Предлагаемое устройство относится к измерительной технике для физических исследований свойств жидкостей, а именно, агрессивных расплавов тугоплавких веществ с высокими (больше 0,1 МПа) давлениями собственных паров над расплавами.
К таким веществам относятся, например, некоторые соединения AIIBVI (ZnS, ZnSe, CdS, CdSe). Для предотвращения испарения исследуемого материала и возможного при этом изменения его химического состава с расплавами таких веществ работают под высокими давлениями инертных газов.
Известно устройство для измерения поверхностного натяжения расплавов сталагмометрическим методом [Н.Н. Колесников. Устройство для определения поверхностного натяжения расплавов. Авторское свидетельство СССР 1357794, опубл. 07.12.87, Бюл. №45] - прототип, содержащее графитовый сталагмометр с капилляром и штоком, приемник капель, нагреватель, токоподводы, теплоизоляционную оболочку термостата, сосуд высокого давления и рефлекторы термостата со сквозным вертикальным отверстием. Это устройство позволяет определять поверхностное натяжение агрессивных расплавов тугоплавких веществ с высокими (больше 0,1 МПа) давлениями собственных паров над расплавами, находящихся под давлением инертных газов. Недостаток устройства-прототипа состоит в том, что при высоких давлениях инертного газа становится заметным влияние конвективного уноса паров с поверхности формирующейся капли расплава, приводящего к росту погрешности измерений, заметному по разбросу экспериментальных данных. Например, для расплава ZnSe под давлением аргона, эта проблема становится существенной уже при давлениях ≥6,5 МПа, и в диапазоне 6,5-10,0 МПа разброс экспериментально определенных значений поверхностного натяжения оказывается ≥4%.
Задачей настоящего изобретения является снижение влияния конвективного уноса паров с поверхности формирующихся капель на результаты измерений поверхностного натяжения расплавов.
Эта задача решается в предлагаемом устройстве за счет того, что в известном устройстве, содержащем графитовый сталагмометр с капилляром и штоком, приемник капель, нагреватель, токоподводы, теплоизоляционную оболочку термостата и сосуд высокого давления, сталагмометр состоит из корпуса, перегородки с капиллярным каналом и крышки, а приемником капель служит дно корпуса сталагмометра.
Такая конструкция позволяет экранировать формирующиеся и падающие капли от развивающихся в сосуде высокого давления конвективных потоков инертного газа. Экранирование капель осуществляется стенками корпуса сталагмометра, а защита собственно расплава - стенками корпуса и крышкой сталагмометра. В результате снижается погрешность измерений, что регистрируется по уменьшению разброса экспериментальных данных. Например, для расплава ZnSe под давлением аргона, в диапазоне 6,5-10,0 МПа, разброс экспериментально определенных значений поверхностного натяжения не превышает 2%.
Общий вид устройства изображен на чертеже Фиг. 1. Здесь 1 - графитовая крышка сталагмометра, 2 - перегородка сталагмометра с капиллярным каналом 3, 4 - корпус сталагмометра, 5 - цилиндрический графитовый нагреватель, 6 - графитовые токоподводы нагревателя, которые одновременно служат внутренней оболочкой термостата, 7 - медные токоподводы, 8 - внешняя, теплоизоляционная оболочка термостата, 9 - сосуд высокого давления, 10 - шток, 11 - фланец.
Имевшиеся в конструкции-прототипе рефлекторы термостата и кольцевая ловушка капель в предлагаемом устройстве не требуются.
Устройство работает следующим образом. Объем между крышкой 1 и перегородкой сталагмометра 2 заполняется исследуемым веществом (в твердом состоянии). Сталагмометр закрепляется на штоке 10. Затем сосуд высокого давления 9 снизу закрывается фланцем 11 и в нем создается требуемое давление инертного газа, например, аргона. Исследуемое вещество расплавляется. Расплав каплями вытекает через капиллярный канал 3. Капли, падая через зону охлаждения, которой служит участок между нижним обрезом нагревателя 5 и дном корпуса сталагмометра 4, затвердевают и попадают на дно корпуса сталагмометра 4, которое служит приемником капель. При необходимости, например, при работе с интенсивно сублимирующими веществами, исходное положение сталагмометра - ниже нагревателя. А в нагреватель сталагмометр перемещается штоком 10 только после установления в нагревателе заданной рабочей температуры.
Для вычисления величины поверхностного натяжения расплава σ необходимо взвешиванием определить суммарную массу капель на дне корпуса сталагмометра Σmк и вычислить средний вес одной капли где n - число капель. Затем σ рассчитывается по формуле [М. Джейкок, Д. Парфит. Химия поверхностей раздела фаз. М.: Мир, 1984, с. 56]:
где σ - ускорение свободного падения, R - радиус капилляра, k - сталагмометрическая постоянная, которая определяется, например, экспериментально с использованием эталонных веществ с известными поверхностными натяжениями расплавов.
Таким образом, предлагаемое устройство позволяет снизить влияние конвективного уноса паров с поверхности формирующихся капель на результаты измерений поверхностного натяжения расплавов.
название | год | авторы | номер документа |
---|---|---|---|
Устройство для определения поверхностного натяжения расплавов | 1986 |
|
SU1357794A1 |
КАПИЛЛЯРНО-СТАЛАГМОМЕТРИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ СУПРАМОЛЕКУЛЯРНЫХ СИСТЕМ | 2014 |
|
RU2597146C2 |
Способ пастилляции селенида цинка | 2019 |
|
RU2704191C1 |
Устройство для определения поверхнос-ТНОгО НАТяжЕНия жидКОСТЕй | 1979 |
|
SU823979A1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ПОВЕРХНОСТНОГО НАТЯЖЕНИЯ НА ГРАНИЦЕ РАЗДЕЛА ФАЗ ЖИДКОСТЬ-ЖИДКОСТЬ | 2014 |
|
RU2574328C1 |
Способ получения кристаллов CdAs | 2018 |
|
RU2694768C1 |
Бесконтактный сталагмометр | 1980 |
|
SU972331A1 |
Устройство для измерения межфазного натяжения | 1980 |
|
SU940011A1 |
Устройство для определения межфазного натяжения жидкостей | 1980 |
|
SU957066A1 |
Способ определения температурного коэффициента поверхностного натяжения жидкостей и устройство для его осуществления | 1977 |
|
SU744282A1 |
Устройство относится к измерительной технике для физических исследований свойств жидкостей. Устройство позволяет измерять поверхностное натяжение химически агрессивных расплавов тугоплавких веществ с высокими (больше 0,1 МПа) давлениями собственных паров над жидкой фазой, находящихся в инертной атмосфере. При этом уменьшается погрешность измерений, обусловленная влиянием конвективного уноса паров с поверхности формирующейся капли расплава. Устройство содержит графитовый сталагмометр с капилляром и штоком, приемник капель, нагреватель, токоподводы, теплоизоляционную оболочку термостата и сосуд высокого давления, в котором сталагмометр состоит из корпуса, перегородки с капиллярным каналом и крышки, а приемником капель служит дно корпуса сталагмометра. Технический результат – снижение влияния конвективного уноса паров с поверхности формирующихся капель на результаты измерений поверхностного натяжения расплавов. 1 ил.
Устройство для измерения поверхностного натяжения расплавов сталагмометрическим методом, содержащее графитовый сталагмометр с капилляром и штоком, приемник капель, нагреватель, токоподводы, теплоизоляционную оболочку термостата и сосуд высокого давления, отличающееся тем, что сталагмометр состоит из корпуса, перегородки с капиллярным каналом и крышки, а приемником капель служит дно корпуса сталагмометра.
Устройство для определения поверхностного натяжения расплавов | 1986 |
|
SU1357794A1 |
Устройство для определения поверхнос-ТНОгО НАТяжЕНия жидКОСТЕй | 1979 |
|
SU823979A1 |
Устройство для определения межфазного натяжения жидкостей | 1982 |
|
SU1017972A1 |
Бесконтактный сталагмометр | 1980 |
|
SU972331A1 |
US 4361032 A 30.11.1982. |
Авторы
Даты
2019-12-17—Публикация
2019-05-07—Подача