Способ пастилляции селенида цинка Российский патент 2019 года по МПК C30B11/02 C30B29/48 B01J2/04 

Описание патента на изобретение RU2704191C1

Изобретение относится к области получения кристаллических материалов.

Селенид цинка - распространенный широкозонный полупроводник, применяемый в технике в виде объемных поли- и монокристаллов, а также тонких пленок. Получение пленок чаще всего проводится термическим распылением кристаллической крошки, максимальные линейные размеры отдельных кусочков которой определяются конкретным процессом и обычно находятся в интервале 1-15 мм. Наиболее качественная крошка изготавливается из кристаллов, выращенных из расплава, так как они не содержат примесей, летучих при температурах термического распыления ZnSe. При этом требуется, чтобы кристаллы имели стехиометрический состав, допускаемые отклонения от которого не должны превышать 0,01% (ат.) как в сторону избытка цинка, так и в сторону избытка селена.

Основной недостаток такой крошки - неправильная форма кусочков. Кристаллический селенид цинка при дроблении скалывается по спайности, образуя кусочки разных размеров. Для термического распыления больше всего подошел бы материал с одинаковыми размерами симметричных, лучше сферических, кусочков, имеющих моноблочную структуру, подразумевающую отсутствие границ с разориентировкой свыше одной угловой минуты. Последнее требование важно, так как границы с большей разориентировкой обычно декорируются примесями (исключение составляют атомно-когерентные границы полисинтетических двойников вращения). Перспективным методом получения крошки с одинаковыми размерами из переплавленного ZnSe представляется пастилляция, то есть кристаллизация капель расплава с приданием им требуемых свойств.

Известен способ пастилляции [Jung-Woo Kim, Joachim Ulrich, Prediction of degree of deformation and crystallization time of molten droplets in pastillation process. International Journal of Pharmaceutics, 257 (2003) 205-215] - аналог, в котором капли органического соединения C22H19NO4, формируемые подогреваемой пипеткой, падают на плоскую поверхность охлаждаемого кристаллизатора и затвердевают. К недостаткам способа, помимо неприменимости его к ZnSe, имеющему температуру плавления 1800 К, следует отнести полусферическую форму затвердевших капель.

Известен способ принудительной кристаллизации переохлажденной капли без отрыва от канала, формирующего капли [A. Miyazaki, Н. Kimura. Crystallization Control of Molten Ba(B0.9Al0.1)2О4 from Supercooled Pendant Drop. Cryst. Res.Technol., 2001, v. 36, N 1, p. 3-8] - аналог, в котором кристаллизация висячей переохлажденной капли расплава Ba(B0.9Al0.1)2О4 инициируется принудительно, путем подвода к низу капли, то есть со стороны, противоположной формирующему каналу, холодного стержня из платины, графита или нитрида бора.

К недостаткам этого способа, помимо неприменимости его для кристаллизации ZnSe, следует отнести сложность реализации из-за необходимости точного подвода стержня к капле и низкую производительность из-за необходимости поштучной кристаллизации капель.

Известен способ самопроизвольной кристаллизации капель ZnSe в температурном градиенте, в атмосфере аргона [Н.Н. Колесников, М.П. Кулаков. Поверхностное натяжение расплава ZnSe. ЖФХ, 1988, т. 62, №9, с. 2513-2515] - прототип, в котором расплав селенида цинка каплями вытекает через капилляр, капли свободно падают в атмосфере аргона через зону охлаждения в приемник капель, находящийся в холодной зоне. Самопроизвольная кристаллизация происходит после отрыва капель от формирующего их канала (капилляра) в процессе падения капель через зону охлаждения.

Селенид цинка при температуре плавления имеет давление собственных паров на уровне 0,11 МПа, причем пары диссоциируют, селен испаряется молекулярно в виде Se2, а цинк - атомарно. Селенид цинка диссоциирует при испарении, при этом коэффициент диффузии паров Se2 в аргоне ниже, чем у паров цинка: при давлении Ar 2,0 МПа и температуре 1800 К - 0,086⋅10-4 и 0,135⋅10-4 м2/с, соответственно [Кулаков М.П., Фадеев А.В. О стехиометрии кристаллов селенида цинка, получаемых из расплава. Изв. АН СССР. Неорган, матер., 1981. Т. 17. №9. С. 1565-1570]. Давление же паров над чистыми расплавами компонентов у Se2 выше, чем у Zn: 26,0 и 6,5 МПа при температуре 1800 К, соответственно [М.П. Кулаков, А.В. Фадеев, Н.Н. Колесников. Определение некоторых свойств расплава селенида цинка и расчет его состава при кристаллизации. Изв. АН СССР, Неорган, матер., 1986, т. 22, №3, с. 399-402]. Это создает условия для отклонения состава от стехиометрии, которое может быть обусловлено как диффузией паров компонентов во внешней среде, так и конвективным уносом паров компонентов с поверхности расплава.

Закристаллизованные капли, полученные по способу-прототипу, имеют стехиометрический состав, что обеспечивается, главным образом, кристаллизацией падающей капли со всей поверхности к центру. При этом на поверхности капли практически мгновенно образуется слой кристаллического ZnSe, защищающийеще не закристаллизованный расплав от испарения, и, соответственно, предотвращающий как диффузионный, так и конвективный унос паров.

Однако и основной недостаток способа-прототипа связан с тем, что кристаллизация капель происходит в температурном градиенте во время падения через зону охлаждения, что задает кристаллизацию по всей поверхности капли. При этом фронт кристаллизации движется с очень большой (оценочно свыше 2⋅10-3 м/с) скоростью. В результате закристаллизованные капли имеют мелкозернистую структуру с обилием границ с высокой разориентировкой, часто растрескиваются под действием остаточных термических напряжений, а форма капель не является сферической. Последнее обстоятельство обусловлено тем, что при движении фронта от всей поверхности капли к центру, при очень большой скорости кристаллизации, в конечный момент затвердевания остаток расплава и паров в центре капли оказывается под давлением, превышающем внешнее давление аргона. Поэтому закристаллизованная оболочка капли прорывается, остаток расплава выплескивается, образуя на поверхности капли закристаллизованный натек, под которым обнаруживается усадочная раковина, преходящая в каверну, идущую до центра закристаллизованной капли.

Задачей предлагаемого способа является получение закристаллизованных капель, сохраняющих стехиометрический состав, и, при этом, имеющих форму, близкую к сферической, и моноблочную структуру.

Эта задача решается в предлагаемом способе пастилляции ZnSe самопроизвольной кристаллизацией капель в температурном градиенте, в атмосфере аргона, за счет кристаллизации капель до отрыва от формирующего капли канала, причем объемная скорость формирования капель составляет 6,7⋅10-9-7,2⋅10-9 м3/с, давление аргона находится в интервале 5,92-6,35 МПа, а скорость движения фронта кристаллизации ≤ 9,7⋅10-6 м/с.

Предлагаемые технологические параметры процесса выбраны экспериментально.

Процесс получения отдельной закристаллизованной капли начинается с ее формирования. Поскольку в предлагаемом способе не предусматривается быстрая кристаллизация по всей поверхности капли, выбор скорости формирования капли и давления аргона влияет на состав ZnSe.

На графике Фиг. 1 показаны экспериментальные зависимости состава капель, выраженного в концентрации цинка в атомных процентах, от давления аргона (кривая 1) и от объемной скорости формирования капли (кривая 2). Видно, что стехиометрический состав капель (50,00±0,01% ат. Zn) достигается только при объемной скорости формирования капель 6,7⋅10-9-7,2⋅10-9 м3/с и давлении аргона 5,92-6,35 МПа, причем эти параметры связаны между собой.

При давлении Ar менее 5,92 МПа и объемной скорости формирования капель свыше 7,2⋅10-9 м3/с преобладает диффузионный механизм изменения состава расплава в капле, который обогащается селеном, то есть компонентом с меньшим коэффициентом диффузии паров в аргоне.

При давлении аргона свыше 6,35 МПа и объемной скорости формирования капли ниже 6,7⋅10-9 м3/с преобладает изменение состава расплава в капле за счет уноса паров компонентов конвективным потоком Ar, при этом состав обогащается цинком, имеющим меньшее давление собственного пара по сравнению с селеном.

После формирования капли осуществляется ее самопроизвольная кристаллизация. Для проведения процесса необходимо задать градиент температуры в месте формирования капли так, чтобы при достижении требуемого диаметра капли ее нижний край (противоположный формирующему каналу) оказался при температуре ниже температуры кристаллизации, составляющей 1800 К. Кристаллизация начинается в нижней части капли, фронт кристаллизации движется в направлении формирующего канала. Отрыв закристаллизованной капли от расплава в формирующем канале происходит за счет разности плотностей расплава и кристалла (ZnSe имеет отрицательный объемный эффект кристаллизации 13±2% [М.П. Кулаков, А.В. Фадеев, Н.Н. Колесников. Определение некоторых свойств расплава селенида цинка и расчет его состава при кристаллизации. Изв. АН СССР, Неорган, матер., 1986, т. 22, №3, с. 399-402]).

Для получения закристаллизованных капель с моноблочной структурой необходимо выбрать скорость движения фронта кристаллизации, основным определяющим фактором для которой будет совокупность тепловых условий в зоне формирования капель. При этом технологическим параметром процесса следует считать именно скорость, так как тепловые условия, необходимые для получения одной и той же скорости движения фронта кристаллизации, могут отличаться при разных вариантах технического исполнения пастилляторов (устройств для пастилляции).

Скорость движения фронта кристаллизации ≤ 9,7⋅10-6 м/с выбрана экспериментально. При скоростях выше 9,7⋅10-6 м/с закристаллизованные капли не имеют моноблочной структуры - в них появляются границы блоков с разориентировкой свыше одной угловой минуты.

Предлагаемый способ позволяет получать моноблочные кристаллы ZnSe, имеющие стехиометрический состав и практически сферическую форму, что иллюстрируется фотографией на Фиг. 2.

Пример 1.

Проводится пастилляция селенида цинка самопроизвольной кристаллизацией капель в температурном градиенте, в атмосфере аргона. Капли кристаллизуются до отрыва от формирующего капли канала, причем объемная скорость формирования капель составляет 7,2⋅10-9 м3/с, давление аргона составляет 5,92 МПа, а скорость движения фронта кристаллизации 9,7⋅10-6 м/с. Получены сферические закристаллизованные капли селенида цинка стехиометрического состава, имеющие моноблочную структуру.

Пример 2.

Проводится пастилляция селенида цинка самопроизвольной кристаллизацией капель в температурном градиенте, в атмосфере аргона. Капли кристаллизуются до отрыва от формирующего капли канала, причем объемная скорость формирования капель составляет 6,9⋅10-9 м3/с, давление аргона составляет 6,0 МПа, а скорость движения фронта кристаллизации 9,3⋅10-6 м/с. Получены сферические закристаллизованные капли селенида цинка, показанные на фотографии Фиг. 2. Кристаллы имеют стехиометрический состав и моноблочную структуру.

Пример 3.

Проводится пастилляция селенида цинка самопроизвольной кристаллизацией капель в температурном градиенте, в атмосфере аргона. Капли кристаллизуются до отрыва от формирующего капли канала, причем объемная скорость формирования капель составляет 6,7⋅10-9 м3/с, давление аргона составляет 6,35 МПа, а скорость движения фронта кристаллизации 9,0⋅10-6 м/с. Получены сферические закристаллизованные капли селенида цинка стехиометрического состава, имеющие моноблочную структуру.

Похожие патенты RU2704191C1

название год авторы номер документа
Способ получения кристаллов CdAs 2018
  • Тимонина Анна Владимировна
  • Колесников Николай Николаевич
  • Девятов Эдуард Валентинович
  • Швецов Олег Олегович
  • Есин Варнава Денисович
RU2694768C1
СПОСОБ ПОЛУЧЕНИЯ СИНТЕТИЧЕСКИХ МИНЕРАЛОВ 2005
  • Бессмертный Василий Степанович
  • Симачёв Александр Викторович
  • Минько Нина Ивановна
  • Крохин Вольт Павлович
  • Дюмина Полина Семеновна
  • Семененко Сергей Викторович
RU2346887C2
СПОСОБ ПОЛУЧЕНИЯ КРУПНОГАБАРИТНЫХ КРИСТАЛЛОВ СЕЛЕНИДА ЦИНКА 1992
  • Колесников Н.Н.
  • Кулаков М.П.
  • Иванов Ю.Н.
RU2051211C1
СПОСОБ ПОЛУЧЕНИЯ ЛЕГИРОВАННЫХ ПЕРЕХОДНЫМИ МЕТАЛЛАМИ ХАЛЬКОГЕНИДОВ ЦИНКА 2016
  • Балабанов Станислав Сергеевич
  • Гаврищук Евгений Михайлович
RU2631298C1
СПОСОБ ПОЛУЧЕНИЯ ОБЪЕМНОГО ТЕЛЛУРИДА ЦИНКА-КАДМИЯ ХОЛОДНЫМ ПРЕССОВАНИЕМ 2006
  • Колесников Николай Николаевич
  • Кведер Виталий Владимирович
  • Борисенко Елена Борисовна
  • Борисенко Дмитрий Николаевич
  • Гартман Валентина Кирилловна
  • Тимонина Анна Владимировна
RU2318928C1
Способ легирования кристаллов селенида цинка хромом 2020
  • Борисенко Дмитрий Николаевич
  • Борисенко Елена Борисовна
  • Колесников Николай Николаевич
  • Денисенко Дмитрий Сергеевич
  • Тимонина Анна Владимировна
  • Фурсова Татьяна Николаевна
  • Хамидов Александр Михайлович
RU2751059C1
КОМПОЗИЦИОННЫЙ ОПТИЧЕСКИЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2011
  • Гарибин Евгений Андреевич
  • Гусев Павел Евгеньевич
  • Демиденко Алексей Александрович
  • Дунаев Анатолий Алексеевич
  • Миронов Игорь Алексеевич
  • Чурбанов Михаил Федорович
  • Гаврищук Евгений Михайлович
  • Мазавин Сергей Михайлович
  • Перескоков Анатолий Агеевич
RU2485220C1
Способ выращивания монокристаллов халькогенидов цинка и кадмия 1977
  • Сысоев Леонид Андреевич
  • Вербицкий Олег Петрович
  • Носачев Борис Григорьевич
  • Силин Виталий Иванович
SU681626A1
СПОСОБ ПОЛУЧЕНИЯ СЦИНТИЛЛЯТОРА НА ОСНОВЕ СЕЛЕНИДА ЦИНКА, АКТИВИРОВАННОГО ТЕЛЛУРОМ 2000
  • Рыжиков Владимир Диомидович
  • Старжинский Николай Григорьевич
  • Гальчинецкий Леонид Павлович
  • Силин Виталий Иванович
RU2170292C1
СПОСОБ ИЗГОТОВЛЕНИЯ НАПРАВЛЕННОЙ КРИСТАЛЛИЗАЦИЕЙ ДЕТАЛИ С МОНОКРИСТАЛЛИЧЕСКОЙ СТРУКТУРОЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1999
  • Спиридонов Е.В.
  • Цацулина И.Е.
RU2157296C1

Иллюстрации к изобретению RU 2 704 191 C1

Реферат патента 2019 года Способ пастилляции селенида цинка

Изобретение относится к технологии получения селенида цинка – широкозонного полупроводника, применяемого в технике в виде объемных поли- и монокристаллов, а также тонких пленок, получаемых термическим распылением кристаллической крошки, для которого наиболее подходящим является материал с одинаковыми размерами. Для этого используется способ пастилляции селенида цинка путем самопроизвольной кристаллизацией капель в температурном градиенте в атмосфере аргона, при этом капли кристаллизуются до отрыва от формирующего капли канала, причем объемная скорость формирования капель составляет 6,7⋅10-9-7,2⋅10-9 м3/с, давление аргона находится в интервале 5,92-6,35 МПа, а скорость движения фронта кристаллизации имеет значение менее или равное 9,7-10-6 м/с. Изобретение позволяет получать сферические кристаллы ZnSe стехиометрического состава, имеющие моноблочную структуру. 2 ил., 3 пр.

Формула изобретения RU 2 704 191 C1

Способ пастилляции селенида цинка самопроизвольной кристаллизацией капель в температурном градиенте в атмосфере аргона, отличающийся тем, что капли кристаллизуются до отрыва от формирующего капли канала, причем объемная скорость формирования капель составляет 6,7⋅10-9 - 7,2⋅10-9 м3/с, давление аргона находится в интервале 5,92-6,35 МПа, а скорость движения фронта кристаллизации ≤9,7⋅10-6 м/с.

Документы, цитированные в отчете о поиске Патент 2019 года RU2704191C1

КОЛЕСНИКОВ Н.Н
и др
Поверхностное натяжение расплава ZnSe, "ЖФХ", 1988, Т
Способ крашения тканей 1922
  • Костин И.Д.
SU62A1
Предохранитель для химических огнетушителей 1925
  • Павликов М.С.
SU2513A1
СПОСОБ ПОЛУЧЕНИЯ СФЕРИЧЕСКИХ ГРАНУЛ МЕТАЛЛА 1999
  • Кулинский А.И.
  • Курносенко В.В.
  • Шундиков Н.А.
RU2157298C1
IN 201107554 Р1, 08.02.2013
JUNG-WOO KIM, Prediction of degree of deformation and crystallization time of molten droplets in pastillation process, "International Journal of Pharmaceutics", 2003, Vol
Аппарат для нагревания окружающей его воды 1920
  • Соколов Н.Н.
SU257A1
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Автоматическая акустическая блокировка 1921
  • Ремизов В.А.
SU205A1
MIYAZAKI A
et al
Crystallization Control of Molten Ba(B0.9Al 0.1)2O4 from Supercooled Pendant Drop, "Cryst
Res
Technol.", 2001, Vol.36, No.1, pp
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1

RU 2 704 191 C1

Авторы

Колесников Николай Николаевич

Даты

2019-10-24Публикация

2019-05-17Подача