СПОСОБ ОПРЕДЕЛЕНИЯ ВРЕМЕНИ МАКСИМАЛЬНОЙ КОНЦЕНТРАЦИИ ФОТОСЕНСИБИЛИЗАТОРА ХЛОРИН Е6 ЛИЗИН ДИМЕГЛЮМИНОВАЯ СОЛЬ В ОПУХОЛИ Российский патент 2020 года по МПК A61B6/00 A61K49/00 A61K31/409 A61N5/06 A61P35/00 

Описание патента на изобретение RU2713941C2

Изобретение относится к области медицины, а именно к онкологии, и может быть использовано для определения времени достижения максимальной концентрации фотосенсибилизатора (ФС) хлоринового ряда - хлорин е6 лизин димеглюминовая соль в тканях организма после его введения, что в свою очередь необходимо для определения времени начала фотодинамической терапии (ФДТ) с его использованием.

Метод ФДТ основан на использовании препаратов - ФС, которые при введении в организм накапливаются преимущественно в опухоли. После введения ФС в организм и достижения его максимального накопления в тканях, осуществляют облучение патологического участка, главным образом посредством лазерного излучения. При этом молекулы ФС катализируют образование цитотоксических агентов, в частности синглетного кислорода, разрушающих опухолевые клетки. Для получения наиболее выраженного положительного эффекта необходимо проводить ФДТ в срок максимального накопления ФС в опухолевой ткани.

Эффективность ФДТ во многом зависит от правильного выполнения методики лечения, одной из важных составляющих которой является правильный выбор оптимального интервала времени между введением ФС и проведением сеанса лазерного облучения. Данный интервал характеризуется показателем максимального накопления ФС в опухоли. Время максимального накопления ФС в опухоли может варьировать в зависимости от особенностей метаболизма организма и биораспределения фотосенсибилизатора, которые являются индивидуальными для конкретного больного. В связи с чем нередко на практике выбранный интервал при проведении 1 и 2 фаз клинических испытаний ФС на определенной группе больных, в последующем может не являться оптимальным у других больных. Для решения этой проблемы разработаны методики определения почасовой кинетики времени максимального накопления фотосенсибилизатора в опухоли у каждого больного. Однако такого рода методы являются высокозатратной процедурой, как финансово, так и по уровню трудозатрат.

Известен способ определения накопления ФС в ткани опухоли (Морозова Н.Б. «Экспериментальное изучение нового фотосенсибилизатора «Фталосенс» для фотодинамической терапии злокачественных новообразований». Автореф. дисс. на соискание уч. ст. к.б.н., М., 2007). В работе изучали кинетику распределения фотосенсибилизатора путем измерения флуоресценции в опухолевых и нормальных тканях на различные сроки после введения препарата после умерщвления животных (мышей). Таким образом, у каждого животного измерения проводили только один раз на определенный срок после введения фотосенсибилизатора. Таким образом, приемы изучения фотосенсибилизатора, представленные в данной работе нельзя использовать в клинической онкологии.

Наиболее близким является способ определения оптимальных режимов флуоресцентной диагностики и фотодинамической терапии (RU 2376044, Филоненко Е.В., Чиссов В.И., Соколов В.В., Якубовская Р.И.). В работе авторы определяли кинетику тканевого распределения различных ФС методом локальной флуоресцентной спектроскопии.

Существенным недостатком данного способа является то, что, во-первых, изучение кинетики подразумевает почасовые изменения уровня накопления ФС в тканях опухоли на протяжении 7-8 часов, что неприменимо в повседневной клинической практике. Во-вторых, т.к. в данной методике не были учтены показатели флуоресцентной контрастности, т.е. невозможно определить точное время максимального накопления ФС в опухоли. В связи с этим, полученные данные описывают только диапазон времени, в котором могут быть достигнуты максимальные значения накопления ФС в опухоли, а не конкретное время.

В настоящее время перспективным направлением медицины является персонализированное лечение, учитывающее особенности конкретного больного с целью повышения эффективности и достижения наилучших результатов.

Таким образом, решаемой нами технической проблемой было индивидуальное определение оптимального интервала времени между введением фотосенсибилизатора и проведением сеанса лазерного облучения, т.е. времени максимального накопления ФС хлорин е6 лизин димеглюминовая соль в опухоли.

В качестве ФС нами исследовались препараты хлоринового ряда, в частности, хлорин е6 лизин димеглюминовая соль (ХМЛ). Данный препарат имеет высокую скорость выведения из нормальных тканей, обеспечивает глубокое терапевтическое воздействие на опухолевые ткани, нетоксичен и перспективен для применения в онкологии.

Технический результат достигается тем, что в организм вводят фотосенсибилизатор хлорин е6 лизин димеглюминовую соль и через 30 мин после введения ФС вычисляют величину флуоресцентной контрастности опухоль/норма:

- до 3,0 включительно - 3 часа,

- от 3,0 и более - 4 часа.

Способ осуществляют следующим образом.

В организм вводят ФС хлорин е6 лизин димеглюминовую соль. Через 30 мин после введения ФС, определяют оптимальное время проведения сеанса лазерного облучения, далее вычисляют величину флуоресцентной контрастности опухоль/норма (например, Лукин В.В. Лапароскопическая флуоресцентная диагностика перитонеальной диссеминации злокачественных новообразований. Автореферат диссертации на соискание ученой степени к.м.н., Москва, 2010), измеренной через 30 мин после введения ФС.

При внутривенном введении ФС происходит его циркуляция в системном кровотоке. При этом, необходимо время для достижения в опухоли определенной концентрации ФС, которая будет характеризовать скорость и кинетику накопления ФС в последующем. Таким временем является 30 мин от момента введения ФС, т.к. за это время происходит циркуляция крови через опухоль в достаточном объеме.

При флуоресцентной контрастности до 3,0 включительно, оптимальный интервал между введением ФС и сеансом лазерного облучения (максимальный уровень накопления ФС в опухоли) составляет 3 ч. При флуоресцентной контрастности более 3,0 - 4 ч.

Предложенный способ был апробирован при проведении исследований in vivo на перевивных опухолях у животных. В качестве ФС хлоринового ряда вводили ХМЛ в дозе 12,0 мг/кг.

Флуоресцентную контрастность измеряли по следующей методике.

Регистрацию флуоресценции ХМЛ в опухоли и здоровых окружающих тканях мышей проводили через различные интервалы времени контактным способом на лазерном спектральном анализаторе для флуоресцентной диагностики опухолей и контроля за ФДТ «ЛЭСА-06» (ЗАО «Биоспек», Россия). Для чего возбуждали флуоресценцию излучением He-Ne лазера (длина волны генерации 632,8 нм, спектральный диапазон измерений 640-900 нм). Математическую обработку спектров флуоресценции проводили с помощью программы «ЛЭСА-06». При возбуждении флуоресценции в красной области спектра интегральную интенсивность флуоресценции в диапазоне 645-680 нм нормировали на интегральную интенсивность сигнала обратного диффузного рассеяния в ткани возбуждающего лазерного излучения (λ=632,8 нм).

Флуоресцентную контрастность рассчитывали, как отношение нормированной флуоресценции в опухоли к нормированной флуоресценции в окружающей ткани (кожа).

Оптимальное время проведения сеанса лазерного облучения определяли по величине флуоресцентной контрастности опухоль/норма, измеренной через 30 мин после введения ХМЛ (далее флуоресцентной контрастности).

При флуоресцентной контрастности до 3,0 включительно, оптимальный интервал между введением ФС и сеансом лазерного облучения (максимальный уровень накопления ХМЛ в опухоли) составляет 3 ч; а более 3,0-4 ч.

Пример 1.

Спектрофотометрическое обследование проведено у мыши F1 (C57Bl/6j × СВА), самки, с привитой саркомой S37. Мыши введен раствор ХМЛ в дозе 12,0 мг/кг.

Флуоресцентная контрастность, измеренная через 30 минут после введения раствора ФС, составила 2,2, что позволяет определить максимальный уровень накопления ФС в опухоли - через 3 часа от момента введения ФС.

Для подтверждения данного факта, далее каждый час регистрировали интенсивность нормированной флуоресценции ХМЛ в опухоли, которая составила:

через 1 час после введения фотосенсибилизатора 2,1 усл. ед.,

через 2 часа - 2,9 усл. ед.,

через 3 часа - 4,1 усл. ед.,

через 4 часа - 3,6 усл. ед.,

через 5 часов - 3,2 усл. ед.,

через 6 часов - 2,7 усл. ед.

Таким образом, максимальная интенсивность флуоресценции ХМЛ, соответствующая максимальному накоплению ФС в опухоли, была достигнута через 3 часа после введения ФС, что соответствовало предварительно определенной величине флуоресцентной контрастности.

На сроках 2 и 4 часа после введения ФС интенсивность флуоресценции в опухоли составила на 29% и 12% меньше, чем в срок максимального накопления фотоактивной формы ФС в опухоли, соответственно. При величине флуоресцентной контрастности через 30 мин после введения ХМЛ 2,2 (менее 3,0), время достижения максимальной интенсивности флуоресценции ХМЛ в опухоли составило 3 часа. Сеанс ФДТ провели через 3 часа после введения ХМЛ, в результате чего у мыши была достигнута полная регрессия опухоли (значения торможения роста опухоли (ТРО) составили 100% на протяжении 21 наблюдения дня после проведения ФДТ).

Пример 2.

Спектрофотометрическое обследование проведено у мыши F1 (C57Bl/6j × СВА), самки, с привитой саркомой S37. Мыши введен раствор ХМЛ в дозе 12,0 мг/кг.

Флуоресцентная контрастность, измеренная через 30 минут после введения раствора ФС, составила 4,2, что позволяет определить максимальный уровень накопления ФС в опухоли - через 4 часа от момента введения ФС.

Для подтверждения данного факта далее каждый час регистрировали интенсивность нормированной флуоресценции ХМЛ в опухоли, которая составила:

через 1 час после введения фотосенсибилизатора 2,4 усл. ед,

через 2 часа - 3,3 усл. ед.,

через 3 часа - 3,7 усл. ед.,

через 4 часа - 4,3 усл. ед.,

через 5 часов - 3,2 усл. ед.,

через 6 часов - 2,6 усл. ед.

Таким образом, максимальная интенсивность флуоресценции ХМЛ, соответствующая максимальному накоплению ФС в опухоли, была достигнута через 4 часа после введения ФС, что соответствовало предварительно определенной величине флуоресцентной контрастности.

На сроках 3 и 5 часа после введения ФС интенсивность флуоресценции в опухоли составила на 14% и 26% меньше, чем в срок максимального накопления фотоактивной формы ФС в опухоли, соответственно. При величине флуоресцентной контрастности через 30 мин после введения ХМЛ 4,2 (более 3,0), время достижения максимальной интенсивности флуоресценции ХМЛ в опухоли составило 4 часа. Сеанс ФДТ провели через 4 часа после введения ХМЛ, в результате чего у мыши была достигнута полная регрессия опухоли (значения ТРО составили 100% на протяжении 21 дня наблюдения после проведения ФДТ).

Пример 3.

Спектрофотометрическое обследование проведено у мыши F1 (C57Bl/6j × СВА), самки, с привитой саркомой S37. Мыши введен раствор ХМЛ в дозе 12,0 мг/кг.

Флуоресцентная контрастность, измеренная через 30 минут после введения раствора ФС, составила 4,3, что позволяет определить максимальный уровень накопления ФС в опухоли - через 4 часа от момента введения ФС.

Далее каждый час регистрировали интенсивность нормированной флуоресценции ХМЛ в опухоли, которая составила:

через 1 час после введения фотосенсибилизатора 2,2 усл. ед,

через 2 часа - 2,6 усл. ед.,

через 3 часа - 3,5 усл. ед.,

через 4 часа - 4.4 усл. ед.,

через 5 часов - 3,3 усл. ед.,

через 6 часов - 3,0 усл. ед.

Таким образом, максимальная интенсивность флуоресценции ХМЛ, соответствующая максимальному накоплению ФС в опухоли, была достигнута через 4 часа после введения ФС, что соответствовало предварительно определенной величине флуоресцентной контрастности.

На сроках 3 и 5 часа после введения ФС интенсивность флуоресценции в опухоли составила на 21% и 25% меньше, чем в срок максимального накопления фотоактивной формы ФС в опухоли, соответственно.

При величине флуоресцентной контрастности через 30 мин после введения ХМЛ 4.3 (более 3,0), время достижения максимальной интенсивности флуоресценции ХМЛ в опухоли составило 4 часа.

Однако сеанс ФДТ провели в иное чем выявленное предварительно время, а именно через 3 часа после введения ХМЛ, в результате чего у мыши была достигнута только частичная регрессия опухоли (значения ТРО составили 83-91%) на протяжении 21 дня наблюдения после проведения ФДТ).

Таким образом, предложенный способ успешно апробирован на модели мышей-опухоленосителей и может быть экстраполирован и на людей, с учетом использования в исследованиях на животных дозы ХМЛ эквивалентной терапевтической дозе для человека, путем перерасчета по методу Freireich at al. Данное изобретение является научно-обоснованным и целесообразным к практическому применению.

Похожие патенты RU2713941C2

название год авторы номер документа
СПОСОБ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ ПЕРЕВИВНОЙ ОПУХОЛИ КАРЦИНОМА ЭРЛИХА МЫШЕЙ С ФОТОСЕНСИБИЛИЗАТОРОМ ХЛОРИНОВОГО РЯДА 2022
  • Абрамова Ольга Борисовна
  • Дрожжина Валентина Владимировна
  • Козловцева Екатерина Александровна
  • Сивоволова Татьяна Петровна
  • Островерхов Петр Васильевич
  • Грин Михаил Александрович
  • Кирин Никита Сергеевич
  • Иванов Сергей Анатольевич
  • Каприн Андрей Дмитриевич
RU2788766C2
ФОТОСЕНСИБИЛИЗАТОР ДЛЯ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ 2013
  • Якубовская Раиса Ивановна
  • Соловьёва Людмила Ивановна
  • Койфман Оскар Иосифович
  • Пономарёв Гелий Васильевич
  • Ластовой Антон Павлович
  • Лукьянец Евгений Антонович
  • Морозова Наталья Борисовна
  • Плотникова Екатерина Александровна
RU2548726C2
СПОСОБ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ ПЕРЕВИВНОЙ ПОВЕРХНОСТНОЙ СОЛИДНОЙ СОЕДИНИТЕЛЬНОТКАННОЙ САРКОМЫ М-1 КРЫС 2019
  • Абрамова Ольга Борисовна
  • Дрожжина Валентина Владимировна
  • Каплан Михаил Александрович
RU2704202C1
АМИНОАМИДЫ В РЯДУ БАКТЕРИОХЛОРОФИЛЛА A, ОБЛАДАЮЩИЕ ФОТОДИНАМИЧЕСКОЙ АКТИВНОСТЬЮ, И СПОСОБ ИХ ПОЛУЧЕНИЯ 2013
  • Миронов Андрей Федорович
  • Решетников Роман Игоревич
  • Грин Михаил Александрович
  • Якубовская Раиса Ивановна
  • Плотникова Екатерина Александровна
  • Морозова Наталья Борисовна
  • Цыганков Анатолий Анатольевич
  • Феофанов Алексей Валерьевич
  • Ермакова Дарья Эдуардовна
  • Ефременко Анастасия Владимировна
RU2548675C9
СПОСОБ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ ПЕРЕВИВНОЙ ПОВЕРХНОСТНОЙ СОЛИДНОЙ СОЕДИНИТЕЛЬНОТКАННОЙ САРКОМЫ М-1 КРЫС 2021
  • Абрамова Ольга Борисовна
  • Чурикова Татьяна Петровна
  • Козловцева Екатерина Александровна
  • Дрожжина Валентина Владимировна
  • Каплан Михаил Александрович
  • Иванов Сергей Анатольевич
  • Каприн Андрей Дмитриевич
RU2776449C1
СПОСОБ ЛЕЧЕНИЯ ПЕРЕВИВНОЙ СОЕДИНИТЕЛЬНОТКАННОЙ САРКОМЫ М-1 КРЫС ПРИ КОМБИНИРОВАННОМ ВОЗДЕЙСТВИИ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ И ЛУЧЕВОЙ ТЕРАПИИ 2021
  • Каплан Михаил Александрович
  • Дрожжина Валентина Владимировна
  • Архипова Любовь Михайловна
  • Абрамова Ольга Борисовна
  • Чурикова Татьяна Петровна
  • Козловцева Екатерина Александровна
  • Иванов Сергей Анатольевич
  • Каприн Андрей Дмитриевич
RU2763663C2
СПОСОБ ЛЕЧЕНИЯ ПЕРЕВИВНОЙ СОЕДИНИТЕЛЬНОТКАННОЙ САРКОМЫ М-1 КРЫС ПРИ КОМБИНИРОВАННОМ ВОЗДЕЙСТВИИ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ И ЛУЧЕВОЙ ТЕРАПИИ 2021
  • Каплан Михаил Александрович
  • Дрожжина Валентина Владимировна
  • Архипова Любовь Михайловна
  • Абрамова Ольга Борисовна
  • Чурикова Татьяна Петровна
  • Козловцева Екатерина Александровна
  • Иванов Сергей Анатольевич
  • Каприн Андрей Дмитриевич
RU2767272C2
ФОТОСЕНСИБИЛИЗАТОР ДЛЯ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ 2012
  • Дудкин Семен Валентинович
  • Игнатова Анастасия Александровна
  • Кобзева Елена Сергеевна
  • Лужков Юрий Михайлович
  • Лукъянец Евгений Антонович
  • Макарова Елена Александровна
  • Морозова Наталья Борисовна
  • Плютинская Анна Дмитриевна
  • Феофанов Алексей Валерьевич
  • Чиссов Валерий Иванович
  • Якубовская Раиса Ивановна
RU2479585C1
ФОТОСЕНСИБИЛИЗАТОР ДЛЯ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ 2013
  • Койфман Оскар Иосифович
  • Лукьянец Евгений Антонович
  • Морозова Наталья Борисовна
  • Плотникова Екатерина Александровна
  • Пономарёв Гелий Васильевич
  • Соловьёва Людмила Ивановна
  • Страховская Марина Глебовна
  • Якубовская Раиса Ивановна
RU2536966C1
СПОСОБ ИНТРАОПЕРАЦИОННОЙ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ В КОМБИНИРОВАННОМ ЛЕЧЕНИИ МЕСТНО-РАСПРОСТРАНЕННЫХ САРКОМ МЯГКИХ ТКАНЕЙ 2020
  • Ярославцева-Исаева Елена Викторовна
  • Зубарев Алексей Леонидович
  • Курильчик Александр Александрович
  • Каплан Михаил Александрович
  • Иванов Вячеслав Евгеньевич
  • Стародубцев Алексей Леонидович
  • Каприн Андрей Дмитриевич
  • Иванов Сергей Анатольевич
  • Спиченкова Ирина Сергеевна
  • Капинус Виктория Николаевна
RU2737704C2

Реферат патента 2020 года СПОСОБ ОПРЕДЕЛЕНИЯ ВРЕМЕНИ МАКСИМАЛЬНОЙ КОНЦЕНТРАЦИИ ФОТОСЕНСИБИЛИЗАТОРА ХЛОРИН Е6 ЛИЗИН ДИМЕГЛЮМИНОВАЯ СОЛЬ В ОПУХОЛИ

Изобретение относится к медицине, а именно к онкологии, и может быть использовано для определения времени достижения максимальной концентрации фотосенсибилизатора (ФС) хлоринового ряда - хлорин е6 лизин димеглюминовая соль в тканях организма после его введения. В организм вводят ФС хлорин е6 лизин димеглюминовая соль. Через 30 мин после введения ФС вычисляют величину флуоресцентной контрастности опухоль/норма. При флуоресцентной контрастности опухоль/норма до 3,0 включительно максимальным уровнем накопления ФС в опухоли считают 3 часа от момента введения ФС, при флуоресцентной контрастности опухоль/норма более 3,0 - 4 часа. Способ позволяет повысить эффективность лечения за счет возможности индивидуального определения времени максимального накопления ФС хлорин е6 димеглюминовая соль в опухоли. 3 пр.

Формула изобретения RU 2 713 941 C2

Способ определения времени максимальной концентрации фотосенсибилизатора хлорин е6 лизин димеглюминовая соль в опухоли, включающий введение в организм ФС хлорин е6 лизин димеглюминовая соль, через 30 мин после введения ФС вычисляют величину флуоресцентной контрастности опухоль/норма, при флуоресцентной контрастности опухоль/норма до 3,0 включительно максимальным уровнем накопления ФС в опухоли считают 3 часа от момента введения ФС, при флуоресцентной контрастности опухоль/норма более 3,0 - 4 часа.

Документы, цитированные в отчете о поиске Патент 2020 года RU2713941C2

СПОСОБ ОПРЕДЕЛЕНИЯ ОПТИМАЛЬНЫХ РЕЖИМОВ ФЛУОРЕСЦЕНТНОЙ ДИАГНОСТИКИ И ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ 2008
  • Филоненко Елена Вячеславовна
  • Чиссов Валерий Иванович
  • Соколов Виктор Викторович
  • Якубовская Раиса Ивановна
RU2376044C1
СПОСОБ ДИФФЕРЕНЦИАЛЬНОЙ ДИАГНОСТИКИ НОВООБРАЗОВАНИЙ КОЖИ ВЕК 2007
  • Лихванцева Вера Геннадьевна
  • Осипова Екатерина Александровна
  • Лощенов Виктор Борисович
  • Кузьмин Сергей Георгиевич
  • Ворожцов Георгий Николаевич
RU2350262C2
ФИЛОНЕНКО Е.В
и др
возможности интраоперационной фотодинамической терапии в лечении местнораспространенного рака молочной железы
Biomedical Photonics
Токарный резец 1924
  • Г. Клопшток
SU2016A1
Разборный с внутренней печью кипятильник 1922
  • Петухов Г.Г.
SU9A1
ЧАН ТХИ ХАЙ ИЕН и др
Фотосенсебилизаторы хлоринового ряда в ФТД опухолей
Российский биотерапевтический журнал
Колосоуборка 1923
  • Беляков И.Д.
SU2009A1

RU 2 713 941 C2

Авторы

Каприн Андрей Дмитриевич

Филоненко Елена Вячеславовна

Негримовский Владимир Михайлович

Казачкина Наталья Ивановна

Григорьевых Надежда Игоревна

Даты

2020-02-11Публикация

2019-09-12Подача