвата жестко скреплены между собой и закреплены на держателе, образуя единый электрический проводник, а их поверхности покрыты слоем диэлектрика. Зонд дополнительно содержит источник сигналов управления положением иглы, электрические входы которого связаны с иглой, парами элементов зажима и захвата.

Выполнение иглы из углеродной нанотрубки и отверстия в консоли позволяет в реальном времени перемещать иглу, стабилизировать размер, вынесенной за пределы свободного конца консоли, части иглы и, таким образом, компенсировать износ или повреждение части иглы, вынесенной за консоль, сохраняя при этом постоянным размер части иглы, что значительно повышает точность и достоверность измерения сканирующим микроскопом в сочетании со свойствами углеродной нанотрубки.

Применение управления положением иглы позволяет варьировать в широком диапазоне зазор её контактного и неконтактного взаимодействия с поверхностью, изменяя в реальном времени условия сближения иглы, созданием необходимого зазора и положения иглы в области её взаимодействия с поверхностью. За счет обеспечения функциональной связи действия иглы, зажима и захвата иглы, закреплённой на свободном конце консоли, обеспечивается регулировка зазора между иглой и поверхностью, создавая наилучшие условия реализации точности метода измерения, который принят в данном типе зондовой системы. Возможность регулировки сдвига иглы, выполненной из углеродной нанотрубки, для обеспечения сохранения зазора между трубкой и измеряемой поверхностью в диапазоне регулирования, соизмеримом с длиной углеродной нанотрубки, позволяет решать проблемы жесткого контакта, контроля состояния иглы при наличии актов её разрушения или износа при контакте с поверхностью. Покрытие слоем изолирующего диэлектрика поверхностей обеих пар упругих элементов зажима и захвата и использование электрических входов иглы и обеих пар упругих элементов зажима и захвата иглы путём их подключения к соответствующим выходам источника сигналов управления положением иглы позволяет управлять компенсацией износа иглы.

Наличие источника сигналов управления положением иглы позволяет создать требуемые условия повышения точности неразрушающего контроля формы и неравномерности поверхности за время, необходимое и достаточное для сохранения постоянства параметров зонда в интервале длительности проводимого исследования.

Таким образом, зонд с иглой, выполненной из углеродной нанотрубки, одновременно повышает его надёжность и точности измерения.

Изобретение поясняется чертежами, где на фиг.1 представлена схема зонда сканирующего микроскопа; на фиг.2 – вид А; на фиг. 3 – вид Б.

Зонд сканирующего микроскопа состоит из иглы 1, выполненной в виде однослойной углеродной нанотрубки, консоли 2 на свободном конце которой выполнено отверстие 3. Консоль 2 жёстко защемлена в держателе 4, служащим опорой зонда. На консоли 2 возле отверстия 3 закреплена пара упругих элементов зажима 5, над которыми закреплена пара упругих элементов захвата 6, связанных попарно между собой и являющихся частью одного электрического проводника. Поверхности зажима 5 и захвата 6 покрыты слоем диэлектрика 7, который изолирует их друг от друга и от иглы 1. Зонд дополнительно содержит источник 8 сигналов управления положением иглы 1, электрические входы которого связаны с иглой 1, парами элементов зажима 5 и захвата 6.

Каждая пара элементов зажима 5 и захвата 6 жестко связаны между собой в области держателя 4 и закреплены на нем. Свободные концы упругих элементов зажима 5 и захвата 6, покрытые слоем диэлектрика 7 охватывают иглу 1, с возможностью ее свободного прохождения между ними. Зажим 5 и захват 6 жёстко, например, клеем 9, скреплены с консолью 2 и друг с другом. Такое выполнение зажима 5 и захвата 6 обеспечивает возможность раскрытия их свободных концов для простой установки или замены углеродной нанотрубки – иглы 1 в зазор между парой упругих элементов зажима 5 и захвата 6. Источник 8 сигналов управления положением иглы 1 связан соответственно электрическими линиями с иглой 1 и парой упругих элементов зажимом 5 и парой упругих элементов захватом 6. Если на игле 1 и зажиме 5 создана одинаковая полярность потенциала, то зажим 5 ослаблен или разжат. Так же действуют и упругие элементы захвата 6.

Зонд сканирующего микроскопа работает следующим образом.

При восстановлении параметров зонда сканирующего микроскопа и после поломки уже установленной в нём иглы первоначально осуществляют калибровку, когда положение консоли 2 известно и определено. На этом этапе происходит включение тактируемого перемещения, установленной в упругих элементах зажима 5 и захвата 6 углеродной трубки – иглы 1. Компенсация возросшего среднего значения зазора «игла–поверхность», вызванного текущим износом или разрушением конца углеродной трубки – иглы 1 осуществляется по достаточно простому циклическому алгоритму смещения трубки на интервал Δ, не превышающий расстояние разноса зажима 5 и захвата 6. Малое расстояние разноса зажима 5 и захвата 6, установленных на консоли 2, позволяет исходно корректировать весьма малый износ иглы 1. Возможность многократного повторения двухтактного процесса перемещения углеродной трубки – иглы 1 позволяет, в случае разрушения иглы 1, восстанавливать значительно больший, чем исходный, заданный при начальной калибровке, размер свободного конца иглы 1, без остановки процедуры исследования для замены кантилевера.

При точном сканировании игла 1, в виде углеродной нанотрубки, движется над поверхностью 10. Информационный параметр сигнала, снимаемого с иглы 1, определяется типом зондовой микроскопии. Например, в туннельной микроскопии по одной из методик туннельный ток поддерживается стабильным за счёт обратной связи. Показания движения консоли 2 меняются в зависимости от топографии поверхности 10. Эти изменения регистрируют, на их основе строят карту высот поверхности 10. Возможно, также осуществлять движение иглы 1 на фиксированной высоте над исследуемой поверхностью 10. В этом случае регистрируют изменение тока. Его значения служат основой построения топографии поверхности 10.

Сила, действующая со стороны поверхности 10 исследования, приводит к изгибу консоли 2 с соответствующим смещением нанотрубки – иглы 1, а вместе с этим, зажима 5 с захватом 6. Появление выступов или впадин на поверхности 10 под иглой 1 вызывает изменение силы, действующей на зонд, и изменяет изгиб консоли 2. Таким образом, мера изгиба консоли 2, а значит и величина сигнала формируемого иглой 1, функционально связаны с величиной зазора «игла–поверхность». Износ или разрушение иглы 1 при контактном взаимодействии с выступами поверхности 10 исследования ведёт к образованию (при износе–случайного; при разрушении – скачкообразного) увеличения зазора «игла–поверхность», следствием которого является возрастание уровня центрирования и рост погрешности измерения смещения сигнала, измерения топографии поверхности 10. Наличие сигнала смещения при износе или разрушении иглы 1 воспринимается системой микроскопа как «кажущееся» удаление иглы 1 от поверхности 10. В этом случае система микроскопа, отрабатывая появление сигнала «кажущегося» удаления иглы 1 от среднего значения зазора «игла–поверхность», приближает поверхность 10 к консоли 2 до формирования значения нормы уровня сигнала зонда, установленного при его начальной калибровке. В случае значительного разрушения иглы 1 подобное сближение поверхности 10 ведёт к жёсткому контакту с поверхностью 10 теперь уже консоли 2 и её разрушению.

Смена действия вектора силы тяжести при смене направления перемещения иглы учитывается соответствующим изменением напряжения потенциала источника 8, подаваемого на иглу 1, для увеличения сил кулоновского взаимодействия. Механическое перемещение консоли 2 не действует на электрическое поле, создаваемое разностью потенциалов иглы 1, зажима 5 и захвата 6, силовые линии которого относительно места положения устройства перемещения иглы 1 на подвижной консоли 2 не изменяются, сколько бы консоль 2 их не качала. Качка консоли 2 и действие данного устройства на этой же консоли 2 – это относительно независимые между собой процессы.

Смещение иглы 1 осуществляется под действием сигналов источника 8 управления положением иглы 1, совместно с захватом 6 сквозь пространство зажима 5 и отверстия 3 в консоли 2. Смещение иглы 1, производимое совокупно с направленным в сторону более упругих, на данный момент времени разжатых элементов зажима 5, вызванное изгибом упругих элементов захвата 6 под действием сигналов управления положением иглы 1 от источника 8, осуществляют силы кулоновского взаимодействия свободно висящих, разноименно заряженных, упругих элементов захвата 6 с упругими элементами зажима 5. Установленный сигналами источника 8 порядок и сила кулоновского взаимодействия потенциалов напряжения обеспечивают тактируемое перемещение иглы 1 под действием задаваемой смены электрических потенциалов напряжения сигналов источника 8, подаваемых на иглу 1, зажим 5 и захват 6.

Выработка сигнала о необходимости смещения иглы 1 формируется на этапе калибровки или на основе получения информации об отклонении выходных сигналов координат зонда за пределы диапазона значений, установленных при калибровке сканирующего микроскопа. Зажим 5 и захват 6 нанотрубки – иглы 1 установлены соосно с отверстием 3 в области свободного конца консоли 2. Отверстие 3 на свободном конце консоли 2 выполнено проходным как направляющая по оси перемещения нанотрубки–иглы 1, ортогонально расположенной к плоскости консоли 2. Отверстие 3 на свободном конце консоли 2 вкупе с зажимом 5 и захватом 6 иглы – нанотрубки 1 предотвращает ее смещение в плоскости консоли 2, одновременно позволяя перемещать нанотрубку – иглу 1 в ортогональной плоскости к поверхности консоли 2. При изгибе консоли 2 нанотрубка – игла 1 вместе с зажимом 5 и захватом 6 смещаются с областью их крепления совокупно с перемещением свободного конца консоли 2.

Система обработки сигнала атомно-силового микроскопа непрерывно отслеживает положение нанотрубки – иглы 1 относительно исследуемой поверхности 10. Формирование включения источника 8 сигналов управления положением иглы 1 и начала процедуры коррекции отклонения положения иглы 1 от принятого при калибровке зазора «игла–поверхность» основано на контроле отклонения луча лазера, отраженного от конца консоли 2. Координаты положения консоли 2 формирует обычно оптический датчик атомно-силового микроскопа.

Применение предлагаемого зонда позволяет предотвратить поломку консоли 2 при прямом механическом ее взаимодействии с поверхностью 10 при сканировании. Прочность и упругость углеродной нанотрубки 1 способна существенно повысить точность и надёжность, обеспечивает продлению живучести зонда. При износе или обломе углеродной нанотрубки 1 появляется возможность on-line смещения по длине свободного конца углеродной нанотрубки 1. При изгибе консоли 2 нанотрубка - игла 1, зажим 5 и захват 6 смещаются совместно с областью их крепления, а именно, с перемещением свободного конца консоли 2.

Таким образом, зонд сканирующего микроскопа может быть использован в сканирующей микроскопии для управляемого смещения и коррекции износа иглы зонда в широком диапазоне (более порядка) изменения длин, скоростей и мер износа, путём управления положением углеродной нанотрубки – иглы 1 и параметрами режимов сканирования иглой 1 в реальном времени.

Регулировкой зазора между торцом углеродной нанотрубки – иглы 1 и поверхностью 10 создаются наилучшие условия реализации любого метода измерения, который принят в данном типе зондовой микроскопии. Наличие подвижной, регулируемой по длине углеродной нанотрубки – иглы 1 для управляемого воздействия на размер зазора «нанотрубка 1 – поверхность 10» с равным длине нанотрубки – иглы 1 размером смещения, позволяет решать основные проблемы, связанные с жесткими контактами, отсутствием контроля состояния кончика нанотрубки – иглы 1 и возникновения актов разрушения и износа иглы 1.

Практическое использование предлагаемого зонда возможно во всех типах сканирующей зондовой микроскопии, обеспечивает восстановление исходных параметров игл зонда сканирующих микроскопов, повышает точность и достоверность получаемых результатов.

Похожие патенты RU2708530C1

название год авторы номер документа
Нанозонд сканирующего микроскопа 2018
  • Барчуков Дмитрий Анатольевич
  • Слободян Степан Михайлович
RU2687180C1
МОНОКРИСТАЛЛИЧЕСКИЙ МЕТАЛЛИЧЕСКИЙ ЗОНД ДЛЯ СКАНИРУЮЩИХ ПРИБОРОВ 2015
  • Гиваргизов Михаил Евгеньевич
RU2610040C1
ЗОНД ДЛЯ СКАНИРУЮЩЕЙ ЕМКОСТНОЙ МИКРОСКОПИИ 2004
  • Быков Виктор Александрович
  • Быков Андрей Викторович
  • Мягков Игорь Вениаминович
  • Трегубов Генадий Антонович
  • Поляков Вячеслав Викторович
RU2289862C2
УСТРОЙСТВО КОМПЕНСАЦИИ СОБСТВЕННЫХ КОЛЕБАНИЙ ИГЛЫ ЗОНДА СКАНИРУЮЩЕГО МИКРОСКОПА 2019
  • Деева Вера Степановна
  • Слободян Степан Михайлович
RU2703607C1
МНОГОФУНКЦИОНАЛЬНЫЙ СКАНИРУЮЩИЙ ЗОНДОВЫЙ МИКРОСКОП 2010
  • Быков Андрей
  • Котов Владимир
  • Быков Виктор
RU2498321C2
СИЛОВОЙ ЗОНД НА ОСНОВЕ КВАРЦЕВОГО РЕЗОНАТОРА 2003
  • Быков В.А.
  • Медведев Б.К.
  • Саунин С.А.
  • Михайлов Г.М.
RU2251071C2
ОСТРИЙНЫЕ СТРУКТУРЫ, ПРИБОРЫ НА ИХ ОСНОВЕ И МЕТОДЫ ИХ ИЗГОТОВЛЕНИЯ 2000
  • Гиваргизов Е.И.
  • Гиваргизов М.Е.
RU2240623C2
ЗОНДОВЫЙ ДАТЧИК НА ОСНОВЕ КВАРЦЕВОГО РЕЗОНАТОРА ДЛЯ СКАНИРУЮЩЕГО ЗОНДОВОГО МИКРОСКОПА 2005
  • Соколов Дмитрий Юрьевич
RU2297053C1
СКАНИРУЮЩИЙ ЗОНДОВЫЙ МИКРОСКОП, СОВМЕЩЕННЫЙ С УСТРОЙСТВОМ МОДИФИКАЦИИ ПОВЕРХНОСТИ ОБЪЕКТА 2005
  • Мартин Мюллер
  • Мацко Надежда Борисовна
  • Ефимов Антон Евгеньевич
  • Саунин Сергей Алексеевич
  • Соколов Дмитрий Юрьевич
RU2282257C1
СКАНИРУЮЩИЙ ЗОНДОВЫЙ МИКРОСКОП, СОВМЕЩЕННЫЙ С УСТРОЙСТВОМ МОДИФИКАЦИИ ПОВЕРХНОСТИ ОБЪЕКТА 2012
  • Ефимов Антон Евгеньевич
  • Мацко Надежда Борисовна
  • Хофер Фердинанд
  • Соколов Дмитрий Юрьевич
RU2572522C2

Иллюстрации к изобретению RU 2 708 530 C1

Реферат патента 2019 года Зонд сканирующего микроскопа

Изобретение относится к сканирующей зондовой микроскопии, а именно к устройствам, обеспечивающим получение информации о топологии и других свойствах поверхности объекта, для изучения поверхности тел методом атомно-силовой микроскопии и нанотехнологии. Зонд сканирующего микроскопа состоит из иглы 1 и консоли 2, закрепленной в держателе 4. Игла 1 выполнена в виде однослойной углеродной нанотрубки, на свободном конце консоли 2 выполнено отверстие 3 для свободного прохождения сквозь него иглы 1, с двух сторон от которого расположены свободные концы пары упругих элементов зажима 5, установленного на консоли 2, и пара упругих элементов захвата 6, расположенного над элементами зажима 5. Со стороны держателя 4 пары элементов зажима 5 и захвата 6 жестко скреплены между собой и закреплены на держателе 4, образуя единый электрический проводник, а их поверхности покрыты слоем 7 диэлектрика. Зонд дополнительно содержит источник 8 сигналов управления положением иглы 1, электрические входы которого связаны с иглой 1, парами упругих элементов зажима 5 и захвата 6. Техническим результатом изобретения является повышение точности и надёжности зонда сканирующего микроскопа. 3 ил.

Формула изобретения RU 2 708 530 C1

Зонд сканирующего микроскопа, состоящий из иглы и консоли, закрепленной в держателе, отличающийся тем, что игла выполнена в виде однослойной углеродной нанотрубки, на свободном конце консоли выполнено отверстие для свободного прохождения сквозь него иглы, с двух сторон от которого расположены свободные концы пары упругих элементов зажима, установленного на консоли, и пара упругих элементов захвата, расположенного над элементами зажима, при этом со стороны держателя пары упругих элементов зажима и захвата жестко скреплены между собой и закреплены на держателе, образуя единый электрический проводник, а их поверхности покрыты слоем диэлектрика, зонд дополнительно содержит источник сигналов управления положением иглы, электрические входы которого связаны с иглой, парами упругих элементов зажима и захвата.

Документы, цитированные в отчете о поиске Патент 2019 года RU2708530C1

US 8438660 B2, 07.05.2013
US 7511270 B2, 31.03.2009
JP 2009109411 A, 21.05.2009.

RU 2 708 530 C1

Авторы

Слободян Степан Михайлович

Барчуков Дмитрий Анатольевич

Даты

2019-12-09Публикация

2019-04-11Подача