Способ повышения износостойкости рабочих органов из высокопрочного чугуна CO - лазером Российский патент 2020 года по МПК B23K26/352 C21D1/09 C21D5/00 

Описание патента на изобретение RU2711389C1

Изобретение относится к способам термической обработки металлов, в частности к способам получения износостойких структур при изготовлении рабочих органов почвообрабатывающих орудий.

Известны высокоэнергетические лазерные и электроннолучевые импульсные обработки с эффективным модифицированием структуры приповерхностного слоя изделий из различных материалов (Ivanov Y.F., Rotshtein V.P., Proskurovsky D.I., Qrlov P.V., Polestchenko K.N., Ozur G.E., Goncharenko I.M. Pulsed electronbeam treatment of WC-TiC-Co hard-alloy cutting tools: wear resistance and microstructural evolution // Surface and coating technology, 2000. - V. 125. - P. 255-256). Сверхвысокие скорости нагрева (до 106 град/с) тонкого приповерхностного слоя материала (10-1 мм для лазерного и 10-4-10-3 мм для электронного пучков) до закритических температур и формирование предельных градиентов температуры (до 107-108 град/м), обеспечивающих охлаждение приповерхностного слоя за счет теплоотвода в основной объем материала со скоростью 104-109 град/с, определяют необходимые условия образования в приповерхностном слое неравновесных структурно-фазовых состояний. Последние характеризуются более высокими значениями плотности и дисперсности внутренней структуры по сравнению с исходным состоянием материала.

К недостаткам аналога следует отнести низкую стабильность получения равномерной глубины отбела поверхности чугунных рабочих органов почвообрабатывающих орудий.

Известен способ лазерного упрочнения полой металлической заготовки, включающий воздействие лазерным лучом непрерывного действия на поверхность заготовки с образованием расплавленного слоя металла, воздействие лазерным лучом непрерывного действия осуществляют на по меньшей мере одну локальную зону металлической заготовки на заданную глубину с образованием на внешней и внутренней поверхностях стенки заготовки локальных зон переплава с функциональным градиентным слоем, при этом в начале переплава плавно увеличивают мощность лазерного луча от 2 до 10 кВт в течение 200 миллисекунд и плавно уменьшают мощность лазерного луча с 10 кВт до 0 за 400 миллисекунд в конце локального переплава, локальными зонами являются зоны детали, которые при работе подвергают фрикционному, коррозионному, эрозионному износу, металлическую заготовку при необходимости снятия напряжений после локального переплава дополнительно подвергают термической обработке печной или ТВЧ, источник лазерного луча используют в виде волоконного лазера, или твердотельного лазера, или СО2 - лазера, или диодного лазера, для заготовок толщиной свыше 8 мм для равномерности наружного и внутреннего участков переплава может применяться заглубление фокуса в диапазоне 1-4 мм (Патент РФ №2640516 C1, C21D 1/09, B23K 26/354, 09.01.2018 г.).

К недостаткам аналога следует отнести то, что способ не предусматривает термообработку металлических поверхностей.

Известен способ обработки изделий из керамики на основе диоксида циркония. Суть способа заключается в том, что после спекания керамики на основе диоксида циркония, стабилизированного оксидом иттрия, поверхность облучают 1-10 импульсами пучка электронов с энергией 15-30 кэВ, длительностью импульса 30-100 мкс и плотностью 40-100 А/см2 (Патент РФ №2287503 С1, С04В 41/80, С04В 35/48, 20.11.2006 г.).

К недостаткам аналога следует отнести то, что способ не предусматривает термообработку металлических поверхностей.

В качестве прототипа выбран способ лазерной обработки пластически деформирующего инструмента из оксидной циркониевой керамики, при котором поверхность инструмента подвергают импульсному лазерному воздействию, каждая пачка импульсов которого формирует пятно лазерного луча с определенной мощностью пучка на образце, с коэффициентом перекрытия пятна лазерного луча в диапазоне от 0,1 до 0,9, при этом обработку проводят с частотой следования импульсов от 120 до 130 кГц, числом импульсов в пачке более 95 и мощностью пучка на образце от 12 до 13 Вт, поверхность инструмента подвергают импульсному лазерному воздействию с коэффициентом перекрытия пятна лазерного луча в диапазоне от 0,3 до 0,5 (Патент РФ №2612182 C1, С04В 41/91, В21С 3/02, 02.03.2017).

Недостатками прототипа является отсутствие условий для формирования стабильного по глубине отбеленного поверхностного слоя по всей поверхности режущей части рабочих органов.

Технической задачей данного изобретения является - повышение износостойкости и эксплуатационных характеристик лезвий рабочих органов почвообрабатывающих орудий.

Технический результат - получение заданной стабильной глубины чистого отбеленного слоя глубиной 0,14 мм в режущей части рабочих органов почвообрабатывающих орудий из высокопрочного чугуна, повышение твердости.

Технический результат достигается способом повышения износостойкости рабочих органов из высокопрочного чугуна СО2 - лазером, при котором поверхность инструмента подвергают лазерному воздействию, формируя пятно лазерного луча с определенной мощностью пучка на образце, с коэффициентом перекрытия пятна лазерного луча в диапазоне от 0,1 до 0,9, при этом обрабатывают поверхности режущих частей и лезвий рабочих органов из высокопрочного чугуна ВЧ 50 многоканальным СО2 - лазером непрерывным режимом работы, формируют пятно лазерного луча на образце мощностью Р=2,0 кВт, при этом диаметром пятна излучения в зоне обработки формируют равным d=9 мм, обрабатывают со скоростью перемещения υ=470 мм/с и коэффициентом перекрытия пятна лазерного луча 0,3.

Отличительные существенные признаки, влияющие на достижение заявленного технического результата:

- обработку проводят лезвий рабочих органов почвообрабатывающих орудий из высокопрочного чугуна ВЧ 50;

- получение отбела осуществляли многоканальным СО2 - лазером непрерывным режимом работы, мощностью пучка на образце W=2,0 кВт, диаметром пятна излучения в зоне обработки d=9 мм, с коэффициентом перекрытия пятна лазерного луча 0,3 и скоростью перемещения υ=470 мм/с.

Оптимальные режимы способа определялись в процессе эксперимента на автоматизированном лазерно-технологическом комплексе АЛТКУ-3 (многоканальный СО2 - лазер).

Зональное структурирование отливок долота, обеспечивает их высокую износостойкость и сохранность остроты режущей кромки за счет высокой твердости отбеленного слоя и реализации эффекта самозатачивания при работе плуга, а также создает достаточный уровень сопротивления динамическим нагрузкам за счет бейнитной структуры в основном объеме детали.

Пример конкретного выполнения.

Исследование проводили на термически обработанных образцах (отливках) из чугуна ВЧ50. Режим термической обработки приведен в таблице.

Полученные в результате термической обработки структуры исследовали с помощью металлографического микроскопа «Neophot-21» на микрошлифах, травленых 4% ниталем. Локальную твердость упрочненных зон и отдельных структурных составляющих определяли с помощью прибора ПМТ-3. Общую твердость по Роквеллу, а также ударную вязкость по Шарпи определяли стандартными методами по ГОСТ 9012-59, 9013-59 и 9454-78 соответственно. Микротвердость отбеленного ледебуритного слоя, сформированного на чугуне, была примерно Н50=10210±1403 МПа. В процессе лазерного термоупрочнения удалось получить отбеленный слой глубиной 0,14 мм.

Таким образом, заявленный способ повышения износостойкости рабочих органов из высокопрочного чугуна СО2 - лазером обеспечивает получение заданной стабильной глубины чистого отбеленного слоя глубиной 0,14 мм в режущей части рабочих органов почвообрабатывающих орудий из высокопрочного чугуна, повышение твердости.

Похожие патенты RU2711389C1

название год авторы номер документа
Способ получения отбеленного слоя на поверхности рабочих органов из высокопрочного чугуна 2019
  • Моторин Вадим Андреевич
RU2700898C1
Способ лазерного термоупрочнения 2019
  • Моторин Вадим Андреевич
RU2700903C1
Способ термообработки режущего инструмента из высокопрочного чугуна для разработки грунтов 2019
  • Моторин Вадим Андреевич
  • Гапич Дмитрий Сергеевич
  • Костылева Людмила Венедиктовна
RU2700900C1
Способ термообработки высокопрочного чугуна оптическим квантовым генератором 2019
  • Овчинников Алексей Семенович
  • Моторин Вадим Андреевич
  • Гапич Дмитрий Сергеевич
  • Костылева Людмила Венедиктовна
  • Борисенко Иван Борисович
  • Новиков Андрей Евгеньевич
RU2700899C1
Способ восстановления рабочих органов орудий для разделки почвогрунтов 2020
  • Моторин Вадим Андреевич
  • Гапич Дмитрий Сергеевич
RU2737691C1
Способ восстановления рабочих органов глубокорыхлителей 2020
  • Моторин Вадим Андреевич
  • Гапич Дмитрий Сергеевич
  • Любимова Галина Афанасьева
RU2739052C1
Способ восстановления с упрочнением долот глубокорыхлителей 2020
  • Моторин Вадим Андреевич
  • Гапич Дмитрий Сергеевич
  • Любимова Галина Афанасьевна
RU2739075C1
Способ восстановления ресурса рабочих органов для почвообработки 2020
  • Моторин Вадим Андреевич
RU2739049C1
Способ повышения работоспособности рабочих органов для почвообработки 2020
  • Моторин Вадим Андреевич
RU2739045C1
Способ восстановления ресурса рабочих органов почвообрабатывающих машин 2020
  • Моторин Вадим Андреевич
RU2754332C1

Реферат патента 2020 года Способ повышения износостойкости рабочих органов из высокопрочного чугуна CO - лазером

Изобретение относится к способам термической обработки металлов, в частности к способам получения износостойких структур при изготовлении рабочих органов почвообрабатывающих орудий. Способ обработки поверхностей рабочих органов почвообрабатывающих орудий из высокопрочного чугуна включает лазерное воздействие на поверхность инструмента, формирование пятна лазерного луча с определенной мощностью пучка на образце и получение коэффициента перекрытия пятна лазерного луча в диапазоне от 0,1 до 0,9. При этом обрабатывают поверхности рабочих органов из высокопрочного чугуна ВЧ 50 СО2-лазером, а затем формируют пятно лазерного луча мощностью Р=2,0 кВт на образце. Причем формируют диаметр пятна излучения в зоне обработки равным d=9 мм и проводят обработку со скоростью перемещения лазера υ=470 мм/с и коэффициентом перекрытия пятна лазерного луча 0,3. Техническим результатом изобретения является получение заданной стабильной глубины чистого отбеленного слоя глубиной 0,14 мм в режущей части рабочих органов почвообрабатывающих орудий из высокопрочного чугуна, повышение твердости. 1 пр., 1 табл.

Формула изобретения RU 2 711 389 C1

Способ обработки поверхности рабочих органов почвообрабатывающих орудий из высокопрочного чугуна, включающий лазерное воздействие на поверхность инструмента, формирование пятна лазерного луча с заданной мощностью пучка на образце, отличающийся тем, что осуществляют обработку поверхности режущих частей и лезвий рабочих органов из высокопрочного чугуна ВЧ 50 многоканальным СО2-лазером с непрерывным режимом работы, при этом формируют пятно лазерного луча мощностью Р=2,0 кВт на образце, затем проводят обработку с диаметром пятна излучения в зоне обработки, равным d=9 мм, со скоростью перемещения лазера υ=470 мм/с и коэффициентом перекрытия пятна лазерного луча 0,3.

Документы, цитированные в отчете о поиске Патент 2020 года RU2711389C1

Способ лазерной обработки пластически деформирующего инструмента из оксидной циркониевой керамики 2015
  • Кузин Валерий Викторович
  • Федоров Сергей Юрьевич
  • Федоров Михаил Юрьевич
  • Портной Михаил Ростиславович
RU2612182C1
Способ лазерного упрочнения полой металлической заготовки 2016
  • Курынцев Сергей Вячеславович
  • Гильмутдинов Альберт Харисович
RU2640516C1
СПОСОБ ПОВЫШЕНИЯ ИЗНОСОСТОЙКОСТИ ПОВЕРХНОСТИ ИЗДЕЛИЙ ИЗ КЕРАМИКИ НА ОСНОВЕ ДИОКСИДА ЦИРКОНИЯ 2005
  • Гынгазов Сергей Анатольевич
  • Суржиков Анатолий Петрович
  • Франгульян Тамара Семеновна
  • Мельников Александр Григорьевич
  • Коваль Николай Николаевич
  • Девятков Владимир Николаевич
  • Григорьев Сергей Владимирович
RU2287503C1
RU 2169778 C1, 27.06.2001
СПОСОБ ПОВЫШЕНИЯ ТРЕЩИНОСТОЙКОСТИ МАТЕРИАЛОВ НА ОСНОВЕ ДИОКСИДА ЦИРКОНИЯ 2009
  • Алисин Валерий Васильевич
  • Борик Михаил Александрович
  • Куксенова Лидия Ивановна
  • Лаптева Валерия Григорьевна
  • Ломонова Елена Евгеньевна
  • Павлов Вячеслав Георгиевич
RU2418768C2
US 4808791 A, 28.02.1989
JP 58104118 A, 21.06.1983.

RU 2 711 389 C1

Авторы

Моторин Вадим Андреевич

Гапич Дмитрий Сергеевич

Костылева Людмила Венедиктовна

Даты

2020-01-17Публикация

2019-05-06Подача