Настоящее изобретение относится к полимеризационноспособным олигомерам, в частности реакционноспособным фосфорсодержащим олигоэфиракрилатам, которые могут быть использованы для получения термо- и теплостойких полимеров с пониженной горючестью.
Известно вещество олигомерного типа, использующееся для получения термо- и теплостойких полимеров путем свободно-радикальной полимеризации. [DOPO-Based Phosphorus-Containing Methacrylic (Co)Polymers: Glass Transition Temperature Investigation / Bier F., Six J.-L., Durand A. // Macromolecular Materials and Engineering. 2019. V. 304. Iss. 4. N 1800645].
Известны фосфорсодержащие эпоксидные смолы на основе олигомеров фосфонитрилхлоридов с числом атомов углерода 3-12. Отверждение смол достигают взаимодействием с полиаминами (отверждение происходит при комнатной температуре) или ангидридами двухосновных кислот при повышенной температуре. Полученные в результате отверждения продукты обладают высокой теплостoйкостью, пониженной горючестью и самозатухаемостью при выносе из огня [пат. RU 231801, МПК C08G79/12, C08G59/04, опубл. 1968].
Известно связующее на основе эпоксивинилэфирной смолы полученной путем взаимодействия олигоэфиракрилата на основе смолы ЭД-20 с метакриловой кислотой для получения полимерного конструкционного материала, обладающего пониженной горючестью [пат. RU 2549877, МПК C08L 63/00; C08K 5/49; C08K 5/521, опубл.10.05.2015].
Недостатками описанных олигомеров являются сложность их получения, в том числе невозможность получения вещества определенной формулы, а также использование фосфорсодержащего соединения на основе пятивалентного фосфора.
Задачей изобретения является создание нового полимеризационно способного олигомера, из которого можно получать полимеры как формовочным, так и заливным или наливным методами.
Техническим результатом предлагаемого решения является расширение арсенала полимеризационноспособных олигомеров для получения термо- и теплостойких полимеров с пониженной горючестью.
Технический результат достигается при применении олигоэфиракрилата ((((((((((2-гидроксипропан-1,3-диил)бис(окси))бис(4,1-фенилен))бис(пропан-2,2-диил))бис(4,1-фенилен))бис(окси))бис(1-галогенпропан-3,2-диил))бис(окси))бис(фосфинтриил))тетракис(окси))тетракис(3-галогенпропан-2,1-диил)тетракис(2-метилакрилата) в качестве мономера для получения термо- и теплостойких полимеров с пониженной горючестью.
Впервые предлагается использовать ((((((((((2-гидроксипропан-1,3-диил)бис(окси))бис(4,1-фенилен))бис(пропан-2,2-диил))бис(4,1-фенилен))бис(окси))бис(1-галогенпропан-3,2-диил))бис(окси))бис(фосфинтриил))тетракис(окси))тетракис(3-галогенпропан-2,1-диил)тетракис(2-метилакрилат) в качестве мономера для термо- и теплостойких полимеров с пониженной горючестью. Заявляемое вещество является стабильным при условии хранения в темноте, реакционноспособным фосфорсодержащим олигомером, способным отверждаться фотохимическими инициаторами при УФ-облучении.
Синтез предлагаемого олигоэфиракрилата общей формулы
,
где Х = CI или Br,
осуществлялся при взаимодействии расчетного количества глицидилметакрилата с треххлористым фосфором (трехбромистым фосфором) в присутствии стабилизатора аминного типа, например, N-нитрозодифениламина, с образованием дизамещенного полупродукта, который далее взаимодействовал с эпоксидной смолой.
Заявляемый олигоэфиракрилат позволяет получать как формованные полимерные изделия, так и адгезионно связанное с субстратом полимерное покрытие. Композиция из олигоэфиракрилата и инициатора полимеризации может храниться в готовом виде в защищенной от света емкости или готовиться непосредственно перед полимеризацией. Полимеризация может осуществляться в формах или на защищаемых поверхностях, на которые композиция наносится наливным способом. Формирование полимера происходит под действием источника УФ-излучения, например, ртутной лампы, работающей в диапазоне 365 нм или солнечного света.
Свойства полимеров, полученных на основе заявленного фосфорсодержащего олигоэфиракрилата, представлены в таблице 1.
Из данных, приведенных в таблице 1 видно, что полимеры, полученные из ((((((((((2-гидроксипропан-1,3-диил) бис (окси)) бис (4,1-фенилен)) бис (пропан-2,2-диил)) бис (4,1 -фенилен)) бис (окси)) бис (1-хлорпропан-3,2-диил)) бис (окси)) бис (фосфинтриил)) тетракис (окси)) тетракис (3-хлорпропан-2,1-диил) тетракис (2-метилакрилата) (пример 3а) и ((((((((((2-гидроксипропан-1,3-диил) бис (окси)) бис (4,1-фенилен)) бис (пропан-2,2-диил)) бис (4,1 -фенилен)) бис (окси)) бис (1-бромпропан-3,2-диил)) бис (окси)) бис (фосфинтриил)) тетракис (окси)) тетракис (3-бромпропан-2,1-диил) тетракис (2-метилакрилата) (пример 3б) обладают термо- и теплостойкостью и пониженной горючестью.
Таблица 1
Пример 1. Получение ((((((((((2-гидроксипропан-1,3-диил) бис (окси)) бис (4,1-фенилен)) бис (пропан-2,2-диил)) бис (4,1 -фенилен)) бис (окси)) бис (1-хлорпропан-3,2-диил)) бис (окси)) бис (фосфинтриил)) тетракис (окси)) тетракис (3-хлорпропан-2,1-диил) тетракис (2-метилакрилата).
В четырёхгорлый реактор, снабжённый мешалкой, капельной воронкой, обратным холодильником и термометром, предварительно продутый сухим аргоном в течение 30 минут (продувка аргоном осуществляется на протяжении всего процесса), загрузили 5 г (0,036 моль) треххлористого фосфора. При постоянном перемешивании из капельной воронки прибавляли смесь 10,33 г (0,073 моль) глицидилметакрилата (ГМАК) и 0,1 г (1% масс. от массы ГМАК) нитрозодифениламина с такой скоростью, чтобы температура реакционной массы не превышала 15°С. При добавлении смеси реактор охлаждали ледяной водой. По окончании добавления смеси, полученную реакционную массу выдержали час при 40°С. Затем отбирали в капельную воронку получившийся полупродукт и дозировали его в реактор с эпоксидной смолой марки ЭД-20 в количестве 7,66 г.
Для выделения продукта, реакционную массу вакуумировали в течение 30 мин, отфильтровали на фильтре Шота и ещё раз вакуумировали.
Выход ((((((((((2-гидроксипропан-1,3-диил) бис (окси)) бис (4,1-фенилен)) бис (пропан-2,2-диил)) бис (4,1 -фенилен)) бис (окси)) бис (1-хлорпропан-3,2-диил)) бис (окси)) бис (фосфинтриил)) тетракис (окси)) тетракис (3-хлорпропан-2,1-диил) тетракис (2-метилакрилата) составил 100%.
Пример 2. Получение ((((((((((2-гидроксипропан-1,3-диил) бис (окси)) бис (4,1-фенилен)) бис (пропан-2,2-диил)) бис (4,1 -фенилен)) бис (окси)) бис (1-бромпропан-3,2-диил)) бис (окси)) бис (фосфинтриил)) тетракис (окси)) тетракис (3-бромпропан-2,1-диил) тетракис (2-метилакрилата).
В четырёхгорлый реактор, снабжённый мешалкой, капельной воронкой, обратным холодильником и термометром, предварительно продутый сухим аргоном в течение 30 минут (продувка аргоном осуществляется на протяжении всего процесса), загрузили 5 г (0,018 моль) трехбромистого фосфора. При постоянном перемешивании из капельной воронки прибавляли смесь 5.24 г (0,037 моль) глицидилметакрилата (ГМАК) и 0,05 г (1% масс. от массы ГМАК) нитрозодифениламина с такой скоростью, чтобы температура реакционной массы не превышала 15оС. При добавлении смеси реактор охлаждали ледяной водой. По окончании добавления смеси, полученную реакционную массу выдержали час при 40 оС. Затем отбирали в капельную воронку получившийся полупродукт и дозировали его в реактор с эпоксидной смолой марки ЭД-20 в количестве 3,89 г.
Для выделения продукта, реакционную массу вакуумировали в течение 30 мин, отфильтровали на фильтре Шота и ещё раз вакуумировали.
Выход ((((((((((2-гидроксипропан-1,3-диил) бис (окси)) бис (4,1-фенилен)) бис (пропан-2,2-диил)) бис (4,1 -фенилен)) бис (окси)) бис (1-бромпропан-3,2-диил)) бис (окси)) бис (фосфинтриил)) тетракис (окси)) тетракис (3-бромпропан-2,1-диил) тетракис (2-метилакрилата) составил 100%.
Идентификацию полученных продуктов проводили при помощи ИК-Фурье и ЯМР спектроскопии.
Спектр ЯМР 1H (300 MHz, СDCl3) δ, м.д.: 1.66, 3.63, 3.65, 4.09, 4.21, 4.42 (14 СН2); 4.04, 4.23, 4.13, 6.91, 7,19 (22 СН); 1.72, 2.01 (8 СН3), 6.40, 6.48 (8 Н); 3.58 (ОН).
Спектр ЯМР 13С (CDCl3, δ, м.д, TMS): 46.9, 47, 67.9, 70.1, 125.2 (7 СН2); 69, 70.6, 71.2, 86.2, 114.9, 127.7 (23 СН); 42.4, 136, 146.3, 156.9, 167.2 (18 С); 17.9, 30.9 (8 СН3).
Спектр ЯМР 31Р δ, м.д.: 141 (Р(ОR)3).
ИК-спектры содержат характерные полосы поглощения валентных колебаний С=О (1720 см-1), С=С (1640 см-1), C-Hal (760-770 см-1). Отсутствуют полосы поглощения, соответствующие колебаниям эпоксидного цикла (860 и 910 см-1) и Р=О (1280-1300 см-1).
Пример 3. Получение термо- и теплостойких полимеров с пониженной горючестью из ((((((((((2-гидроксипропан-1,3-диил) бис (окси)) бис (4,1-фенилен)) бис (пропан-2,2-диил)) бис (4,1 -фенилен)) бис (окси)) бис (1-галогенпропан-3,2-диил)) бис (окси)) бис (фосфинтриил)) тетракис (окси)) тетракис (3-галогенпропан-2,1-диил) тетракис (2-метилакрилата).
а) Полимеризацию 99,5 масс.% ((((((((((2-гидроксипропан-1,3-диил) бис (окси)) бис (4,1-фенилен)) бис (пропан-2,2-диил)) бис (4,1 -фенилен)) бис (окси)) бис (1-хлорпропан-3,2-диил)) бис (окси)) бис (фосфинтриил)) тетракис (окси)) тетракис (3-хлорпропан-2,1-диил) тетракис (2-метилакрилата) проводили путем отверждения в течение 18 минут в присутствии 0,5 масс.% бисфенил(2,4,6-триметилбензоил)фосфиноксида (BAPO) под действием ультрафиолетового (УФ) облучения.
б) Полимеризацию 99,5 масс.% ((((((((((2-гидроксипропан-1,3-диил) бис (окси)) бис (4,1-фенилен)) бис (пропан-2,2-диил)) бис (4,1 -фенилен)) бис (окси)) бис (1-бромпропан-3,2-диил)) бис (окси)) бис (фосфинтриил)) тетракис (окси)) тетракис (3-бромпропан-2,1-диил) тетракис (2-метилакрилата) проводили путем отверждения в течение 18 минут в присутствии 0,5 масс.% бисфенил(2,4,6-триметилбензоил)фосфиноксида (BAPO) под действием ультрафиолетового (УФ) облучения.
Таким образом применение олигоэфиракрилата ((((((((((2-гидроксипропан-1,3-диил) бис (окси)) бис (4,1-фенилен)) бис (пропан-2,2-диил)) бис (4,1 -фенилен)) бис (окси)) бис (1-галогенпропан-3,2-диил)) бис (окси)) бис (фосфинтриил)) тетракис (окси)) тетракис (3-галогенпропан-2,1-диил) тетракис (2-метилакрилата) в качестве мономера для получения полимеров позволяет расширить арсенал полимеризационноспособных олигомеров для получения термо- и теплостойких полимеров с пониженной горючестью.
Изобретение относится к области органической химии. Предложено применение олигоэфиракрилата ((((((((((2-гидроксипропан-1,3-диил)бис(окси))бис(4,1-фенилен))бис(пропан-2,2-диил))бис(4,1-фенилен))бис(окси))бис(1-галогенпропан-3,2-диил))бис(окси))бис(фосфинтриил))тетракис(окси))тетракис(3-галогенпропан-2,1-диил)тетракис(2-метилакрилата) в качестве мономера для получения термо- и теплостойких полимеров с пониженной горючестью. Изобретение обеспечивает расширение арсенала полимеризационно-способных олигомеров, из которых возможно получение полимеров как формовочным, так и заливным или наливным методами. 1 табл., 3 пр.
Применение олигоэфиракрилата ((((((((((2-гидроксипропан-1,3-диил)бис(окси))бис(4,1-фенилен))бис(пропан-2,2-диил))бис(4,1-фенилен))бис(окси))бис(1-галогенпропан-3,2-диил))бис(окси))бис(фосфинтриил))тетракис(окси))тетракис(3-галогенпропан-2,1-диил)тетракис(2-метилакрилата) в качестве мономера для получения термо- и теплостойких полимеров с пониженной горючестью.
СВЯЗУЮЩЕЕ НА ОСНОВЕ ЭПОКСИВИНИЛЭФИРНОЙ СМОЛЫ И ОГНЕСТОЙКИЙ ПОЛИМЕРНЫЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ НА ЕГО ОСНОВЕ | 2013 |
|
RU2549877C1 |
СПОСОБ ПОЛУЧЕНИЯ ФОСФОРХЛОРСОДЕРЖАЩИХ МЕТАКРИЛАТОВ | 2011 |
|
RU2447079C1 |
ФОСФОРСОДЕРЖАЩИЙ МЕТАКРИЛАТ В КАЧЕСТВЕ ЗАМЕДЛИТЕЛЯ ГОРЕНИЯ ВИНИЛЭФИРНЫХ СМОЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2013 |
|
RU2537399C1 |
US 3639506 A, 01.02.1972. |
Авторы
Даты
2020-01-24—Публикация
2019-08-20—Подача