Способ получения кристаллов CdAs Российский патент 2019 года по МПК C30B28/06 C30B29/10 

Описание патента на изобретение RU2694768C1

Изобретение относится к области выращивания кристаллов неорганических соединений.

Диарсенид трикадмия Cd3As2 - это материал, вызывающий в настоящее время повышенный интерес в экспериментальной физике как полуметалл Дирака, для которого теоретически предсказана поверхностная сверхпроводимость. Экспериментальное наблюдение этого явления оказалось возможным только в местах точечных контактов, плотно прижатых к поверхности.

Известен способ получения кристаллов Cd3As2 из нестехиометрического расплава [Н. Wang, Н. Wang, Н. Liu, Н. Lu, W. Yang, S. Jia, X.-J. Liu, X. C. Xie, J. Wei, J. Wang, Nat. Mater. 15, 38 (2016)] - аналог. Недостатком этого способа является то, что выращенные кристаллы демонстрируют сверхпроводимость только в местах точечного контакта, плотно прижатого к поверхности, что может быть объяснено как несовершенством структуры кристаллов, так и отклонением их состава от стехиометрии.

Наиболее близким по технической сущности к предлагаемому является способ выращивания кристаллов (Cd0,6Zn0,4)3As2 из расплава стехиометрического состава методом Бриджмена [В.С. Захвалинский, Т.Б. Никуличева, E Lähderanta, М.А. Шахов, Е.А. Пилюк, С.В. Иванчихин. Прыжковая проводимость в монокристаллах (Cd0,6Zn0,4)3As2. Научные ведомости БелГУ. Серия Математика. Физика. 2015. №23 (220). Выпуск 41, стр. 71-79] - прототип. Недостатком этого метода является то, что при применении его к получению Cd3As2 в выращенных кристаллах не удается наблюдать поверхностной сверхпроводимости, что также может быть объяснено как несовершенством структуры кристаллов, так и возможным отклонением их состава от стехиометрии в ходе процесса.

Задачей данного изобретения является получение кристаллов Cd3As2, на которых возможно экспериментальное наблюдение поверхностной сверхпроводимости.

Эта задача решается в предлагаемом способе за счет того, что кристаллизации подвергают капли расплава стехиометрического состава, свободно падающие в атмосфере аргона, находящегося под давлением 5±0,5 МПа, причем градиент температуры на пути падения капель составляет 44-52 град/см.

Предлагаемым способом получены монокристаллы диаметром до 5 мм, имеющие структуру α-Cd3As2 и хорошую спайность по кристаллографической плоскости (112), что иллюстрируется фотографией на Фиг. 1, где показана закристаллизованная капля, расколотая по плоскости спайности.

Полученные кристаллы демонстрируют поверхностную сверхпроводимость в областях площадью 100-120 мкм между сколотой по (112) поверхностью Cd3As2 и пленарным золотым контактом толщиной 100 нм, нанесенным на диэлектрическую подложку. Критическая температура перехода в сверхпроводящее состояние составляет ≈ 1 К. Параллельными измерениями установлено, что объемная сверхпроводимость в материале не наблюдается. Воспроизводимость результатов была подтверждена измерениями на образцах из четырех кристаллов.

Кристаллизация капель проводится под давлением инертного газа для предотвращения испарения расплава, ведущего к получению кристаллов нестехиометрического состава. Аргон выбран как распространенный и наиболее экономически доступный инертный газ.

Давление аргона выбрано экспериментально. При давлениях ниже 5±0,5 МПа полученные кристаллы не демонстрируют поверхностной сверхпроводимости, что может быть объяснено отклонением состава кристаллов от стехиометрии при недостаточно высоком давлении инертного газа. При давлениях выше 5±0,5 МПа не наблюдается дальнейшего положительного эффекта.

Градиент температуры на пути падения капель выбран экспериментально. При величине градиента менее 44 град/см капли представляют собой мелкозернистые поликристаллы, из которых невозможно подготовить образцы для измерений. При величине градиента более 52 град/см в кристаллизующихся каплях возникают значительные напряжения, приводящие к растрескиванию кристаллов, а при дальнейшем повышении градиента, и к полному их разрушению.

Процесс получения и кристаллизации капель был реализован в сосуде высокого давления. Графитовый резервуар для расплавления загрузки Cd3As2, снабженный графитовой трубкой для формирования капель при истечении расплава находился при температуре плавления Cd3As2 (990 K) и температурный градиент на пути падения капель задавали тепловым узлом, имеющим в конструкции графитовые нагреватели сопротивления. Процесс происходил под давлением инертного газа.

Пример 1.

Кристаллизации подвергают капли расплава, свободно падающие в атмосфере аргона, находящегося под давлением 5 МПа, причем градиент температуры на пути падения капель составляет 42 град/см. Получены поликристаллы Cd3As2 c максимальным линейным размером зерен от ≈100 мкм до 0,5 мм.

Пример 2.

Кристаллизации подвергают капли расплава, свободно падающие в атмосфере аргона, находящегося под давлением 5 МПа, причем градиент температуры на пути падения капель составляет 54 град/см. Происходит растрескивание закристаллизованных капель.

Пример 3.

Кристаллизации подвергают капли расплава, свободно падающие в атмосфере аргона, находящегося под давлением 5 МПа, причем градиент температуры на пути падения капель составляет 65 град/см. Происходит разрушение кристаллизующихся капель.

Пример 4.

Кристаллизации подвергают капли расплава, свободно падающие в атмосфере аргона, находящегося под давлением 4 МПа, причем градиент температуры на пути падения капель составляет 48 град/см. Полученные кристаллы не демонстрируют поверхностной сверхпроводимости, что объясняется отклонением состава от стехиометрии при недостаточно высоком давлении аргона.

Пример 5.

Кристаллизации подвергают капли расплава, свободно падающие в атмосфере аргона, находящегося под давлением 10 МПа, причем градиент температуры на пути падения капель составляет 48 град/см. Получены монокристаллы, демонстрирующие поверхностную сверхпроводимость.

Пример 6.

Кристаллизации подвергают капли расплава, свободно падающие в атмосфере аргона, находящегося под давлением 5 МПа, причем градиент температуры на пути падения капель составляет 44 град/см. Получены монокристаллы, демонстрирующие поверхностную сверхпроводимость.

Пример 7.

Кристаллизации подвергают капли расплава, свободно падающие в атмосфере аргона, находящегося под давлением 5 МПа, причем градиент температуры на пути падения капель составляет 52 град/см. Получены монокристаллы, демонстрирующие поверхностную сверхпроводимость.

Похожие патенты RU2694768C1

название год авторы номер документа
Способ пастилляции селенида цинка 2019
  • Колесников Николай Николаевич
RU2704191C1
УСТАНОВКА ДЛЯ ПОЛУЧЕНИЯ МОНОКРИСТАЛЛОВ 2009
  • Коробко Александр Николаевич
  • Тихонов Виктор Иванович
RU2418109C1
СПОСОБ ПОЛУЧЕНИЯ МОНОКРИСТАЛЛОВ СЕЛЕНОГАЛЛАТА СЕРЕБРА 1994
  • Колин Н.Г.
  • Косушкин В.Г.
RU2061109C1
МОНОКРИСТАЛЛ ДЛЯ ИЗГОТОВЛЕНИЯ ДИСКОВ В УСТРОЙСТВАХ НА ПОВЕРХНОСТНО-АКУСТИЧЕСКИХ ВОЛНАХ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2000
  • Дороговин Б.А.
  • Степанов С.Ю.
  • Цеглеев А.А.
  • Дубовский А.Б.
  • Филиппов И.М.
  • Курочкин В.И.
  • Лаптева Г.А.
  • Горохов В.П.
  • Степанова Т.А.
RU2172362C2
СПОСОБ ВЫРАЩИВАНИЯ МОНОКРИСТАЛЛОВ ГЕРМАНИЯ 2005
  • Каплунов Иван Александрович
  • Колесников Александр Игоревич
  • Смирнов Юрий Мстиславович
RU2304642C2
СПОСОБ ПОЛУЧЕНИЯ КРУПНОГАБАРИТНЫХ МОНОКРИСТАЛЛОВ АНТИМОНИДА ИНДИЯ 2012
  • Ежлов Вадим Сергеевич
  • Мильвидская Алла Георгиевна
  • Молодцова Елена Владимировна
  • Колчина Галина Петровна
  • Меженный Михаил Валерьевич
  • Резник Владимир Яковлевич
RU2482228C1
СПОСОБ ПОЛУЧЕНИЯ КРИСТАЛЛИЧЕСКИХ ЗАГОТОВОК ТВЕРДЫХ РАСТВОРОВ ГАЛОГЕНИДОВ СЕРЕБРА ДЛЯ ОПТИЧЕСКИХ ЭЛЕМЕНТОВ 2012
  • Голованов Валерий Филиппович
  • Кузнецов Михаил Сергеевич
  • Лисицкий Игорь Серафимович
  • Полякова Галина Васильевна
RU2486297C1
МОНОКРИСТАЛЛ СО СТРУКТУРОЙ ГАЛЛОГЕРМАНАТА КАЛЬЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ ДИСКОВ В УСТРОЙСТВАХ НА ПОВЕРХНОСТНО-АКУСТИЧЕСКИХ ВОЛНАХ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2003
  • Архипов М.А.
  • Доморощина Е.Н.
  • Степанов А.С.
  • Степанов С.Ю.
  • Дубовский А.Б.
  • Кузьмичева Г.М.
  • Филиппов И.М.
RU2250938C1
СПОСОБ ПОЛУЧЕНИЯ МОНОКРИСТАЛЛА 2009
  • Тихонов Виктор Иванович
  • Коробко Александр Николаевич
RU2418108C1
СПОСОБ ВЫРАЩИВАНИЯ CdZnTe, где 0≤х≤1 2005
  • Быкова Светлана Викторовна
  • Голышев Владимир Дмитриевич
  • Гоник Михаил Александрович
  • Цветовский Владимир Борисович
RU2330126C2

Иллюстрации к изобретению RU 2 694 768 C1

Реферат патента 2019 года Способ получения кристаллов CdAs

Изобретение относится к области выращивания кристаллов диарсенида трикадмия. Кристаллы Cd3As2 получают кристаллизацией капель расплава стехиометрического состава, свободно падающих в атмосфере аргона, находящегося под давлением 5±0,5 МПа, причем градиент температуры на пути падения капель составляет 44-52 град./см. Способ позволяет получать монокристаллы, обладающие поверхностной сверхпроводимостью на образцах, ориентированных по (112). 1 ил., 7 пр.

Формула изобретения RU 2 694 768 C1

Способ получения кристаллов Cd3As2 из расплава стехиометрического состава, отличающийся тем, что кристаллизации подвергают капли расплава, свободно падающие в атмосфере аргона, находящегося под давлением 5±0,5 МПа, причем градиент температуры на пути падения капель составляет 44-52 град./см.

Документы, цитированные в отчете о поиске Патент 2019 года RU2694768C1

WANG HE et al
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1
DAVID RICHARD LOVETT, В, Sc., Preparation and charge transport properties of II-V compounds, A thesis submitted for the Degree of Doctor of Philosophy in the University of London
Department of Electrical Engineering, Imperial College of Science and Technology
June, l967, рр 2, 38-42
HISCOCKS S
E
R
et al
On the preparation, growth and properties of Cd3As2 , "Journal of Materials Science", 1969, Vol
Очаг для массовой варки пищи, выпечки хлеба и кипячения воды 1921
  • Богач Б.И.
SU4A1

RU 2 694 768 C1

Авторы

Тимонина Анна Владимировна

Колесников Николай Николаевич

Девятов Эдуард Валентинович

Швецов Олег Олегович

Есин Варнава Денисович

Даты

2019-07-16Публикация

2018-12-07Подача