Полиуретановая композиция для покрытий Российский патент 2020 года по МПК C08L75/04 C09D175/04 C08G18/10 

Описание патента на изобретение RU2715541C1

Изобретение относится к области получения эластичных полиуретановых композиций, которые могут быть использованы в качестве защитного покрытия для дерева, бетона, стекла, металла.

Известна полиуретановая композиция для покрытий, содержащая полиоксипропилентриол с молекулярной массой 3600, полиизоцианат на основе 4,4'-дифенилметандиизоцианата, дифенилолпропан, растворитель (смесь ацетона, толуола и циклогексанона, масс. %: 33:33:34) и 2,4,6-трис-(диметиламинометил)-фенол (патент RU 2604069, МПК С08G18/00, С08G18/32, С08G18/48, С08G18/74, 2016).

Недостатками полиуретановой композиции являются низкие значения твердости и прочности при разрыве. Кроме того, этот способ предусматривает сложный состав растворителя: смесь ацетона, толуола и циклогексанона.

Известна полиуретановая композиция для покрытий, содержащая полиол 2,2-бис-[4-2-окситриэтокси)-фенил]-пропан, полиизоцианат на основе 4,4'-дифенилметандиизоцианата и растворитель (патент RU 2534773, МПК С09D175/08, C09G18/30, C09G18/32, C09G18/72, C09G18/76, 2014).

Недостатками полиуретановой композиции являются низкие значения начальной температуры разложения и температуры потери 50 % массы полимера, а также недостаточные прочностные свойства.

Наиболее близким по технической сущности и достигаемому эффекту является полиуретановая композиция, содержащая форполимер, полученный на основе 70 масс.ч. политетраметиленэфиргликоля с молекулярной массой 1950 и 200 масс.ч. 4,4'-дифенилметандиизоцианата при мольном соотношении OH:NCO-групп, равном 1:2, 80–100 масс.ч. диметилформамида, 36 масс.ч. гидроксилсодержащего соединения, 100–120 масс.ч. бората метилфосфита и 15–18 масс.ч. глицидилметакрилата (патент RU 2391362, МПК C08L75/04, C08K3/32, C08K5/053, C08K5/103, C08G18/10, C09D175/04, C09K21/12, 2010).

Недостатком данного способа является сложная технология получения двух полимеров, предусматривающая использование глицидилметакрилата – токсичного реагента и образование структуры взаимопроникающих полимерных сеток, что существенно увеличивает продолжительность процесса получения конечной полиуретановой композиции.

Задачей предлагаемого изобретения является создание термо- и огнестойкой полиуретановой композиции для покрытий, обладающей водо- и маслостойкостью.

Техническим результатом является повышение твердости покрытия из полиуретановой композиции, ее водо- и маслостойкости, при сохранении термо- и огнестойкости.

Представленный технический результат достигается при использовании полиуретановой композиции для покрытий, содержащей форполимер, полученный на основе политетраметиленэфиргликоля с молекулярной массой 1950 и 4,4'-дифенилметандиизоцианата при мольном соотношении ОН:NCO-групп, равном 1:2, диметилформамид и модифицирующую добавку, при этом в качестве модифицирующей добавки композиция содержит 28-32 масс.% дисперсию метилфосфита металла, выбранного из ряда алюминий, кальций, магний, никель, в диметилформамиде, при следующем соотношении компонентов композиции, масс.ч.:

Политетраметиленэфиргликоль 770

4,4'-дифенилметандиизоцианат 200

Диаминопропан 29

Метилфосфит металла 29–97

Диметилформамид 460–625

Использование в предлагаемой полиуретановой композиции в качестве модифицирующей добавки дисперсии метилфосфита (МФ) металла, выбранного из ряда алюминий, кальций, магний, никель в диметилформамиде, в количествах, представленных ниже, приводит к увеличению водо- и маслостойкости покрытия, а также позволяет получать полиуретан с высокими значениями твердости и прочности, при этом относительное удлинение соответствует исходному полиуретану.

Равномерное распределение метилфосфита металла в структуре полиуретана и возникновение регулярных центров повышенной плотности обеспечивает высокие значения твердости и прочности при разрыве полиуретанового покрытия, а также повышение термостойкости композиции.

В результате синергетического действия атомов металлов из ряда алюминий, кальций, магний, никель, входящих в состав метилфосфита металла, и атомов фосфора, происходит увеличение огнестойкости покрытия.

Количественное соотношение компонентов в рассматриваемой полиуретановой композиции оптимизировано таким образом, чтобы получить покрытие с заявляемыми свойствами. Уменьшение содержания метилфосфита металла ниже заявленного значения не позволяет увеличить термо- и огнестойкость покрытия, а повышение приводит к ухудшению эластичных свойств полимера ввиду чрезмерного количества центров повышенной плотности в структуре полимера.

Содержание метилфосфита металла в диметилформамиде должно составлять не более 32 масс.%, так как большее его содержание не позволяет получать равновесную тонкую дисперсию метилфосфита металла в растворителе, но и не менее 28 масс.%, так как большее количество диметилформамида в дисперсии приводит к разбавлению полиуретановой композиции и увеличивает время её отверждения.

Характеристика веществ, используемых в композиции:

– Метилфосфит алюминия получен по известной методике (патент RU 2152949, МПК С07F9/142, 2000). Метилфосфиты кальция, магния, никеля получены по аналогичной методике.

– Полиизоцианат на основе 4,4'-дифенилметандиизоцианата (ДМИ) торговой марки Суризон или Суризон П 85 по ТУ 113-03-29-84.

– Политетраметиленэфиргликоль (ПТМЭГ) ТУ 6-02-646-81.

– Диаминопропан, регистрационный номер CAS 109-76-2.

– Диметилформамид (ДМФ) ГОСТ 20289-74.

Полиуретановую композицию для покрытий получают следующим образом. В качестве исходного синтезируют форполимер в результате взаимодействия политетраметиленэфиргликоля с молекулярной массой 1950 и 4,4'-дифенилметандиизоцианата при мольном соотношении 1:2. Для этого в реактор, прогретый до температуры 60±2°С, загружают политетраметиленэфиргликоль (гидроксильное число 57) и 4,4'- дифенилметандиизоцианат. При перемешивании увеличивают температуру реакционной массы до 70±2°С, процесс продолжают при той же температуре в течение 30 минут. Контроль за протеканием реакции осуществляют по нарастанию вязкости реакционной массы. Образовавшийся форполимер с молекулярной массой 2500 содержит 3,4 % NCO-групп.

Реактор, содержащий форполимер, охлаждают до 10±2°С и с помощью делительной воронки вносят раствор диаминопропана (ДАП) в диметилформамиде при мольном соотношении форполимер:диаминопропан равном 1:1, таким образом, чтобы весь объем отдозировался в течение 30 минут, при этом температура реакционной массы самопроизвольно повышается до нормальной. Синтез ведут при постоянном перемешивании в инертной среде. Контроль за протеканием реакции осуществляют по нарастанию вязкости реакционной системы и по содержанию NCO-групп.

Метилфосфит металла предварительно диспергируют в среде диметилформамида на шариковой мельнице при нормальных условиях в течение 20 минут при массовом соотношении метилфосфит металла:диметилформамид=1:(2,1-2,6). В реактор, содержащий раствор полиуретана, вводят расчетное количество дисперсии метилфосфита металла в диметилформамиде. Реакционную массу перемешивают с помощью якорной мешалки в течение 20–30 минут.

Готовые полиуретановые композиции наносят на стеклянную поверхность и выдерживают при температуре 20±2 °С в течение 20 ч и при 80±10 °С в течение 2 часов.

В таблице 1 приведен состав полиуретановых композиций.

Таблица 1.

Количество компонентов, масс.ч. ПТЭМГ ДМИ ДАП МФ металла ДМФ Al Mg Ca Ni Пример 1 770 200 29 29 - - - 460 Пример 2 770 200 29 - 29 - - 460 Пример 3 770 200 29 - - 29 - 460 Пример 4 770 200 29 - - - 29 460 Пример 5 770 200 29 49 - - - 510 Пример 6 770 200 29 - 49 - - 510 Пример 7 770 200 29 - - 49 - 510 Пример 8 770 200 29 - - - 49 510 Пример 9 770 200 29 78 - - - 585 Пример 10 770 200 29 - 78 - - 585 Пример 11 770 200 29 - - 78 - 585 Пример 12 770 200 29 - - - 78 585 Пример 13 770 200 29 97 - - - 625 Пример 14 770 200 29 - 97 - - 625 Пример 15 770 200 29 - - 97 - 625 Пример 16 770 200 29 - - - 97 625

Испытания физико-механических показателей полиуретанов проводили после двухнедельной выдержки образцов в нормальных условиях в соответствии с ГОСТ 14236-81. Относительную твердость покрытия на стеклянной пластине определяли по отношению к твердости стекла на маятниковом приборе марки МЭ–3 по ГОСТ 5233–67. Испытания пленки на водо- и маслостойкость определяли по равновесной степени набухания: по массе поглощенной жидкости (воды, или трансформаторного масла), согласно ГОСТ 7516-75. Адгезию определяли методом решетчатых надрезов покрытия на стальной пластинке согласно ГОСТ 15140-78. Термостойкость оценивали по значениям начальной температуры разложения (Тнач.°C), и температуры потери 50% массы (Т50%,°C), определяемых по данным термогравиметрического анализа при скорости нагревания 2°C/мин в соответствии с ГОСТ 29127-91. Исследование огнестойкости образцов проводится в соответствии с методикой, согласно которой горючесть образцов оценивалась по времени горения (тления) и потере массы образцов после воздействия источника открытого пламени по ГОСТ 21207-81.

Результаты исследований представлены в таблице 2.

Из данных таблицы 2 видно, что полученные полиуретановые композиции, характеризуются высокими значениями твердости и прочности при разрыве, которые возрастают с увеличением содержания метилфосфитов металлов в образцах до 54% и 18% соответственно относительно немодифицированного полиуретана. Эластичные свойства полиуретановой композиции при содержание метилфосфита металла не превышающем 78 масс.ч., остаются на высоком уровне соответствующем исходному полимеру. Увеличение степени набухания в воде и в трансформаторном масле с увеличением содержания метилфосфита алюминия и метилфосфита никеля в образцах не превышает 4,2% и 13,3% соответственно и ниже значений немодифицированного образца в два раза. Все изученные образцы характеризуются высокой адгезией покрытия к основе. Кроме того, анализ данных таблицы 2, свидетельствует о повышении термоокислительной устойчивости композиций. Так, температура начала деструктивного течения увеличивается на 36–50°С, а температуры потери массы сдвигаются в область более высоких значений. Содержание в полиуретановой композиции 78 масс.ч. и более метилфосфитов алюминия и никеля позволяет получать самозатухающий полимер с низкой (2 масс.%) потерей массы образца.

Таблица 2

Примеры полиуретановой композиции Физико-механические показатели Относительная твердость, усл.ед σразр,
МПа
εотн,
%
εост,
%
Равновесная степень набухания, масс.% Адгезия покрытия к основе, балл Тнач,
°С
Температура потери массы,
°С
Время тления, с Потеря массы, %
вода масло 10 % 20 % 50 % 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Прототип
(Патент RU 2391362, пример 3)
- 65 840 - - - - - - - 435 3 2,5
Немодифицирован-ный полиуретан 0,44 54 820 8 4,8 20,2 1 190 250 300 330 12 19 Пример 1
Пример 2
Пример 3
Пример 4
Пример 5
Пример 6
Пример 7
Пример 8
0,56
0,54
0,55
0,58
0,58
0,56
0,58
0,60
54
54
55
55
61
56
56
60
834
830
830
832
840
832
834
846
9
9
9
8
9
9
9
8
2,4
2,5
2,6
2,3
2,4
2,6
2,6
2,3
7,4
7,6
8,2
7,5
7,4
7,8
8,9
7,5
1
1
1
1
1
1
1
1
228
228
226
231
236
230
228
242
274
270
274
280
296
288
292
314
306
308
310
326
324
320
316
332
388
370
364
398
395
376
370
405
6
8
10
6
4
6
7
4
8
9
10
7
3
6
6
3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 Пример 9
Пример 10
Пример 11
Пример 12
Пример 13
Пример 14
Пример 15
Пример 16
0,64
0,58
0,60
0,65
0,66
0,60
0,64
0,68
65
58
60
68
60
52
50
62
822
810
815
834
802
804
786
810
9
9
9
8
11
13
15
11
2,4
2,8
3,0
2,4
2,5
3,0
3,6
2,5
7,5
9,2
9,6
7,6
8,3
10,4
11,0
8,5
1
1
1
1
1
1
1
1
244
232
232
248
253
248
246
260
315
308
302
316
328
316
310
328
333
330
325
344
350
342
336
352
428
388
385
435
430
398
388
436
3
5
5
3
2
4
4
2
2
3
4
2
2
3
3
2

Таким образом, покрытия из полиуретановой композиции, содержащей форполимер, полученный на основе политетраметиленэфиргликоля с молекулярной массой 1950 и 4,4'-дифенилметандиизоцианата при мольном соотношении ОН:NCO-групп, равном 1:2, диметилформамид и модифицирующую добавку – 28-32 масс.% дисперсию метилфосфита металла, выбранного из ряда алюминий, кальций, магний, никель, в диметилформамиде, при заявленном соотношении компонентов обладает повышенной твердостью, водо- и маслостойкостью, при сохранении термо- и огнестойкости покрытия.

Похожие патенты RU2715541C1

название год авторы номер документа
ПОЛИУРЕТАНОВАЯ КОМПОЗИЦИЯ ДЛЯ ПОКРЫТИЙ 2008
  • Васильева Валентина Дмитриевна
  • Орлова Светлана Авасхановна
  • Бондаренко Сергей Николаевич
  • Дербишер Вячеслав Евгеньевич
  • Тужиков Олег Иванович
RU2391362C2
ИСКУССТВЕННАЯ КОЖА 2006
  • Васильева Валентина Дмитриевна
  • Дербишер Вячеслав Евгеньевич
  • Дербишер Евгения Вячеславовна
  • Орлова Светлана Авасхановна
  • Бондаренко Сергей Николаевич
RU2307208C1
СПОСОБ ПОЛУЧЕНИЯ ФОСФОРБОРСОДЕРЖАЩИХ ПОЛИУРЕТАНОВ 2004
  • Орлова Сетлана Авасхановна
  • Бондаренко Сергей Николаевич
RU2275388C2
ФОСФОРБОРСОДЕРЖАЩИЕ ПОЛИОЛЫ В КАЧЕСТВЕ ИНГИБИТОРОВ ГОРЕНИЯ ЭЛАСТОМЕРНЫХ МАТЕРИАЛОВ НА ОСНОВЕ ПОЛИУРЕТАНОВ 2004
  • Орлова Светлана Авасхановна
  • Бондаренко Сергей Николаевич
RU2270206C1
ИСКУССТВЕННАЯ КОЖА 1998
  • Дербишер В.Е.
  • Кокорина Т.М.
  • Дербишер Е.В.
  • Орлова С.А.
RU2142030C1
ПОЛИУРЕТАНОВАЯ КОМПОЗИЦИЯ ДЛЯ ПОКРЫТИЙ 2013
  • Бакирова Индира Наилевна
  • Галкина Наталья Викторовна
  • Розенталь Наталия Александровна
  • Самуилов Яков Дмитриевич
  • Пасерб Мария Александровна
  • Митрофанова Светлана Евгеньевна
RU2534773C1
СОСТАВ ДЛЯ ПОЛУЧЕНИЯ ПОКРЫТИЙ 2012
  • Чухланов Владимир Юрьевич
  • Ионова Мария Анатольевна
  • Селиванова Нина Васильевна
  • Трифонова Татьяна Анатольевна
  • Селиванов Олег Григорьевич
  • Ширкин Леонид Алексеевич
RU2521582C1
СПОСОБ ОБРАБОТКИ ТЕКСТИЛЬНЫХ МАТЕРИАЛОВ 2006
  • Васильева Валентина Дмитриевна
  • Дербишер Вячеслав Евгеньевич
  • Дербишер Евгения Вячеславовна
  • Орлова Светлана Авасхановна
  • Бондаренко Сергей Николаевич
RU2307207C1
ПОЛИУРЕТАНОВАЯ КОМПОЗИЦИЯ ДЛЯ ПОЛУЧЕНИЯ ШУМОЗАЩИТНЫХ ПОКРЫТИЙ ПО ЛИТЬЕВОЙ ТЕХНОЛОГИИ 2009
  • Ионов Алексей Владимирович
  • Бувайло Лариса Евгеньевна
  • Старостина Татьяна Васильевна
  • Старостин Александр Петрович
  • Титова Нина Сергеевна
  • Волкова Марина Владимировна
RU2423403C2
ПОЛИУРЕТАНОВАЯ ЗАЩИТНАЯ КОМПОЗИЦИЯ 2016
  • Давлетбаева Ильсия Муллаяновна
  • Давлетбаев Руслан Сагитович
  • Гумеров Асхат Мухаметзянович
  • Зарипов Ильназ Ильдарович
  • Гребенщикова Екатерина Сергеевна
  • Мазильников Александр Иванович
RU2626358C1

Реферат патента 2020 года Полиуретановая композиция для покрытий

Изобретение относится к полимерной промышленности и может быть использовано в качестве защитного покрытия для дерева, бетона, стекла, металла. Полиуретановая композиции содержит компоненты при следующем соотношении, мас.ч: политетраметиленэфиргликоль (770), 4,4'-дифенилметандиизоцианат (200), диаминопропан (29), метилфосфит металла (29–97), диметилформамид (460–625). Молекулярная масса политетраметиленэфиргликоля составляет 1950. Мольное соотношение ОН:NCO-групп в 4,4'-дифенилметандиизоцианате равно 1:2. В качестве модифицирующей добавки композиция содержит 28-32 мас.% дисперсии метилфосфита металла, выбранного из ряда: алюминий, кальций, магний, никель, в диметилформамиде. Обеспечивается повышение твердости покрытия из полиуретановой композиции, ее водо- и маслостойкости при сохранении термо- и огнестойкости. 2 табл., 16 пр.

Формула изобретения RU 2 715 541 C1

Полиуретановая композиция для покрытий, содержащая форполимер, полученный на основе политетраметиленэфиргликоля с молекулярной массой 1950 и 4,4'-дифенилметандиизоцианата при мольном соотношении ОН:NCO-групп, равном 1:2, диметилформамид и модифицирующую добавку, отличающаяся тем, что в качестве модифицирующей добавки композиция содержит 28–32 мас.% дисперсии метилфосфита металла, выбранного из ряда: алюминий, кальций, магний, никель, в диметилформамиде, при следующем соотношении компонентов композиции, мас.ч.:

Политетраметиленэфиргликоль 770 4,4'-Дифенилметандиизоцианат 200 Диаминопропан 29 Метилфосфит металла 29–97 Диметилформамид 460–625

Документы, цитированные в отчете о поиске Патент 2020 года RU2715541C1

ПОЛИУРЕТАНОВАЯ КОМПОЗИЦИЯ ДЛЯ ПОКРЫТИЙ 2008
  • Васильева Валентина Дмитриевна
  • Орлова Светлана Авасхановна
  • Бондаренко Сергей Николаевич
  • Дербишер Вячеслав Евгеньевич
  • Тужиков Олег Иванович
RU2391362C2
СПОСОБ ПОЛУЧЕНИЯ ФОСФОРБОРСОДЕРЖАЩИХ ПОЛИУРЕТАНОВ 2004
  • Орлова Сетлана Авасхановна
  • Бондаренко Сергей Николаевич
RU2275388C2
Способ приготовления мыла 1923
  • Петров Г.С.
  • Таланцев З.М.
SU2004A1
KR 1020060052075 A, 19.05.2006.

RU 2 715 541 C1

Авторы

Орлова Светлана Авасхановна

Тужиков Олег Олегович

Тужиков Олег Иванович

Лавникова Ирина Владимировна

Даты

2020-02-28Публикация

2019-06-26Подача