Изобретение относится к области технологических процессов, связанных с получением высокоанизотропных композиционных материалов с помощью твердотельных реакций по методу алюмотермии и формированию в них пространственной магнитной вращательной анизотропии, легкую ось которой можно вращать в магнитных полях, превышающих коэрцитивную силу, как в плоскости, так и перпендикулярно плоскости образца. Получаемый материал может быть использован в качестве элементов спинтроники и микроустройств с настраиваемой легкой осью.
Известен способ изготовления магнитного носителя информации, который выполнен из диэлектрической подложки с нанесенной на нее аморфной ферримагнитной пленкой [патент RU 2074574 А1, МПК С23С 14/14, G11C 11/14, опубл. 27.06.1996]. Пленка содержит диспрозий, кобальт и висмут в соотношениях компонентов, мас. %: Dy - 40-47, Bi - 1,5-5, Со - остальное.
Недостатками данного способа получения магнитного носителя информации заключается в том, что аморфные ферримагнитные пленки DyCoBi пленки распыляют на диэлектрическую (стеклянную) подложку при вакууме 3⋅10-4 Па. В полученной пленочной системе выбранное соотношение компонентов пленок позволяет добиться лишь появления перпендикулярной магнитной анизотропии, а также невысокая намагниченность (Ms) от 80 до 150 Гс.
Известен магнитный носитель информации для магнитооптических запоминающих устройств, представляющий собой аморфную пленку, полученную методом ионоплазменного напыления на диэлектрическую подложку с заданным соотношением компонентов с защитным слоем из моноокиси кремния. [Гафнер А.Е. Подпалый Е.А. Сухомлин В.Т. Смолов В.С. ФММ, 1987, 64, (3), 492.]
Недостатки данного носителя заключаются в следующем: низкие значения коэрцитивной силы (Нс 0,3-0,9 кЭ), связанные с относительно малым значением константы анизотропии (Кu), определяющие минимальный размер устойчивого домена, необходимость записи информации в точке компенсации (Тк), которая предусматривает жесткую стабилизацию температуры в процессе записи. Также недостатком является то, что в таких носителях, полученных данным методом, наблюдается только перпендикулярная магнитная анизотропия Кu (2-4⋅105 эрг/см3).
Наиболее близким аналогом, принятым за прототип, является получение высокоанизотропных фаз в системе CoPt [Бородина, А.О. Высокоанизотропные фазы в системе пленок CoPt: синтез, магнитные свойства // Молодежь. Общество. Современная наука, техника и инновации, №16, Год: 2017, Стр: 271-274], в котором высокоанизотроные пленочные структуры получены последовательным термическим осаждением слоя Со с кубической кристаллической решеткой и Pt(111) из мишени, распыляемой с использованием методики магнетронного распыления на монокристаллическую подложку MgO(001) в вакууме 10-6 Торр. Показано, что при температуре отжига Т=500°С двухслойных структур с атомным соотношением реагентов 1Co:1Pt формируется эпитаксиальная кубическая фаза CoPt3 (L12), и при дальнейшем отжиге при Т=850°С формируется вторая фаза CoPt (L10) с тетрагональным искажением. Полученная пленка была высококоэрцитивной, но обладала только «перпендикулярной» анизотропией (перпендикулярно плоскости пленки), обусловленной обменным взаимодействием двух сформированных упорядоченных фаз CoPt(111) и CoPt3(111).
Задачей, на решение которой направлено изобретение, является разработка способа получения CoPt-Al2O3 пленок, обладающих высокоанизотропными и высококоэрцитивными свойствами.
Техническим результатом данного изобретения является разработка технологии получения с помощью твердофазных реакций пленочных образцов CoPt-Al2O3, которые имеют намагниченность ~700 emu/cm3, коэрцитивную силу 5 kOe, обладают магнитной вращательной анизотропией (Lrot - 7-105 emu/cm3), позволяющей произвольно устанавливать легкую ось намагничивания в любом направлении относительно плоскости пленки с помощью магнитного поля величиной более значения коэрцитивной силы.
Технический результат достигается тем, что способ получения композиционого высокоанизотропного материала CoPt-Al2O3 с вращательной анизотропией, характеризующийся тем, что на монокристаллическую подложку осаждают магнетронным распылением в вакууме 10-6 Торр при температуре 250°С слой платины, затем на слой платины термическим осаждением в вакууме 10-6 Торр наносят слой кобальта при комнатной температуре, проводят вакуумный отжиг полученной двухслойной пленки при температуре 400°С в течении 90 минут с обеспечения формирования магнитожесткой фазы L10-CoPt(111), которую подвергают окислению на воздухе при температуре 550°С в течении 3 ч, затем на поверхность полученной Co3O4+Pt пленки термическим осаждением наносят слой алюминия в вакууме 10-6 Торр при комнатной температуре и проводят отжиг полученной пленочной структуры Al/Co3O4+Pt в вакууме 10-6 Торр в температурном интервале от 350 до 650°С с шагом 100°С и выдержкой при каждой температуре в течении 40 минут.
Сопоставительный анализ с прототипом позволяет сделать вывод, что заявляемое изобретение отличается от известного тем, что после формирования высокоанизотропной магнитожесткой фазы L10-CoPt(111) пленочный образец подвергается окислению на воздухе и затем наносят слой Al, достаточный для полного восстановления окисленного кобальта и отжигают полученный пленочный образец Al/Co3O4+Pt в вакууме 10-6 Торр в температурном интервале от 350 до 650°С с шагом 100°С и выдержкой при каждой температуре в течении 40 минут.
Признаки, отличающие заявляемое решение от прототипа, обеспечивают заявляемому техническому решению соответствие критерию «новизна».
Признаки, отличающие заявляемое решение от прототипа не выявлены при изучении других известных технических решений в данной области техники и, следовательно, обеспечивают ему соответствие критерию «изобретательский уровень».
Изобретение поясняется фигурой, на которой представлены кривые крутящего момента в пленочных образцах CoPt-Al2O3 после вакуумного отжига при 650°С. Кривые получены при вращении магнитного поля Н=10 кЭ на 360° (прямой и обратный ход): 1 - в плоскости пленки - L׀׀(ϕ), 2 - перпендикулярно к плоскости пленки - L⊥(ϕ).
Сущность изобретения заключается в проведении твердофазной реакции по методу алюмотермии и получении высокоанизотропных пленок CoPt-Al2O3, содержащих ферромагнитные пространственно-изотропные кластеры CoPt со средним размером 25-45 нм, вложенные в непроводящую Al2O3 матрицу.
Пример осуществления
В пленочном состоянии магнитный нанокомпозит CoPt-Al2O3 получают в следующей технологической последовательности:
1. Получение высококоэрцитивных ферромагнитных L10-CoPt(111) пленок:
а) Подготовка подложки: монокристаллическую подложку очищают с помощью водных растворов и перекиси водорода, высушивают в парах изопропилового спирта.
б) При высоком вакууме нагревают подложку до температуры 250°С для обезгаживания и лучшей адгезии пленки с подложкой.
в) Осаждают слой платины толщиной ~ 50 nm в вакууме 10-6 Torr на подложку MgO(001) при температуре 250°С, с помощью магнетронного распыления, при этом пленка платины конденсируется плоскостью (111) относительно поверхности подложки.
г) На слой платины термическим осаждением в вакууме 10-6 Торр наносят слой кобальта толщиной ~ 70 нм при комнатной температуре - для предотвращения реакции между слоями (выбранные толщины реагирующих слоев Со(~ 70 нм) и Pt(~ 50 нм) обеспечивают попадание в эквиатомный состав). Толщина напыляемой структуры контролируется с помощью кварцемера.
д) Полученные двухслойные образцы Co/Pt подвергаются вакуумному отжигу при температуре 400°С и выдержкой 90 минут, при которой происходит формирование магнитожесткой фазы L10-CoPt(111), которая формируется в Co/Pt(111)-структуре за счет твердофазных реакций на базе Pt(111)-слоя.
2. Получение нанокомпозитных CoPt-Al2O3 пленок, включает:
а) Окисление CoPt пленок на воздухе при температуре ~ 550°С в течение трех часов, в результате которого образуется пленочная структура Co3O4+Pt, содержащая Pt нанокластеры диспергированные в Co3O4 матрицу.
б) Термическое осаждение слоя алюминия толщиной ~ 140 нм в вакууме 10-6 Торр на поверхность Co3O4+Pt пленки. Для предотвращения неконтролируемой реакции между слоями осаждение алюминия производится при комнатной температуре. В результате образуется исходная пленочная структура Al/Co3O4+Pt.
с) Отжиг Al/Co3O4+Pt пленочных образцов в вакууме 10-6 Торр в температурном интервале от 350 до 650°С с шагом 100°С и выдержкой при каждой температуре в течение 40 минут. В результате происходит восстановление кобальта из окисла Co3O4 с образованием Al2O3 и CoPt фаз.
Поперечные срезы изготавливали с помощью однолучевой системы фокусируемого ионного пучка (FIB, Hitachi FB2100). Толщины реагирующих слоев определялись рентгеноспектральным флуоресцентным анализом. Намагниченность насыщения MS и коэрцитивная сила HC измерялась на вибрационном магнетометре в магнитных полях до 20 кОе. Измерения кривых крутящих моментов проведены на крутильном магнетометре с максимальным магнитным полем 17 кОе. Фазовый состав исследовался методом рентгеновской дифракции на дифрактометре ДРОН-4-07 с использованием излучения CuKα (длина волны 0.15418 nm). Структурные исследования исходных и синтезированных пленок проводили методами просвечивающей электронной микроскопии на микроскопе Hitachi НТ7700, оснащенным энергодисперсионным спектрометром Bruker X-Flash 6Т/60, при ускоряющем напряжении 100 kV.
Изучение магнитной вращательной анизотропии в композитных пленках CoPt-Al2O3 было проведено с помощью измерения кривых крутящего момента (ККМ в магнитном поле ~ 10 кЭ в плоскости пленки (L׀׀(ϕ)) и перпендикулярно ей (L⊥(ϕ)) при разных температурах отжига. Полученные образцы имели следующие магнитные характеристики: намагниченность -700 Гс, коэрцитивную силу 5 кЭ и обладали магнитной вращательной анизотропией Lrot=7⋅105 эрг/см3.
Полученные нанокомпозитные высокоанизотропные CoPt-Al2O3 пленки, содержащие ферромагнитные пространственно-изотропные кластеры CoPt со средним размером 25-45 нм, вложенные в непроводящую Al2O3 матрицу, могут быть использованы в современных элементах спинтроники и микроэлектроники, а также для магнитных сред записи информации. Это связано с тем, что представленный материал обладает высокоанизотропными свойствами и возможностью получения магнитной вращательной анизотропии (анизотропией, наводимой магнитным полем), относительно плоскости подложки в любом направлении и перпендикулярно к ней. Данный материал может быть использован для разработки компьютерной памяти, процессоров и других элементов, построенных на совершенно новых принципах, отличных от принципов построения современной электроники, где единицей информации является не электрический заряд, а электрон (электроны) со строго определенным спином.
В образцах, полученных данным методом, электросопротивление по отношению к слоистой исходной структуре Со(111)/Pt(111) вырастает более, чем на три порядка.
название | год | авторы | номер документа |
---|---|---|---|
Способ получения на подложке пленок с ферромагнитными кластерами MnGeO в матрице GeO | 2017 |
|
RU2655507C1 |
Способ получения тонких магнитных наногранулированных пленок | 2017 |
|
RU2661160C1 |
Способ получения суперпарамагнитных наночастиц на основе силицида железа FeSi с модифицированной поверхностью | 2019 |
|
RU2713598C1 |
Способ получения оксиборатов CuMn GaBO | 2017 |
|
RU2646429C1 |
СПОСОБ, УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ МНОГОСЛОЙНЫХ ПЛЕНОК И МНОГОСЛОЙНАЯ СТРУКТУРА, ПОЛУЧЕННАЯ С ИХ ИСПОЛЬЗОВАНИЕМ | 2009 |
|
RU2451769C2 |
ВСТРАИВАЕМАЯ С СБИС ТЕХНОЛОГИИ КМОП/КНИ ПАМЯТЬ "MRAM" И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ (ВАРИАНТЫ) | 2012 |
|
RU2532589C2 |
Способ получения гибридных нанокристаллов AuFe/Fe и интерметаллических нанокристаллов AuFe с контролируемым латеральным размером | 2020 |
|
RU2747433C1 |
ФЕРРОМЕТР ДЛЯ ИЗМЕРЕНИЯ ХАРАКТЕРИСТИК ТОНКИХ МАГНИТНЫХ ПЛЕНОК | 2020 |
|
RU2743340C1 |
МАГНИТОРЕЗИСТИВНЫЙ СПИНОВЫЙ СВЕТОДИОД | 2020 |
|
RU2748909C1 |
Способ изготовления магниторезистивного спинового светодиода (варианты) | 2020 |
|
RU2746849C1 |
Изобретение относится к области технологических процессов, связанных с получением высокоанизотропных композиционных материалов с помощью твердотельных реакций по методу алюмотермии и формированию в них магнитной вращательной анизотропии. Получаемый материал может быть использован в качестве элементов спинтроники и микроэлектроники. Способ получения композиционного высокоанизотропного материала CoPt-Al2O3 с вращательной анизотропией характеризуется тем, что на монокристаллическую подложку осаждают магнетронным распылением в вакууме 10-6 Торр при температуре 250°С слой платины, затем на слой платины термическим осаждением в вакууме 10-6 Торр наносят слой кобальта при комнатной температуре, проводят вакуумный отжиг полученной двухслойной пленки при температуре 400°С в течение 90 минут с обеспечением формирования магнитожесткой фазы L10-CoPt(111), которую подвергают окислению на воздухе при температуре 550°С в течение 3 часов, затем на поверхность полученной Co3O4+Pt пленки термическим осаждением наносят слой алюминия в вакууме 10-6 Торр при комнатной температуре и проводят отжиг полученной пленочной структуры Al/Co3O4+Pt в вакууме 10-6 Торр в температурном интервале от 350 до 650°С с шагом 100°С и выдержкой при каждой температуре в течение 40 минут. Получают с помощью твердофазных реакций пленки CoPt-Al2O3, имеющие намагниченность ~700 emu/cm3, коэрцитивную силу 5 кЭ и обладающие магнитной вращательной анизотропией Lrot=7⋅105 emu/cm3, позволяющей произвольно устанавливать легкую ось намагничивания в любом направлении относительно плоскости пленки с помощью магнитного поля величиной более значения коэрцитивной силы. 1 ил., 1 пр.
Способ получения композиционного высокоанизотропного материала CoPt-Al2O3 с вращательной анизотропией, характеризующийся тем, что на монокристаллическую подложку осаждают магнетронным распылением в вакууме 10-6 Торр при температуре 250°С слой платины, затем на слой платины термическим осаждением в вакууме 10-6 Торр наносят слой кобальта при комнатной температуре, проводят вакуумный отжиг полученной двухслойной пленки при температуре 400°С в течение 90 минут с обеспечением формирования магнитожесткой фазы L10-CoPt(111), которую подвергают окислению на воздухе при температуре 550°С в течение 3 часов, затем на поверхность полученной Co3O4+Pt пленки термическим осаждением наносят слой алюминия в вакууме 10-6 Торр при комнатной температуре и проводят отжиг полученной пленочной структуры Al/Co3O4+Pt в вакууме 10-6 Торр в температурном интервале от 350 до 650°С с шагом 100°С и выдержкой при каждой температуре в течение 40 минут.
БОРОДИНА А.О., Высокоанизотропные фазы в системе пленок CoPt: синтез, магнитные свойства | |||
Молодежь | |||
Общество | |||
Современная наука, техника и инновации | |||
Автомобиль-сани, движущиеся на полозьях посредством устанавливающихся по высоте колес с шинами | 1924 |
|
SU2017A1 |
Способ получения тонких магнитных наногранулированных пленок | 2017 |
|
RU2661160C1 |
СПОСОБ ПОЛУЧЕНИЯ НАНОСТРУКТУИРОВАННЫХ СЛОЕВ МАГНИТНЫХ МАТЕРИАЛОВ НА КРЕМНИИ ДЛЯ СПИНТРОНИКИ | 2012 |
|
RU2522956C2 |
Способ модификации поливинилпирролидона | 1978 |
|
SU696027A1 |
JP 4097059 B2, 04.06.2008. |
Авторы
Даты
2020-01-21—Публикация
2019-02-12—Подача