ПРОХОДНОЙ ЭЛЕКТРИЧЕСКИЙ СОЕДИНИТЕЛЬ Российский патент 2019 года по МПК H01R13/00 

Описание патента на изобретение RU2710028C1

Область техники

Данное техническое решение относится к энергетике и электронике, в частности к коммутационным электрическим аппаратам, и может быть использовано в электрических соединителях и гермовводах в энергетических установках, работающих в условиях вакуума или в агрессивных средах, в условиях повышенных температур обеспечивая при этом требуемую герметичность.

Предшествующий уровень техники

Известно устройство, на которое был получен патент РФ №52823 «Пустотелый проходной фарфоровый изолятор» МПК: Класс 21с,10 приоритет 27.03.1937 г., опубликовано. 31.03.1938 г., автор: Блинов Н.К. (RU).

Пустотелый проходной фарфоровый изолятор с токоведущим стержнем прямоугольного сечения, отличается тем, что колпачок изолятора снабжен приливом для крепления токоведущего стержня поперечным болтом.

Недостатком данного устройства является сложность в изготовлении керамического изолятора, не герметичность, большие габариты и т.д. Также необходимо отметить, то, что в процессе монтажа изолятора может происходить смещение шины. Возможно, к данной конструкции не предъявляются жестких требований по центрированию шины.

Известно устройство, на которое был получен патент РФ №2231878 «Термостойкий герметичный теплостойкий электрический соединитель» МПК: H01R 13/52; приоритет 27.01.2004 г., опубликовано. 27.06.2004 г., авторы: Сорокин А.Н. (RU), Собко С.А. (RU), Дровосеков С.П. (RU).

Соединитель содержит герметичную вилку и негерметичную розетку, каждая из которых состоит из корпуса, изолятора и расположенных в отверстиях изолятора металлических контактов, при этом герметичная вилка содержит металлические манжеты, расположенные между поверхностями штыревых контактов и изолятора и герметично соединенные с ними. Каждый узел герметизации штыревого контакта и манжеты расположен вне зоны установки изолятора со стороны противоположной расположению розетки и содержит дополнительную втулку, охватывающую штыревой контакт и концевую часть манжеты, имеющую коническую форму.

Недостаткам аналога является значительный диаметральный размер корпуса вилки. Это вызвано тем, что при монтаже вилки в объект использования существует вероятность нарушения герметичности стеклоспая из-за нарастания в нем внутренних напряжений, вызванных термодеформационным циклом. Невозможно уменьшить диаметр корпуса втулки до требуемых размеров из-за разрушения стеклоспая. К тому же пайка штырей, втулки, изолятора и корпуса - процесс сложный и дорогостоящий. Также можно отметить сложность при центрировании штырей.

В качестве прототипа был выбран патент РФ №2219623 «Термостойкая герметичная вилка» МПК: H01R 13/40; приоритет 27.08.2001 г., опубликовано 20.12.2003 г., авторы: Деришев С.А., Дровосеков С.П., Китаев В.Н., Панкратов Г.А., Попов И.В.

Устройство содержит корпус, в котором установлен керамический изолятор с запаянными стеклом контактными штырями. Каждый контактный штырь снабжен втулкой, соединенной со штырем пластичным металлическим припоем, при этом высота втулки не меньше высоты изолятора, а материалы втулки, корпуса, стекла и керамики согласованы по коэффициенту линейного теплового расширения.

К недостаткам данного устройства можно отнести большие габариты, сложную, многокомпонентную конструкцию, сложность при центрировании контактных токоведущих штырей в отверстии изолятора, недостаточно высокую рабочую температуру, а также высокое электрическое сопротивление при рабочих температурах.

Раскрытие изобретения

Задачей, на решение которой направлено заявляемое изобретение, является разработка проходного электрического соединителя обеспечивающего сохранение электропроводимости и герметичности при повышенных температуре и давлении, при уменьшении габаритных размеров, и упрощении конструкции.

Технический результат заключается в увеличении проводимости, увеличении равномерности распределения стеклоприпоя, увеличении точности центрирования штырей при упрощении процесса монтажа, увеличении стойкости к повышенным температурам и повышенному давлению, увеличение качества сварного соединения при упрощении процесса сварки.

Технический результат устройства достигается тем, что проходной электрический соединитель, содержащий корпус, в котором установлен керамический изолятор с запаянными стеклом контактными штырями, при этом материалы корпуса, стеклоприпоя и керамического изолятора согласованны по КЛТР, согласно изобретению, контактные штыри выполнены с поперечным сечением в виде многоугольника. Материал штырей согласован по КЛТР с материалами корпуса, стеклоприпоя и керамического изолятора.

Совокупность существенных признаков обеспечивает получение технического результата - увеличение проводимости, увеличение равномерности распределения стеклоприпоя, увеличение точности центрирования штырей при упрощении процесса монтажа, увеличение стойкости к повышенным температурам и повышенному давлению, увеличение качества сварного соединения при упрощении процесса сварки. Это позволяет решить задачу сохранения электропроводимости и герметичности при повышенных температурах и давлении, при снижении габаритных размеров, и упрощении конструкции.

Корпус и контактные штыри могут быть выполнены из высокохромистых сталей типа 15X28. Контактные штыри могут быть выполнены из материала платиновой группы, а корпус из высокохромистых сталей типа 15X28. Возможно так же что в качестве стеклоприпоя будет использована система SiO25О-ВаО-Al2O3. Возможно так же что керамический изолятор может быть выполнен из форстеритовой керамики.

Это позволяет согласовать по КЛТР материал контактных штырей, корпуса, стеклоприпоя и керамического изолятора и, решить задачу сохранения электропроводимости и герметичности при повышенных температурах и давлении, а так же уменьшения габаритных размеров, и упрощения конструкции.

Возможно выполнение контактных штырей по всей длине с поперечным сечением в виде квадрата. Это обеспечивает получение технического результата - увеличение равномерности распределения стеклоприпоя, увеличение точности центрирования штырей при упрощении процесса монтажа. Что позволяет решить задачу сохранения герметичности, повышения качества сварного соединения при упрощении процесса сварки.

Зазор между керамическим изолятором и корпусом может быть загерметизирован. Это позволяет решить задачу сохранения герметичности при повышенных температурах и давлении.

Достигаемый результат, обеспечивается не только наличием известных отличительных признаков, но и зависит от взаимодействия их с другими существенными признаками заявляемого устройства. Это позволяет устройству расширить свои функциональные возможности и обеспечить решение задачи снижения габаритных размеров, и упрощения конструкции.

Расширенная функция, обеспечиваемая известными отличительными признаками, и получение неожиданного результата от использования этих признаков в совокупности с другими признаками, свидетельствует о соответствии предлагаемого технического решения критерию “изобретательский уровень”.

Краткое описание фигур чертежа

На фиг. 1 показан внешний вид электрического соединителя.

На фиг. 2 показано расположение контактных штырей в изоляторе.

На фиг. 3 показан контактный штырь в отверстии изолятора, зафиксированный стеклоприпоем.

Варианты осуществления изобретения

Как показано на фиг. 1 и фиг. 2, проходной электрический соединитель содержит корпус 1, в котором установлен изолятор 2 из форстеритовой керамики. Изолятор 2 выполнен со сквозными отверстиями 3. В отверстия 3 вставлены контактные штыри 4, которые закреплены с помощью стеклоприпоя 5. Корпус 1 и штыри 4 выполнены из высокохромистой стали типа 15X28.

В качестве стеклоприпоя был выбран стеклоприпой, имеющий систему SiO25О-ВаО-Al2O3. Основным критерием при выборе материалов комплектующих электрического соединителя являлись их близкие по значению КЛТР. КЛТР стали и платины в диапазоне температур 200-1200°С составляет 10.2⋅10-6 1/°С и 9,5⋅10-6 1/°С соответственно, КЛТР стеклоприпоя 9,7⋅10-6 1/°С, форстеритовой керамики 9,6⋅10-61/°С.

Это позволяет получить технический результат увеличения стойкости к повышенным температурам и повышенному давлению, что позволяет решить задачу герметичности при повышенных температурах и давлении. Соединитель проектируют для использования при рабочих параметрах температуры при 1000°С и давлении 1 МПа.

Устанавливают штыри 4 в отверстия 3 керамического изолятора 2. При этом совпадение осей симметрии отверстия 3 и штыря 4 происходит без дополнительных операций и приспособлений, автоматически. Происходит центрирование штырей 4 в отверстиях 3. Геометрические параметры каждого отверстия 3 изолятора 2 и каждого профиля штыря 4 подобраны таким образом, что отверстие 3 описывает профиль штыря 4 (фиг. 3).

Это упрощает процесс сборки и не требует дополнительной оснастки. А значит, увеличивает точность центрирования штырей 4 при упрощении процесса их монтажа.

После установки штырей 4 в отверстия 3 между ними образуются четыре одинаковые сквозные полости 6, которые заполняют порошкообразным стеклоприпоем 5.

Известна форма штырей с круглым сечением, при которой поверхности отверстия и штыря, образующие полость, могут соприкоснуться и помешать проникновению стеклоприпоя в полость. Предлагается выполнять штыри 4 с поперечным сечением в форме многоугольника, например, квадрата, а отверстия 3 с поперечным сечением в форме круга. Это позволяет поверхностям штыря 4 и отверстия 3 не соприкасаться на протяжении всей длины штыря 4, образуя непрерывную по длине полость 6 (фиг. 3).

Таким образом, увеличивается равномерность распределения стеклоприпоя 5 в полостях 6 в поперечном и продольном направлениях, как показано на фиг. 3. Кроме того, в процессе пайки стеклоприпой 5 расплавляется и обеспечивается его равномерное распределение по всему объему полости 6. Это позволяет решить задачу сохранения герметичности при повышенных температурах и давлении.

Также экспериментально доказано, что наличие граней на штыре 4 при его квадратном сечении позволяет использовать одну из граней в качестве контактной площадки для сварки. По сравнению со штырями с круглым сечением, это позволяет упростить процесс сварки элементов (проводов, кабелей, термопар и т.д.) со штырями 4 и увеличить качество сварного соединения.

Пайку стеклоприпоем 5 штырей 4 проводят при температуре 1300°С в среде инертного газа. Полученную сборку устанавливают в корпус 1.

Для решения задачи снижения габаритных размеров соединителя, и упрощения конструкции были оптимально подобраны по КЛТР материалы корпуса 1, контактных штырей 4 изолятора 2 и стеклоприпоя 5. Кроме того, была предложена форма контактных штырей 4 в сочетании с формой отверстий 3 в изоляторе 2. Это позволило исключить втулки и медный припой, описанные в прототипе, добавить еще один контактный штырь, при этом уменьшить габариты, упростить конструкцию и упростить сборку соединителя при сохранении электропроводимости и герметичности при повышенных температурах и давлении.

При проведении анализа уровня техники, включающего поиск по патентным и научно-техническим источникам информации, и выявлении источников, содержащих сведения об аналогах заявленного изобретения, не были обнаружены аналоги, характеризующиеся совокупностью признаков, тождественной всем существенным признакам данного изобретения. Это подтверждает, что заявленное изобретение соответствует требованию «новизна».

Промышленная применимость

Предложенное изобретение может быть использовано для изготовления электрических соединителей в авиационной и космической технике, в атомной энергетике и т.д. Там, где предъявляются повышенные требования к сохранению герметичности и электрических характеристик при работе в условиях повышенных температур. Были проведены испытания предложенного варианта соединителя на существующем в настоящее время оборудовании с использованием имеющихся материалов. Это доказывает его работоспособность и подтверждает промышленную применимость.

Похожие патенты RU2710028C1

название год авторы номер документа
ТЕРМОСТОЙКАЯ ГЕРМЕТИЧНАЯ ВИЛКА 2001
  • Деришев С.А.
  • Дровосеков С.П.
  • Китаев В.Н.
  • Панкратов Г.А.
  • Попов И.В.
RU2219623C2
ТЕРМОСТОЙКАЯ ГЕРМЕТИЧНАЯ ВИЛКА И СПОСОБ ЕЕ МОНТАЖА 2010
  • Сорокин Александр Николаевич
  • Собко Сергей Аркадьевич
  • Лежнев Дмитрий Николаевич
  • Куликов Владимир Александрович
RU2461104C2
ГЕРМЕТИЧНЫЙ ТЕПЛОСТОЙКИЙ ЭЛЕКТРИЧЕСКИЙ СОЕДИНИТЕЛЬ 2002
  • Сорокин А.Н.
  • Собко С.А.
  • Дровосеков С.П.
RU2231878C2
ПЕРЕХОД ВЫСОКОВОЛЬТНЫЙ 2021
  • Сергодеев Виталий Владимирович
  • Степанов Александр Сергеевич
  • Лобанова Лилия Ромазановна
  • Пермяков Кирилл Николаевич
  • Горбоконин Николай Владимирович
  • Конаичева Наталия Владимировна
RU2756026C1
Многоконтактный герметичный переход 2018
  • Фролов Василий Геннадьевич
  • Суздальцева Любовь Михайловна
RU2687287C1
ВЫСОКОВОЛЬТНЫЙ ПЕРЕХОД 2016
  • Сергодеев Виталий Владимирович
  • Степанов Александр Сергеевич
  • Пермяков Кирилл Николаевич
  • Конаичева Наталия Владимировна
  • Чеботникова Ирина Николаевна
RU2639307C2
ПЕРЕХОД НИЗКОЧАСТОТНЫЙ 2013
  • Степанов Александр Сергеевич
  • Сергодеев Виталий Владимирович
  • Пермяков Кирилл Николаевич
  • Лобанова Лилия Ромазановна
  • Конаичева Наталия Владимировна
RU2532412C2
ПЕРЕХОД ВЫСОКОВОЛЬТНЫЙ 2011
  • Степанов Александр Сергеевич
  • Сергодеев Виталий Владимирович
  • Жолобова Галина Владимировна
  • Дровосеков Сергей Петрович
  • Пермяков Кирилл Николаевич
  • Лобанова Лилия Рамазановна
  • Попов Игорь Васильевич
RU2457564C1
Способ герметизации оптического элемента в металлическом корпусе 2023
  • Сериков Александр Сергеевич
  • Дровосеков Сергей Петрович
  • Лысенко Ольга Витальевна
  • Борисов Виктор Николаевич
RU2809058C1
УСТРОЙСТВО ДЛЯ ГЕРМЕТИЧНОГО ПРОХОДА КАБЕЛЬНЫХ ЛИНИЙ ЧЕРЕЗ СТЕНКУ 2016
  • Сергодеев Виталий Владимирович
  • Степанов Александр Сергеевич
  • Лобанова Лилия Ромазановна
  • Сагарадзе Дмитрий Александрович
  • Пермяков Кирилл Николаевич
  • Конаичева Наталия Владимировна
  • Мамаев Иван Владимирович
RU2643781C1

Иллюстрации к изобретению RU 2 710 028 C1

Реферат патента 2019 года ПРОХОДНОЙ ЭЛЕКТРИЧЕСКИЙ СОЕДИНИТЕЛЬ

Изобретение относится к проходному электрическому соединителю и может быть использовано в электрических соединителях и гермовводах в энергетических установках, работающих в условиях вакуума или в агрессивных средах, в условиях повышенных температур, обеспечивая при этом требуемую герметичность. Соединитель содержит корпус (1), в котором установлен керамический изолятор (2), который выполнен со сквозными отверстиями. В отверстие вставлены контактные штыри (4), которые закреплены стеклоприпоем. Контактные штыри (4) по всей длине выполнены с квадратным поперечным сечением. Корпус (1) и штыри (4) выполнены из высокохромистой стали. Зазор между керамическим изолятором (2) и корпусом 1 может быть загерметизирован. Технический результат заключается в увеличении проводимости, увеличении равномерности распределения стеклоприпоя, увеличении точности центрирования штырей при упрощении процесса монтажа, увеличении стойкости к повышенным температурам и повышенному давлению, увеличение качества сварного соединения при упрощении процесса сварки. Это позволяет решить задачу сохранения электропроводимости и герметичности при повышенных температуре и давлении, одновременно уменьшая габаритные размеры, и упрощая конструкцию. 6 з.п. ф-лы, 3 ил.

Формула изобретения RU 2 710 028 C1

1. Проходной электрический соединитель, содержащий корпус, в котором установлен керамический изолятор с запаянными стеклом контактными штырями, при этом материалы корпуса, стеклоприпоя и керамического изолятора согласованны по КЛТР, отличающийся тем, что контактные штыри выполнены с поперечным сечением в виде многоугольника, а материал штырей согласован по КЛТР с материалами корпуса, стеклоприпоя и керамического изолятора.

2. Проходной электрический соединитель по п. 1, отличающийся тем, что корпус и контактные штыри выполнены из высокохромистой стали.

3. Проходной электрический соединитель по п. 1, отличающийся тем, что корпус выполнен из высокохромистой стали, а штыри из материала платиновой группы.

4. Проходной электрический соединитель по п. 1, отличающийся тем, что в качестве стеклоприпоя использована система SiO2-M5O-BaO-Al2O3.

5. Проходной электрический соединитель по п. 1, отличающийся тем, что в качестве материала керамического изолятора использована форстеритовая керамика.

6. Проходной электрический соединитель по п. 1, отличающийся тем, что контактные штыри по всей длине выполнены с поперечным сечением в виде квадрата.

7. Проходной электрический соединитель по п. 1, отличающийся тем, что зазор между керамическим изолятором и корпусом загерметизирован.

Документы, цитированные в отчете о поиске Патент 2019 года RU2710028C1

ТЕРМОСТОЙКАЯ ГЕРМЕТИЧНАЯ ВИЛКА 2001
  • Деришев С.А.
  • Дровосеков С.П.
  • Китаев В.Н.
  • Панкратов Г.А.
  • Попов И.В.
RU2219623C2
ГЕРМЕТИЧНЫЙ ТЕПЛОСТОЙКИЙ ЭЛЕКТРИЧЕСКИЙ СОЕДИНИТЕЛЬ 2002
  • Сорокин А.Н.
  • Собко С.А.
  • Дровосеков С.П.
RU2231878C2
Пустотелый проходной фарфоровый изолятор 1937
  • Блинов Н.К.
SU52823A1
СОЕДИНИТЕЛЬНОЕ УСТРОЙСТВО ДЛЯ КАБЕЛЕЙ, ДЕРЖАТЕЛЬ ДЛЯ РАЗЪЕМА ТАКОГО СОЕДИНИТЕЛЬНОГО УСТРОЙСТВА И НАБОР ДЛЯ СОЕДИНЕНИЯ КАБЕЛЕЙ 2007
  • Дезар Кристоф
  • Туйон Дидье
  • Марсак Ивонник
RU2399127C1
Электрический соединитель 1985
  • Кузьмин Александр Борисович
  • Ровинский Владимир Эфроимович
SU1379840A1
Устройство с ручным приводом для механической окраски, преимущественно, газовых баллонов 1960
  • Россов Н.А.
SU136648A1
СПОСОБ СОЕДИНЕНИЯ ЭЛЕКТРИЧЕСКОГО КОМПОНЕНТА С НОСИТЕЛЕМ ЭЛЕКТРИЧЕСКОГО КОМПОНЕНТА И УСТРОЙСТВО 2013
  • Вайхзель Ульрих
  • Циганки Андреас
RU2638306C2
СПОСОБ ПРОИЗВОДСТВА ХЛЕБНОГО КВАСА 2015
  • Квасенков Олег Иванович
RU2590274C1
WO 2013102611 A2, 11.07.2013
US 20090201680 A1, 13.08.2009
WO 2009069969 A2, 04.06.2009
FR 2860349 A1, 01.04.2005.

RU 2 710 028 C1

Авторы

Суворов Евгений Александрович

Дровосеков Сергей Петрович

Малых Михаил Викторович

Миндигалиев Вадим Андреевич

Даты

2019-12-24Публикация

2019-02-06Подача