Изобретение относится к устройствам утилизации водорода в замкнутых помещениях, изолированных от внешней среды.
Наиболее близкой по технической сущности является известная из способа утилизации водорода и кислорода (RU 2085436, Н01M 10/36, B63G 8/36) ловушка водорода (ЛВ), продуваемого из полостей электрохимического генератора (ЭХГ) водородокислородного типа, содержащая специальный контейнер (в терминологии источника «специальная охлаждаемая емкость», «интерметаллидный накопитель водорода»), в котором размещены интерметаллиды, например, CeLaNi5, и который охлаждается средой термостатирования ЭХГ. В контейнере за счет физико-химических свойств интерметаллида, например, CeLaNi5, при давлении газов над поверхностью интерметаллида 80-100 КПа, определяемом его температурой, происходит поглощение водорода при выделении тепла в этой реакции.
Недостатком этого устройства является применение интерметаллидов, затраты энергии на их охлаждение и осушку водорода перед утилизацией, а также проблемы регенерации интерметаллидов после использования.
Техническим результатом заявляемого устройства является возможность выработки электрической энергии с возвратом утилизированного водорода в приемник, например, в бортовую систему для хранения или немедленного использования данного газа.
Указанный технический результат достигается следующей совокупностью существенных признаков: перезаряжаемая электрохимическая генерирующая электрический ток ЛВ, включающая герметичный контейнер со съемной крышкой, закрепленный в контейнере блок, состоящий из параллельно соединенных окисно-никелевых электродов, чередующихся с ними параллельно соединенных гидрофобизированных водородных электродов и разделяющих указанные окисно-никелевые и водородные электроды полипропиленовых сепараторов, содержащих в порах в качестве матричного электролита раствор КОН 30% концентрации; водородные электроды снабжены водородными камерами в виде плотно прилегающих к водородным электродам газодиффузионных никелевых сеток; отрицательный и положительный выводы блока через выводы вмонтированных в стенки контейнера герметичных проходных изоляторов предназначены для подключения либо к источнику тока для зарядки блока, либо к потребителю электроэнергии вырабатываемой ЛВ при разрядке блока; в стенку контейнера вварена труба, предназначенная для соединения полости контейнера с приемником водорода, на которой установлены клапан с приводом и регулятор давления водорода.
Целесообразно при этом для контроля давления установить на упомянутой трубе прибор для измерения давления (измеритель давления).
Сущность изобретения поясняется фиг. 1, на которой представлена конструкция ЛВ с приемником водорода.
ЛВ содержит блок 1, закрепленный в герметичном контейнере 8 со съемной крышкой 2. Блок 1 состоит из: соединенных параллельно окисно-никелевых электродов 11; соединенных параллельно водородных электродов 12 (например, из смеси небольшого количества платиновой черни с фторопластом на никелевой сетке); водородных камер 13, плотно прилегающих к водородным электродам; полипропиленовых сепараторов 14, разделяющих окисно-никелевые и водородные электроды и одновременно являющихся хранилищем матричного электролита, например, раствора KOH 30% концентрации.
В контейнере 8 при установленной и прижатой необходимым усилием Р крышке 2 процессы протекают при давлении до 4 МПа+0,1МПа (положение на фиг. 1 слева), при удалении крышки 2 (положение на фиг.1 справа) - при давлении окружающей среды.
Блок 1 должен выступать над верхней плоскостью контейнера 8 не меньше, чем на 50% его высоты.
Отрицательные и положительные выводы 6 блока 1 подключены к выводам вмонтированных в стенку контейнера герметичных проходных изоляторов 9, а через них, в соответствии с выполняемой на данный момент функцией, либо к источнику тока для зарядки блока 1, либо к потребителям энергии, вырабатываемой блоком при разряде.
Контейнер 8 соединен вваренной трубой 7 (состоит из нескольких участков, каждый участок обозначен на фиг. 1 как позиция 7) с бортовым приемником водорода 16, который снабжен баллонами 17, клапаном предохранительным (КП) 18 и датчиком давления (РТ) 19. Приемник водорода 16 в качестве вспомогательного оборудования представлен на фиг. 1 слева.
Вдоль трубы 7 расположены последовательно измеритель давления 15, клапан 4 с приводом и регулятор давления 3. Заряд блока 1 после подачи напряжения протекает по схеме:
2Ni(OH)→2NiOOH+H2.
При этом конечное напряжения заряда должно соответствовать нормам для никель-водородных аккумуляторов (1,55-1,58 В/элемент). При заряде блока 1 (положение крышки 2 слева) выполняется следующая последовательность операций:
- установка крышки 2 на верхней площадке контейнера 8, ее крепление, обеспечивающее работу в образовавшейся камере при давлении 4 МПа±0,1 Мпа;
- проверка герметичности по водороду, в том числе исправности уплотнений 5;
- фиксация нормального давления и перекрытие клапаном 4 трубы 7;
- подача напряжения заряда и доведение давления в камере контейнера 8 до 4МПа±0,1 МПа;
- открытие клапана 4, начало подачи водорода в приемник при работе регулятора давления 3 в режиме «4 МПа±0,1 Мпа давление в приемнике»;
- отключение напряжения заряда, при этом давление в камере контейнера 8 падает;
- закрытие клапана 4 между контейнером 8 и приемником водорода 16 после выравнивания давлений в камере контейнера 8 и в приемнике водорода 16.
Водород, находившийся в гидроокиси никеля, поступил в приемник.
После этого снимается крышка 2 контейнера 8 (положение крышки на фиг. 1 справа), блок 1 поглощает свободный водород и генерирует ток, при этом реакция протекает по схеме: H2+2NiOOH→2Ni(OH)2 при давлении окружающей среды.
Потом, при заряде блока 1, вновь отбирается водород у гидроокиси никеля и снова отправляется в приемник водорода 16.
При одной и той же емкости окисно-никелевого электрода интенсивность поглощения газа будет определяться количеством катализатора (платиновой черни) в активной массе водородного электрода и концентрацией водорода в окружающей среде.
При использовании гидрофобизированных водородных электродов 12 с количеством платиновой черни не менее 30 г/кв.м, в зависимости от ранее перечисленных факторов, предлагаемые ЛВ способны на 1 квт*ч емкости окисно-никелевого электрода в течение суток утилизировать от 4 до 8 г водорода и при этом генерировать электричество, соответственно от 0,06 до 0,12 квт*ч (B.C. Богоцкий,, A.M. Скундин «Химические источники тока», М., Энергоиздат, 1981 г).
Позиция 10, обозначенная как заземление, указывает на возможность использовать контейнер в качестве одного из выводов 6 блока 1.
название | год | авторы | номер документа |
---|---|---|---|
ГЕРМЕТИЧНЫЙ НИКЕЛЬ-КАДМИЕВЫЙ АККУМУЛЯТОР | 2006 |
|
RU2304828C1 |
ВОДОРОДНО-КИСЛОРОДНЫЙ (ВОЗДУШНЫЙ) ТОПЛИВНЫЙ ЭЛЕМЕНТ-АККУМУЛЯТОР | 2001 |
|
RU2204183C1 |
ГИДРИДНЫЙ ЭЛЕКТРОД И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ | 1992 |
|
RU2020657C1 |
АККУМУЛЯТОРНАЯ БАТАРЕЯ | 1998 |
|
RU2153211C2 |
СПОСОБ ФОРМИРОВКИ МЕТАЛЛ-ГИДРИДНОГО АККУМУЛЯТОРА | 1992 |
|
RU2020656C1 |
СПОСОБ КОМПРИМИРОВАНИЯ ВОДОРОДА НА МЕТАЛЛ-ВОДОРОДНЫХ, СОЕДИНЕННЫХ МЕЖДУ СОБОЙ ЯЧЕЙКАХ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2000 |
|
RU2174643C1 |
СПОСОБ КОНТРОЛЯ ГЕРМЕТИЧНОСТИ МЕТАЛЛ-ВОДОРОДНОГО АККУМУЛЯТОРА | 2004 |
|
RU2262162C1 |
НИКЕЛЬ-ВОДОРОДНЫЙ АККУМУЛЯТОР С ДЛИТЕЛЬНЫМ ЦИКЛИЧЕСКИМ РЕСУРСОМ | 2003 |
|
RU2251177C1 |
СПОСОБ КОНТРОЛЯ ГЕРМЕТИЧНОСТИ МЕТАЛЛ-ВОДОРОДНОГО АККУМУЛЯТОРА | 2004 |
|
RU2262780C1 |
ГЕРМЕТИЧНЫЙ НИКЕЛЬ - ВОДОРОДНЫЙ АККУМУЛЯТОР | 1985 |
|
RU2044372C1 |
Изобретение относится к устройствам утилизации водорода в замкнутых помещениях, изолированных от внешней среды. Техническим результатом является возможность выработки электрической энергии с возвратом утилизированного водорода в приемник, например в бортовую систему для хранения или немедленного использования данного газа. Перезаряжаемая электрохимическая генерирующая электрический ток ловушка водорода содержит герметичный контейнер со съемной крышкой, закрепленный в контейнере блок, состоящий из параллельно соединенных окисно-никелевых электродов, чередующихся с ними параллельно соединенных водородных электродов и разделяющих указанные окисно-никелевые и водородные электроды полипропиленовых сепараторов, содержащих в порах в качестве матричного электролита раствор KOH 30% концентрации. Водородные электроды снабжены водородными камерами в виде плотно прилегающих к водородным электродам газодиффузионных никелевых сеток. Отрицательный и положительный выводы блока через выводы вмонтированных в стенки контейнера герметичных проходных изоляторов предназначены для подключения либо к источнику тока для зарядки блока, либо к потребителю электроэнергии, вырабатываемой ловушкой водорода при разрядке блока. В стенку контейнера вварена труба, предназначенная для соединения полости контейнера с приемником водорода, на которой установлены клапан с приводом и регулятор давления водорода и, при необходимости, измеритель давления. 2 з.п. ф-лы, 1 ил.
1. Перезаряжаемая электрохимическая генерирующая электрический ток электрохимическая ловушка водорода, характеризующаяся тем, что включает: приемник водорода; контейнер, выполненный герметичным и снабженный крышкой контейнера, при этом в контейнере закреплен блок, включающий параллельно соединенные окисно-никелевые электроды, чередующиеся с ними параллельно соединенные водородные электроды и разделяющие указанные окисно-никелевые и водородные электроды полипропиленовые сепараторы, содержащие в порах в качестве матричного электролита раствор KOH 30% концентрации, при этом водородные электроды снабжены водородными камерами в виде плотно прилегающих к водородным электродам газодиффузионных никелевых сеток; отрицательный и положительный выводы блока через выводы вмонтированных в стенки контейнера герметичных проходных изоляторов, подключенных при зарядке блока к источнику тока, а при разрядке блока - к потребителю электроэнергии, вырабатываемой ловушкой водорода, при этом в стенку контейнера вварена труба, соединяющая полости контейнера с приемником водорода, при этом на трубе установлены клапан с приводом и регулятор давления.
2. Ловушка водорода по п. 1, отличающаяся тем, что на трубе, соединяющей полости контейнера с приемником водорода, установлен измеритель давления.
3. Ловушка водорода по п. 1, отличающаяся тем, что крышка контейнера выполнена съемной.
СПОСОБ УТИЛИЗАЦИИ ВОДОРОДА И КИСЛОРОДА, ПРОДУВАЕМЫХ ИЗ ПОЛОСТЕЙ ЭЛЕКТРОХИМИЧЕСКОГО ГЕНЕРАТОРА ВОДОРОДОКИСЛОРОДНОГО ТИПА | 1993 |
|
RU2085436C1 |
НИКЕЛЬ-ВОДОРОДНЫЙ АККУМУЛЯТОР | 1989 |
|
RU1649985C |
US 4659554 A1, 21.04.1987 | |||
WO 201014684 A2, 04.02.2010. |
Авторы
Даты
2020-02-25—Публикация
2019-10-21—Подача