Перезаряжаемая генерирующая электрический ток электрохимическая ловушка водорода Российский патент 2020 года по МПК H01M10/52 A62B11/00 B63G8/36 

Описание патента на изобретение RU2715052C1

Изобретение относится к устройствам утилизации водорода в замкнутых помещениях, изолированных от внешней среды.

Наиболее близкой по технической сущности является известная из способа утилизации водорода и кислорода (RU 2085436, Н01M 10/36, B63G 8/36) ловушка водорода (ЛВ), продуваемого из полостей электрохимического генератора (ЭХГ) водородокислородного типа, содержащая специальный контейнер (в терминологии источника «специальная охлаждаемая емкость», «интерметаллидный накопитель водорода»), в котором размещены интерметаллиды, например, CeLaNi5, и который охлаждается средой термостатирования ЭХГ. В контейнере за счет физико-химических свойств интерметаллида, например, CeLaNi5, при давлении газов над поверхностью интерметаллида 80-100 КПа, определяемом его температурой, происходит поглощение водорода при выделении тепла в этой реакции.

Недостатком этого устройства является применение интерметаллидов, затраты энергии на их охлаждение и осушку водорода перед утилизацией, а также проблемы регенерации интерметаллидов после использования.

Техническим результатом заявляемого устройства является возможность выработки электрической энергии с возвратом утилизированного водорода в приемник, например, в бортовую систему для хранения или немедленного использования данного газа.

Указанный технический результат достигается следующей совокупностью существенных признаков: перезаряжаемая электрохимическая генерирующая электрический ток ЛВ, включающая герметичный контейнер со съемной крышкой, закрепленный в контейнере блок, состоящий из параллельно соединенных окисно-никелевых электродов, чередующихся с ними параллельно соединенных гидрофобизированных водородных электродов и разделяющих указанные окисно-никелевые и водородные электроды полипропиленовых сепараторов, содержащих в порах в качестве матричного электролита раствор КОН 30% концентрации; водородные электроды снабжены водородными камерами в виде плотно прилегающих к водородным электродам газодиффузионных никелевых сеток; отрицательный и положительный выводы блока через выводы вмонтированных в стенки контейнера герметичных проходных изоляторов предназначены для подключения либо к источнику тока для зарядки блока, либо к потребителю электроэнергии вырабатываемой ЛВ при разрядке блока; в стенку контейнера вварена труба, предназначенная для соединения полости контейнера с приемником водорода, на которой установлены клапан с приводом и регулятор давления водорода.

Целесообразно при этом для контроля давления установить на упомянутой трубе прибор для измерения давления (измеритель давления).

Сущность изобретения поясняется фиг. 1, на которой представлена конструкция ЛВ с приемником водорода.

ЛВ содержит блок 1, закрепленный в герметичном контейнере 8 со съемной крышкой 2. Блок 1 состоит из: соединенных параллельно окисно-никелевых электродов 11; соединенных параллельно водородных электродов 12 (например, из смеси небольшого количества платиновой черни с фторопластом на никелевой сетке); водородных камер 13, плотно прилегающих к водородным электродам; полипропиленовых сепараторов 14, разделяющих окисно-никелевые и водородные электроды и одновременно являющихся хранилищем матричного электролита, например, раствора KOH 30% концентрации.

В контейнере 8 при установленной и прижатой необходимым усилием Р крышке 2 процессы протекают при давлении до 4 МПа+0,1МПа (положение на фиг. 1 слева), при удалении крышки 2 (положение на фиг.1 справа) - при давлении окружающей среды.

Блок 1 должен выступать над верхней плоскостью контейнера 8 не меньше, чем на 50% его высоты.

Отрицательные и положительные выводы 6 блока 1 подключены к выводам вмонтированных в стенку контейнера герметичных проходных изоляторов 9, а через них, в соответствии с выполняемой на данный момент функцией, либо к источнику тока для зарядки блока 1, либо к потребителям энергии, вырабатываемой блоком при разряде.

Контейнер 8 соединен вваренной трубой 7 (состоит из нескольких участков, каждый участок обозначен на фиг. 1 как позиция 7) с бортовым приемником водорода 16, который снабжен баллонами 17, клапаном предохранительным (КП) 18 и датчиком давления (РТ) 19. Приемник водорода 16 в качестве вспомогательного оборудования представлен на фиг. 1 слева.

Вдоль трубы 7 расположены последовательно измеритель давления 15, клапан 4 с приводом и регулятор давления 3. Заряд блока 1 после подачи напряжения протекает по схеме:

2Ni(OH)→2NiOOH+H2.

При этом конечное напряжения заряда должно соответствовать нормам для никель-водородных аккумуляторов (1,55-1,58 В/элемент). При заряде блока 1 (положение крышки 2 слева) выполняется следующая последовательность операций:

- установка крышки 2 на верхней площадке контейнера 8, ее крепление, обеспечивающее работу в образовавшейся камере при давлении 4 МПа±0,1 Мпа;

- проверка герметичности по водороду, в том числе исправности уплотнений 5;

- фиксация нормального давления и перекрытие клапаном 4 трубы 7;

- подача напряжения заряда и доведение давления в камере контейнера 8 до 4МПа±0,1 МПа;

- открытие клапана 4, начало подачи водорода в приемник при работе регулятора давления 3 в режиме «4 МПа±0,1 Мпа давление в приемнике»;

- отключение напряжения заряда, при этом давление в камере контейнера 8 падает;

- закрытие клапана 4 между контейнером 8 и приемником водорода 16 после выравнивания давлений в камере контейнера 8 и в приемнике водорода 16.

Водород, находившийся в гидроокиси никеля, поступил в приемник.

После этого снимается крышка 2 контейнера 8 (положение крышки на фиг. 1 справа), блок 1 поглощает свободный водород и генерирует ток, при этом реакция протекает по схеме: H2+2NiOOH→2Ni(OH)2 при давлении окружающей среды.

Потом, при заряде блока 1, вновь отбирается водород у гидроокиси никеля и снова отправляется в приемник водорода 16.

При одной и той же емкости окисно-никелевого электрода интенсивность поглощения газа будет определяться количеством катализатора (платиновой черни) в активной массе водородного электрода и концентрацией водорода в окружающей среде.

При использовании гидрофобизированных водородных электродов 12 с количеством платиновой черни не менее 30 г/кв.м, в зависимости от ранее перечисленных факторов, предлагаемые ЛВ способны на 1 квт*ч емкости окисно-никелевого электрода в течение суток утилизировать от 4 до 8 г водорода и при этом генерировать электричество, соответственно от 0,06 до 0,12 квт*ч (B.C. Богоцкий,, A.M. Скундин «Химические источники тока», М., Энергоиздат, 1981 г).

Позиция 10, обозначенная как заземление, указывает на возможность использовать контейнер в качестве одного из выводов 6 блока 1.

Похожие патенты RU2715052C1

название год авторы номер документа
ГЕРМЕТИЧНЫЙ НИКЕЛЬ-КАДМИЕВЫЙ АККУМУЛЯТОР 2006
  • Шапот Михаил Борисович
  • Ужинов Борис Иванович
  • Ардабацкий Владимир Петрович
  • Столярская Одда Абрамовна
RU2304828C1
ВОДОРОДНО-КИСЛОРОДНЫЙ (ВОЗДУШНЫЙ) ТОПЛИВНЫЙ ЭЛЕМЕНТ-АККУМУЛЯТОР 2001
  • Каричев З.Р.
RU2204183C1
ГИДРИДНЫЙ ЭЛЕКТРОД И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 1992
  • Богатин Давид Ефимович
  • Ревзис Марк Аронович
RU2020657C1
АККУМУЛЯТОРНАЯ БАТАРЕЯ 1998
  • Баженов М.Д.
  • Громов В.В.
  • Карпеченков В.П.
  • Матренин В.И.
  • Стихин А.С.
  • Щипанов И.В.
RU2153211C2
СПОСОБ ФОРМИРОВКИ МЕТАЛЛ-ГИДРИДНОГО АККУМУЛЯТОРА 1992
  • Богатин Давид Ефимович
  • Ревзис Марк Аронович
RU2020656C1
СПОСОБ КОМПРИМИРОВАНИЯ ВОДОРОДА НА МЕТАЛЛ-ВОДОРОДНЫХ, СОЕДИНЕННЫХ МЕЖДУ СОБОЙ ЯЧЕЙКАХ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2000
  • Огнев Г.Л.
  • Челяев В.Ф.
RU2174643C1
СПОСОБ КОНТРОЛЯ ГЕРМЕТИЧНОСТИ МЕТАЛЛ-ВОДОРОДНОГО АККУМУЛЯТОРА 2004
  • Ковтун В.С.
  • Сагина Ж.В.
  • Баранчиков В.А.
  • Тугаенко В.Ю.
RU2262162C1
НИКЕЛЬ-ВОДОРОДНЫЙ АККУМУЛЯТОР С ДЛИТЕЛЬНЫМ ЦИКЛИЧЕСКИМ РЕСУРСОМ 2003
  • Лихоносов С.Д.
  • Павленко Е.А.
  • Щеколдин С.И.
RU2251177C1
СПОСОБ КОНТРОЛЯ ГЕРМЕТИЧНОСТИ МЕТАЛЛ-ВОДОРОДНОГО АККУМУЛЯТОРА 2004
  • Ковтун В.С.
  • Сагина Ж.В.
  • Баранчиков В.А.
  • Железняков А.Г.
RU2262780C1
ГЕРМЕТИЧНЫЙ НИКЕЛЬ - ВОДОРОДНЫЙ АККУМУЛЯТОР 1985
  • Галкин В.В.
  • Гучинская А.М.
  • Кулыга В.П.
  • Лапшин В.Ю.
  • Лихоносов С.Д.
  • Скоков Ю.В.
RU2044372C1

Иллюстрации к изобретению RU 2 715 052 C1

Реферат патента 2020 года Перезаряжаемая генерирующая электрический ток электрохимическая ловушка водорода

Изобретение относится к устройствам утилизации водорода в замкнутых помещениях, изолированных от внешней среды. Техническим результатом является возможность выработки электрической энергии с возвратом утилизированного водорода в приемник, например в бортовую систему для хранения или немедленного использования данного газа. Перезаряжаемая электрохимическая генерирующая электрический ток ловушка водорода содержит герметичный контейнер со съемной крышкой, закрепленный в контейнере блок, состоящий из параллельно соединенных окисно-никелевых электродов, чередующихся с ними параллельно соединенных водородных электродов и разделяющих указанные окисно-никелевые и водородные электроды полипропиленовых сепараторов, содержащих в порах в качестве матричного электролита раствор KOH 30% концентрации. Водородные электроды снабжены водородными камерами в виде плотно прилегающих к водородным электродам газодиффузионных никелевых сеток. Отрицательный и положительный выводы блока через выводы вмонтированных в стенки контейнера герметичных проходных изоляторов предназначены для подключения либо к источнику тока для зарядки блока, либо к потребителю электроэнергии, вырабатываемой ловушкой водорода при разрядке блока. В стенку контейнера вварена труба, предназначенная для соединения полости контейнера с приемником водорода, на которой установлены клапан с приводом и регулятор давления водорода и, при необходимости, измеритель давления. 2 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 715 052 C1

1. Перезаряжаемая электрохимическая генерирующая электрический ток электрохимическая ловушка водорода, характеризующаяся тем, что включает: приемник водорода; контейнер, выполненный герметичным и снабженный крышкой контейнера, при этом в контейнере закреплен блок, включающий параллельно соединенные окисно-никелевые электроды, чередующиеся с ними параллельно соединенные водородные электроды и разделяющие указанные окисно-никелевые и водородные электроды полипропиленовые сепараторы, содержащие в порах в качестве матричного электролита раствор KOH 30% концентрации, при этом водородные электроды снабжены водородными камерами в виде плотно прилегающих к водородным электродам газодиффузионных никелевых сеток; отрицательный и положительный выводы блока через выводы вмонтированных в стенки контейнера герметичных проходных изоляторов, подключенных при зарядке блока к источнику тока, а при разрядке блока - к потребителю электроэнергии, вырабатываемой ловушкой водорода, при этом в стенку контейнера вварена труба, соединяющая полости контейнера с приемником водорода, при этом на трубе установлены клапан с приводом и регулятор давления.

2. Ловушка водорода по п. 1, отличающаяся тем, что на трубе, соединяющей полости контейнера с приемником водорода, установлен измеритель давления.

3. Ловушка водорода по п. 1, отличающаяся тем, что крышка контейнера выполнена съемной.

Документы, цитированные в отчете о поиске Патент 2020 года RU2715052C1

СПОСОБ УТИЛИЗАЦИИ ВОДОРОДА И КИСЛОРОДА, ПРОДУВАЕМЫХ ИЗ ПОЛОСТЕЙ ЭЛЕКТРОХИМИЧЕСКОГО ГЕНЕРАТОРА ВОДОРОДОКИСЛОРОДНОГО ТИПА 1993
  • Аваков В.Б.
  • Бочаров В.А.
  • Зинин В.И.
  • Иванников С.А.
  • Кулаков Г.В.
RU2085436C1
НИКЕЛЬ-ВОДОРОДНЫЙ АККУМУЛЯТОР 1989
  • Лапшин В.Ю.
  • Галкин В.В.
  • Корниенко Е.Ф.
RU1649985C
US 4659554 A1, 21.04.1987
WO 201014684 A2, 04.02.2010.

RU 2 715 052 C1

Авторы

Солдатенко Марина Владимировна

Сундуков Иван Игоревич

Шиганов Дмитрий Анатольевич

Барзуков Сергей Николаевич

Даты

2020-02-25Публикация

2019-10-21Подача