Способ получения модифицированных углеродных нанотрубок Российский патент 2019 года по МПК C01B32/174 B82Y40/00 

Описание патента на изобретение RU2708596C1

ОБЛАСТЬ ТЕХНИКИ

Изобретение относится к способу получения модифицированных углеродных нанотрубок (УНТ), содержащих мочевину и/или тиомочевину, предназначенных для усиления механических свойств композиционных материалов на основе эпоксидных смол, модификации различных клеевых составов, для получения суперконденсаторов и др.

УРОВЕНЬ ТЕХНИКИ

Известен способ получения дисперсий УНТ, включающий функционализацию углеродных нанотрубок карбоксильными и/или гидроксильными группами и последующую обработку функционализированных нанотрубок в органическом растворителе ультразвуком. При этом обработку в органическом растворителе ультразвуком ведут в присутствии продуктов реакции тетрабутилтитаната со стеариновой или олеиновой кислотой. (RU 2531172 С2, опубл. 20.10.2014).

Недостатком известного способа получения дисперсий углеродных нанотрубок является высокие энергозатраты и длительность получения дисперсии.

Кроме того, известен способ замещения фтора во фторированных углеродных нанотрубках (F-УНТ) путем химических реакций с различными реагентами, такими как амины, амиды, аминокислоты, аминоспирты и др. (В.Н. Хабашеску, Ковалентная функционализация углеродных нанотрубок: синтез, свойства и применение фторированных производных, Обзор. Успехи химии 80 (8), 2011, с. 739-760, прототип).

Недостатком способа замещения фтора во фторированных углеродных нанотрубках является высокие энергозатраты и длительность получения композитного материала, сшивки трубок полимерными цепями, например, при использовании мочевины.

РАСКРЫТИЕ ИЗОБРЕТЕНИЯ

Задачей заявленного изобретения является разработка способа получения модифицированных УНТ при ковалентной функционализации F-УНТ мочевиной и/или тиомочевиной с последующей модификацией этих продуктов водорастворимыми эпоксидными смолами.

Техническим результатом изобретения является снижение энергозатрат и времени получения модифицированных УНТ, при высоком выходе конечного продукта.

Указанный технический результат достигается за счет того, что способ получения модифицированных УНТ включает следующие этапы:

а) Обработка в ультразвуковом концентраторе раствора, содержащего мочевину и/или тиомочевины, воду и концентрированную минеральную кислоту, с добавкой в раствор F-УНТ;

b) Разбавление обработанного раствора, содержащего модифицированные углеродные нанотрубки, и его фильтрование с промывкой водой до нейтральной кислотности;

c) Разбавление водой отфильтрованных модифицированных УНТ с последующей обработкой водного раствора в ультразвуковой ванне;

d) Разбавление водой обработанных модифицированных углеродных нанотрубок, фильтрование водного раствора модифицированных углеродных нанотрубок с промывкой ацетоном и сушка модифицированных углеродных нанотрубок.

Применяют однослойные или многослойный F-УНТ. Концентрация F-УНТ в растворе составляет 1-2 мг/г.

В качестве концентрированных минеральных кислот применяют соляную, серную, азотную кислоты и другие известные минеральные кислоты. Дополнительно осуществляют следующие этапы:

a) Обработка в ультразвуковом концентраторе раствора, содержащего модифицированные мочевиной и/или тиомочевиной УНТ, водорастворимую эпоксидную смолу и воду;

b) Фильтрование обработанного раствора, содержащего модифицированные УНТ, с промывкой водой до исчезновения окраски в фильтрате;

c) Разбавление водой отфильтрованных модифицированных УНТ с последующей обработкой водного раствора в ультразвуковой ванне;

d) Фильтрование водного раствора модифицированных УНТ с промывкой ацетоном и сушка модифицированных углеродных нанотрубок.

6. Способ по п. 5, отличающийся тем, что в качестве водорастворимых эпоксидных смол применены эпоксидные смолы ДЭГ-1, ТЭГ-1, эпоксидно-гидантоиновая смола ЭГ-10 и другие известные водорастворимые эпоксидные смолы.

ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ

Способ получения модифицированных УНТ включает следующие этапы:

Приготавливают при комнатной температуре раствор, содержащий 15-80 мас. % мочевины или 5-10 мас. % тиомочевины, 0,5-2 мас. % концентрированной минеральной кислоты и воды - остальное. В качестве концентрированных минеральных кислот применяют соляную, серную, азотную кислоты и другие известные минеральные кислоты. В указанный раствор добавляют F-УНТ, при этом концентрация F-УНТ в растворе составляет 1-2 мг/г.

Затем приготовленный раствор помещают в ультразвуковой концентратор, в котором раствор подвергается звуковой обработке при частоте 5-15 КГц в течение 15-25 мин, в результате которой происходит замещение фтора на мочевину или тиомочевину с получением раствора модифицированных УНТ с мочевиной или тиомочевиной.

После чего, осуществляют разбавление обработанного раствора (10-50 кратный избыток), содержащего модифицированные УНТ, и его фильтрование с промывкой водой до нейтральной кислотности (РН=7).

Затем осуществляют разбавление водой (50-100 кратный избыток) отфильтрованных модифицированных УНТ с последующей обработкой водного раствора в ультразвуковой ванне при частоте 30-50 Гц в течение 10-15 мин для удаления адсорбированных на УНТ мочевины или тиомочевины.

После чего разбавляют водой (10-50 кратный избыток) обработанный водный раствор модифицированных углеродных нанотрубок и осуществляют его фильтрование с промывкой ацетоном с целью полного удаления воды, с последующей сушкой модифицированных углеродных нанотрубок при температуре 120-130°С в течение часа.

В случае применения в растворе смеси мочевины и тиомочевины, при комнатной температуре приготавливают раствор, содержащий в мас. %: мочевина - 10-50, тиомочевина - 5-30, концентрированная минеральная кислота 0,5-2 и вода - остальное. Последовательность операций способа при получении модифицированных УНТ на основе раствора, содержащего смесь мочевины и тиомочевины аналогична вышеописанным. В результате получают модифицированные УНТ, в которых фтор замещается на мочевины и тиомочевины, с получением модифицированных мочевиной и тиомочевиной УНТ.

При необходимости модифицированные мочевиной и/или тиомочевиной УНТ дополнительно подвергают функционализации водорастворимыми эпоксидными смолами. Для этого приготавливают при комнатной температуре раствор, содержащий 5-50 мас. % водорастворимой эпоксидной смолы и воды - остальное. В указанный раствор добавляют модифицированные мочевиной и/или тиомочевиной УНТ, при этом концентрация модифицированные мочевиной и/или тиомочевиной УНТ в растворе составляет 1-2 мг/г.В качестве водорастворимой эпоксидной смолы применены алифатические эпоксидные смолы ДЭГ-1 (продукт конденсации эпихлоргидрина с диэтиленгликолем), ТЭГ-1 (продукт конденсации эпихлоргидрина с триэтиленгликолем) и эпоксидно-гидантоиновая смола ЭГ-10 (продукт взаимодействия эпихлоргидрина и 5,5-диметилгидантоина).

Затем приготовленный раствор помещают в ультразвуковой концентратор, в котором раствор подвергается звуковой обработке при частоте 5-15 КГц в течение 15-25 мин, в результате которой происходит отверждение эпоксидной смолы NH2-группами, связанными ковалентно с УНТ с получением раствора модифицированных мочевиной и/или тиомочевиной УНТ с эпоксидной смолой.

После чего, осуществляют фильтрование обработанного раствора, содержащего модифицированные УНТ, на фильтре в 1 мкн с промывкой водой до исчезновения окраски в фильтрате (например, при наличии в фильтрате ДЭГ-1 цвет желтый).

Затем осуществляют разбавление водой (50-100 кратный избыток) отфильтрованных модифицированных УНТ с последующей обработкой водного раствора в ультразвуковой ванне при частоте 30-50 Гц в течение 10-15 мин для удаления адсорбированных на УНТ эпоксидных смол.

После чего осуществляют фильтрование обработанного водного раствора модифицированных углеродных нанотрубок с промывкой ацетоном с целью полного удаления водорастворимых эпоксидных смол и воды, с последующей сушкой модифицированных углеродных нанотрубок при температуре 120-130°С в течение 0,5-1 часа.

В таблице 1 представлены результаты экспериментов заявленного способа.

При изготовлении композиционного материала на основе двух смол ЭД-20 (70 мас. % от общего содержания двух смол) и ДЭГ-1 (30 мас. % от общего содержания двух смол)-модифицированные эпоксидной смолой и мочевиной и/или тиомочевиной УНТ (концентрация УНТ 0,1 мас. %), среднее значение разрушающей нагрузки при изгибе составляет 1802-1990 Н, среднее значение напряжение при изгибе составляет 472-487 МПа. В случае отсутствия модифицированных УНТ среднее значение разрушающей нагрузки при изгибе составляет 1194 Н, среднее значение напряжение при изгибе составляет 332 МПа.

Таким образом, предлагаемое изобретение позволяет снизить энергозатраты и время получения модифицированных УНТ при высоком выходе конечного продукта (модифицированных УНТ), за счет выполнения способа при комнатной температуре и в воде, по сравнению с прототипом, в котором обработку ультразвуком осуществляют при температуре 132°С, например, при использовании мочевины. А использование тиомочевины или гуанидина в растворах диметилформамида ограничено его низким ПДК (ПДК=10 мг/м3) и его канцерогенностью.

Изобретение было раскрыто выше со ссылкой на конкретный вариант его осуществления. Для специалистов могут быть очевидны и иные варианты осуществления изобретения, не меняющие его сущности, как она раскрыта в настоящем описании. Соответственно, изобретение следует считать ограниченным по объему только нижеследующей формулой изобретения.

Похожие патенты RU2708596C1

название год авторы номер документа
Способ получения модифицированных углеродных нанотрубок 2016
  • Крестинин Анатолий Васильевич
  • Марченко Александр Петрович
  • Радугин Александр Владимирович
RU2637687C1
Способ получения композитного материала 2016
  • Крестинин Анатолий Васильевич
  • Марченко Александр Петрович
  • Радугин Александр Владимирович
RU2645007C1
Способ ковалентной функционализации углеродных нанотрубок с одновременным ультразвуковым диспергированием для введения в эпоксидные композиции 2017
  • Крестинин Анатолий Васильевич
  • Шестаков Владимир Леонидович
RU2660852C1
СПОСОБ МОДИФИЦИРОВАНИЯ УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ 2013
  • Ткачев Алексей Григорьевич
  • Мележик Александр Васильевич
  • Дьячкова Татьяна Петровна
RU2548083C2
Способ получения дисперсий углеродных наноматериалов 2016
  • Мележик Александр Васильевич
  • Меметов Нариман Рустемович
  • Ткачев Алексей Григорьевич
RU2618881C1
СПОСОБ ПОЛУЧЕНИЯ ПОЛИМЕРНОГО КОМПОЗИТА С НАНОМОДИФИЦИРОВАННЫМ НАПОЛНИТЕЛЕМ (ВАРИАНТЫ). 2013
  • Хантимеров Сергей Мансурович
  • Сулейманов Наиль Муратович
RU2602798C2
СПОСОБ МОДИФИЦИРОВАНИЯ СОРБЕНТОВ ДЛЯ ИЗВЛЕЧЕНИЯ ИОНОВ ТЯЖЕЛЫХ МЕТАЛЛОВ ИЗ ВОДНЫХ РАСТВОРОВ 2021
  • Никифорова Татьяна Евгеньевна
  • Козлов Владимир Александрович
  • Натареев Сергей Валентинович
  • Вокурова Дарья Андреевна
RU2768623C1
СПОСОБ МОДИФИЦИРОВАНИЯ СОРБЕНТОВ ДЛЯ ИЗВЛЕЧЕНИЯ ИОНОВ ТЯЖЕЛЫХ МЕТАЛЛОВ ИЗ ВОДНЫХ РАСТВОРОВ 2022
  • Никифорова Татьяна Евгеньевна
  • Вокурова Дарья Андреевна
  • Козлов Владимир Александрович
RU2792209C1
СПОСОБ МОДИФИЦИРОВАНИЯ УГЛЕРОДНЫХ НАНОТРУБОК 2012
  • Ткачев Алексей Григорьевич
  • Мележик Александр Васильевич
  • Дьячкова Татьяна Петровна
  • Аладинский Алексей Александрович
RU2528985C2
Способ получения полимерных композиционных материалов 2016
  • Красновский Александр Николаевич
  • Кузнецов Андрей Геннадьевич
  • Егоров Сергей Александрович
  • Кищук Петр Сергеевич
RU2637227C1

Реферат патента 2019 года Способ получения модифицированных углеродных нанотрубок

Изобретение относится к нанотехнологии и может быть использовано для усиления механических свойств композиционных материалов на основе эпоксидных смол, модификации клеевых составов, получения суперконденсаторов. В ультразвуковом концентраторе обрабатывают раствор, содержащий мочевину и/или тиомочевину, воду и концентрированную минеральную кислоту. Затем добавляют фторированные углеродные нанотрубки в количестве, обеспечивающем их концентрацию в растворе 1-2 мг/г. Обработанный раствор разбавляют и фильтруют с промывкой водой до нейтральной кислотности. Отфильтрованные модифицированные углеродные нанотрубки разбавляют водой, обрабатывают в ультразвуковой ванне и снова разбавляют водой. Полученный раствор фильтруют с промывкой ацетоном. Модифицированные мочевиной и/или тиомочевиной углеродные нанотрубки сушат. При необходимости их можно дополнительно функционализировать водорастворимыми эпоксидными смолами, например ДЭГ-1, ТЭГ-1 или эпоксидно-гидантоиновой смолой ЭГ-10. Увеличивается выход конечного продукта, снижаются энергозатраты и сокращается период времени для получения модифицированных углеродных нанотрубок. 5 з.п. ф-лы, 1 табл.

Формула изобретения RU 2 708 596 C1

1. Способ получения модифицированных углеродных нанотрубок, включающий следующие этапы:

a) обработка в ультразвуковом концентраторе раствора, содержащего мочевину и/или тиомочевину, воду и концентрированную минеральную кислоту, с добавкой в раствор фторированных углеродных нанотрубок;

b) разбавление обработанного раствора, содержащего модифицированные углеродные нанотрубки, и его фильтрование с промывкой водой до нейтральной кислотности;

c) разбавление водой отфильтрованных модифицированных углеродных нанотрубок с последующей обработкой водного раствора в ультразвуковой ванне;

d) разбавление водой обработанных модифицированных углеродных нанотрубок, фильтрование водного раствора модифицированных углеродных нанотрубок с промывкой ацетоном и сушка модифицированных углеродных нанотрубок.

2. Способ по п. 1, отличающийся тем, что применяют однослойные или многослойные фторированные углеродные нанотрубки.

3. Способ по п. 1, отличающийся тем, что концентрация фторированных углеродных нанотрубок в растворе составляет 1-2 мг/г.

4. Способ по п. 1, отличающийся тем, что в качестве концентрированных минеральных кислот применяют соляную, серную, азотную кислоты.

5. Способ по п. 1, отличающийся тем, что дополнительно осуществляют следующие этапы:

a) обработка в ультразвуковом концентраторе раствора, содержащего модифицированные мочевиной и/или тиомочевиной углеродные нанотрубки, водорастворимую эпоксидную смолу и воду;

b) фильтрование обработанного раствора, содержащего модифицированные углеродные нанотрубки, с промывкой водой до исчезновения окраски в фильтрате;

c) разбавление водой отфильтрованных модифицированных углеродных нанотрубок с последующей обработкой водного раствора в ультразвуковой ванне;

d) фильтрование водного раствора модифицированных углеродных нанотрубок с промывкой ацетоном и сушка модифицированных углеродных нанотрубок.

6. Способ по п. 5, отличающийся тем, что в качестве водорастворимых эпоксидных смол применены эпоксидные смолы ДЭГ-1, ТЭГ-1, эпоксидно-гидантоиновая смола ЭГ-10.

Документы, цитированные в отчете о поиске Патент 2019 года RU2708596C1

ХАБАШЕСКУ В.Н., Ковалентная функционализация углеродных нанотрубок: синтез, свойства и применение фторированных производных, Успехи химии, 2011, т
Капельная масленка с постоянным уровнем масла 0
  • Каретников В.В.
SU80A1
Топка с несколькими решетками для твердого топлива 1918
  • Арбатский И.В.
SU8A1
КИПЯТИЛЬНИК НЕПРЕРЫВНОГО ДЕЙСТВИЯ 1923
  • Борь Я.С.
SU739A1
СПОСОБ ПОЛУЧЕНИЯ ДИСПЕРСИЙ УГЛЕРОДНЫХ НАНОТРУБОК 2012
  • Ткачев Алексей Григорьевич
  • Мележик Александр Васильевич
  • Однолько Валерий Григорьевич
RU2531172C2
Перекатываемый затвор для водоемов 1922
  • Гебель В.Г.
SU2001A1
Станок для изготовления деревянных ниточных катушек из цилиндрических, снабженных осевым отверстием, заготовок 1923
  • Григорьев П.Н.
SU2008A1

RU 2 708 596 C1

Авторы

Крестинин Анатолий Васильевич

Марченко Александр Петрович

Радугин Александр Владимирович

Даты

2019-12-09Публикация

2017-01-27Подача