Способ роста эпитаксиальных слоев карбида кремния р-типа проводимости с малой плотностью базальных дислокаций Российский патент 2020 года по МПК H01L21/205 

Описание патента на изобретение RU2716866C1

Изобретение относится к области полупроводниковой техники и может быть использовано при росте эпитаксиальных слоев карбида кремния (SiC) с малой плотностью базальных дислокаций.

Ключевой технологией в создании биполярных полупроводниковых приборов на основе карбида кремния является технология роста эпитаксиальных слоев (ЭС) карбида кремния р-типа проводимости с низкой плотностью базальных дислокаций. Это обусловлено тем, что именно на основе этого технологического процесса создаются полупроводниковые структуры электронных приборов на SiC. ЭС полупроводниковых приборов, как правило, создаются на основе SiC 4Н-политипа.

В настоящее время основным методом роста эпитаксиальных слоев (ЭС) SiC р-типа проводимости является метод высокотемпературного газофазного осаждения - CVD-метод (ChemicalVaporDeposition). При использовании этого метода рост ЭС р-типа проводимости проводится в ростовой ячейке установки эпитаксии на поверхности пластины монокристаллического SiC (подложки) n-типа проводимости.

Сущность метода CVD заключается в том, что потоком газа-носителя, в качестве которого обычно используется водород, в ростовую ячейку, в которой установлена подложка, доставляются газы-источники кремния и углерода. В качестве кремниевого источника используется моносилан (SiH4), в качестве углеродного источника - пропан (С3Н8).

В горячей зоне ростовой ячейки происходит разложение газов-источников. Типичная температура при проведении высокотемпературного газофазного осаждения карбида кремния составляет 1500-1650°С.

Продукты разложения источников адсорбируются на поверхности подложки и разлагаются на ней окончательно с образованием атомов кремния и углерода, которые встраиваются в кристаллическую структуру растущего слоя, обеспечивая тем самым рост эпитаксиальных слоев.

Для обеспечения требуемого уровня легирования в ростовую ячейку в процессе роста эпитаксиального слоя подаются пары источника легирующей примеси - триметилалюминия (Al(СН3)3) для легирования ЭС р-типа проводимости.

В процессе эпитаксии SiC методом CVD возникают дефекты.

На Рис. 1 приведен внешний вид основных дефектов, наблюдаемых в 4H-SiC(0001) эпитаксиальных слоях (TED- винтовая дислокация, BPD - базальная дислокация).

Наиболее опасными дефектами для биполярных полупроводниковых приборов являются базальные дислокации (BPD).

Они вызывают деградацию прямой и обратной ветви вольт-амперной характеристики (ВАХ) биполярных приборов на основе карбида кремния. Это выражается в увеличении прямого напряжения и токов утечки приборов при их работе.

Это явление является губительным для надежности биполярных приборов, созданных на SiC.

В настоящее время проблема с наличием базальных дислокаций в эпитаксиальных слоях карбида кремния р-типа проводимости является главной причиной, сдерживающей развитие биполярных приборов на основе карбида кремния. Для производства биполярных приборов величина плотности BPD не должна превышать 1 см-2.

Известен способ роста ЭС с малой плотностью базальных дислокаций [1], в котором для снижения плотности базальных дислокаций в эпитаксиальных структурах SiC рост ЭС осуществляют на подложках монокристаллического SiC, у которых поверхность подложки ориентирована по кристаллографической плоскости с индексами Миллера-Бравэ (1120).

Данный способ достаточно прост, однако, выращенных этим способом ЭС SiC возникает недопустимо большое количество дефектов, а также они имеют недопустимо высокую шероховатость поверхности. Это делает данный способ неприемлемым для роста эпитаксиальных слоев р-типа проводимости.

Известен способ роста ЭС SiC с малой плотностью базальных дислокаций [2]. В этом способе для роста эпитаксиального слоя используется подложка монокристаллического SiC4H-политипа, у которой поверхность разориентирована по отношению к кристаллографической плоскости с индексами Миллера-Бравэ (1120) более 0°, но не более 8°. До начала роста ЭС SiC поверхность подложки травится в водороде, силане или аргоне при температуре от 1450°С до 1800°С при давлении газа от 30 до 500 мбар. Время травления составляет не более 90 мин. Затем на травленой поверхности подложки растится буферный слой монокристаллического SiC толщиной от 0,5 до 30 мкм, легированный азотом (N+) или фосфором (Р+), на поверхности которого растится эпитаксиальный слой монокристаллического карбида кремния.

Недостатком данного метода является то, что плотность дефектов, в выращенных таким способом ЭС, часто оказывается недопустимо высокой. Причиной этого является то, что величина концентрации легирующей примеси - алюминия (NA) в буферном слое ЭС, создаваемой этим способом может быть более чем 8⋅1018 см-3. Как известно [3, 4] это может приводить к возникновению большего количества дислокаций и других дефектов кристаллической решетки SiC.

Предлагается способ роста эпитаксиальных слоев карбида кремния р-типа проводимости с малой плотностью базальных дислокаций устраняющий перечисленные выше недостатки. Способ заключается в том, что также как в известном способе для роста ЭС SiC используется подложка SiC, поверхность, которой разориентирована относительно кристаллографической плоскости Миллера-Бравэ (1120) более чем на 0°, но не более чем на 8° (рис. 2). Поверхность подложки с одной стороны травится в водороде, силане или аргоне при температуре не менее 1450°С и не более 1800°С и давлении водорода не менее 30 мбар и не более 500 мбар в течение не более 90 минут, после чего на травленной поверхности подложки растится буферный слой SiC р-типа проводимости с толщиной не менее 1 мкм и не более 50 мкм, на поверхности которого растится эпитаксиальный слой SiC р-типа проводимости.

На Рис. 2 показан эпитаксиальный слой карбида кремния р-типа проводимости и буферный слой карбида кремния р-типа проводимости, выращенные на подложке карбида кремния n-типа проводимости.

Однако, в отличие от известного способа [2], при использовании предлагаемого способа в процессе роста буферного слоя р-типа проводимости осуществляется контроль за величиной отношения объема газа-источника легирующей примеси, поступающего в ростовую ячейку (Vлег) к общему объему газов поступающих в ростовую ячейку (Vобщ), в том числе: газа-носителя, газов-источников кремния, углерода и легирующей примеси. В соответствии с предлагаемым способом для обеспечения малой плотности эпитаксиальных дефектов в выращенном эпитаксиальном слое, в процессе роста буферного слоя величина этого отношения должна удовлетворять соотношению

где m - величина отношения, при котором концентрация легирующей примеси в выращенном буферном слое р-типа проводимости равна 8⋅1018 см-3.

В [3, 4] представлена подробная информация о влиянии условий роста ЭС на их свойства, в частности, указано, что при высоких концентрациях легирующей примеси (≥8⋅1018 см-3) в кристаллической решетке SiC возникает много дефектов, вследствие чего в ЭС в процессе ее роста возникает значительное количество эпитаксиальных дефектов.

Величина концентрации легирующей примеси в эпитаксиальном слое р-типа проводимости пропорциональна величине отношения объема паров источника легирующей примеси р-типа проводимости, поступающих в ростовую ячейку (Vлег) к общему объему газов поступающих в ростовую ячейку (Vобщ), в том числе: газа-носителя, газов-источников кремния, углерода и паров легирующей примеси, поэтому для обеспечения малой плотности эпитаксиальных дефектов в выращенном эпитаксиальном слое р-типа проводимости, в процессе роста буферного слоя р-типа проводимости, необходимо чтобы выполнялось соотношение (1).

С целью проверки предлагаемого способа на установке VP508GFR (фирмы Aixtron) проводился рост ЭС карбида кремния р-типа проводимости.

При выполнении этой работы были изготовлены три опытных партий ЭС SiC в количестве по 3 шт. в каждой.

В качестве подложки в них использовались одинаковые подложки с малой (≤1000 см-2) плотностью BPD типа W4NPE4C-B200 изготовленные компанией CreeInc. (США) n-типа проводимости 4-Н политипа диаметром 100,0 мм. Они имели разориентацию базовой плоскости относительно кристаллографической оси 4±0,5°. До начала роста ЭС поверхности всех подложек протравлены в водороде при температуре 1650°С и давлении 100 мБар в течение 15 минут. После этого на травленной поверхности для ЭС всех партий выращивались буферные слои толщиной 10 мкм. При их выращивании в реактор подавался газ носитель - водород (Н2) в объеме 60 л/мин, газ источник кремния - моносилан (SiH4) в объеме 150 мл/мин, газ источник углерода - пропан (С3Н8) в объеме 65 мл/мин. В качестве источника легирующей примеси р-типа проводимости использовался триметилалюминий. Величина его объема, подаваемого в реактор для партий 1-3, приведена в таблице 1. Затем на поверхности буферного слоя р-типа проводимости выращивался эпитаксиальный слой р-типа проводимости с концентрацией легирующей примеси 8⋅1015 см-3 толщиной 6 мкм.

На выращенных ЭС проводился контроль основных параметров: толщины, концентрации легирующей примеси, плотности эпитаксиальных дефектов.

Контроль толщины выращенных буферного и эпитаксиального слоев р-типа проводимости проводился на установке ИК Фурье спектрометр Nicolet 6700.

Контроль концентрации легирующей примеси в буферном и эпитаксиальном слоях р-типа проводимости проводился на установке ртутный зонд CVMap 92А.

Контроль плотности эпитаксиальных дефектов проводился с использованием оптического микроскопа Nikon LV100D.

Все вышеперечисленные виды контроля проводились на основе методов разработанных авторами [5].

Контроль плотности BPD проводился с использованием оптического микроскопа Nikon LV100D с предварительным травлением поверхности эпитаксиального слоя р-типа проводимости в расплаве KOH при температуре 500°С в течении 20 мин.

Результаты испытаний приведены в таблице 1.

где Nб - среднеарифметическое значение величины концентрации легирующей примеси в буферном слое ЭС р-типа проводимости для опытных партий;

NЭС - среднеарифметическое значение плотности эпитаксиальных дефектов для опытных партий.

Результаты.

Из приведенных в таблице данных, следует, что при значениях Nб≤8⋅1018 см-3 (k=0,013) величина NЭС имеет допустимые значения (≤1 см-2). При значениях Nб>8⋅1018 см-3 величина NЭС становится недопустимо высокой. Это свидетельствует о высокой эффективности предлагаемого способа.

Список используемых источников

[1] N. Thierry-Jebali, J. Hassan, M. Lazar, D. Planson, E. Bano, etall. Observation of the generation of stacking faults and active degradation measurements off-axis and on-axis 4H-SiC PiN diodes// Applied Physics Letters, American Institute of Physics. - 2012 - P. 8.

[2] Pat. US 20140190399. Reduction of basal plane dislocations in epitaxial SiC using an in-situ etch process/ Appl. No US 14/204.045. - 10.07.2014.

[3] Kimoto T. Cooper J.A. Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices and Application // 2014.

[4] La Via F. Silicon Carbide Epitaxy // CNR-IMM, Z.I. Strada VIII 5, 95121 Catania, Italy-2012.

[5] Geyfman E.M., Chibirkin V.V. Gartsev N.A., and at. Complex study of SiC epitaxial films / Silicon Carbide and Related Materials (2012), p. 593-596.

Похожие патенты RU2716866C1

название год авторы номер документа
Способ роста эпитаксиальной структуры монокристаллического карбида кремния с малой плотностью эпитаксиальных дефектов 2018
  • Гейфман Евгений Моисеевич
  • Чибиркин Владимир Васильевич
  • Каменцев Геннадий Юрьевич
  • Гарцев Николай Александрович
  • Наркаева Ирина Владимировна
RU2691772C1
МЕТОД ВЫРАЩИВАНИЯ НЕПОЛЯРНЫХ ЭПИТАКСИАЛЬНЫХ ГЕТЕРОСТРУКТУР НА ОСНОВЕ НИТРИДОВ ЭЛЕМЕНТОВ III ГРУППЫ 2006
  • Абрамов Владимир Семенович
  • Сощин Наум Петрович
  • Сушков Валерий Петрович
  • Щербаков Николай Валентинович
  • Аленков Владимир Владимирович
  • Сахаров Сергей Александрович
  • Горбылев Владимир Александрович
RU2315135C2
СЛОИСТАЯ ПОДЛОЖКА ИЗ ПОЛУПРОВОДНИКОВОГО СОЕДИНЕНИЯ, СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ И ПОЛУПРОВОДНИКОВЫЙ ЭЛЕМЕНТ 2018
  • Нагасава, Хироюки
  • Кубота, Йосихиро
  • Акияма, Содзи
RU2753180C2
СПОСОБ И УСТАНОВКА ДЛЯ ЭПИТАКСИАЛЬНОГО ВЫРАЩИВАНИЯ ПОЛУПРОВОДНИКОВ ТИПА III-V, УСТРОЙСТВО ГЕНЕРАЦИИ НИЗКОТЕМПЕРАТУРНОЙ ПЛАЗМЫ ВЫСОКОЙ ПЛОТНОСТИ, ЭПИТАКСИАЛЬНЫЙ СЛОЙ НИТРИДА МЕТАЛЛА, ЭПИТАКСИАЛЬНАЯ ГЕТЕРОСТРУКТУРА НИТРИДА МЕТАЛЛА И ПОЛУПРОВОДНИК 2006
  • Фон Кенель Ганс
RU2462786C2
СПОСОБ ПОЛУЧЕНИЯ ЭПИТАКСИАЛЬНЫХ СЛОЕВ КАРБИДА КРЕМНИЯ (ВАРИАНТЫ), СТРУКТУРА КАРБИДА КРЕМНИЯ (ВАРИАНТЫ) 1995
  • Владимир А.Дмитриев
  • Светлана В.Рендакова
  • Владимир А.Иванцов
  • Келвин Х. Картер
RU2142027C1
СПОСОБ ВЫРАЩИВАНИЯ ПОЛУПРОВОДНИКА И ПОЛУПРОВОДНИКОВОЕ УСТРОЙСТВО 2009
  • Лобода,Марк
RU2520283C2
Светоизлучающий диод на кремниевой подложке 2021
  • Гращенко Александр Сергеевич
  • Кукушкин Сергей Арсеньевич
  • Марков Лев Константинович
  • Николаев Андрей Евгеньевич
  • Осипов Андрей Викторович
  • Павлюченко Алексей Сергеевич
  • Святец Генадий Викторович
  • Смирнова Ирина Павловна
  • Цацульников Андрей Федорович
RU2755933C1
СПОСОБ ЭПИТАКСИАЛЬНОГО ВЫРАЩИВАНИЯ КАРБИДА КРЕМНИЯ ПОЛИТИПА 4H 1980
  • Водаков Ю.А.
  • Мохов Е.Н.
SU913762A1
СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОГО СЛОЯ ГЕТЕРОСТРУКТУРЫ КАРБИДА КРЕМНИЯ НА ПОДЛОЖКЕ КРЕМНИЯ 2016
  • Чепурнов Виктор Иванович
  • Долгополов Михаил Вячеславович
  • Гурская Альбина Валентиновна
  • Латухина Наталья Виленовна
RU2653398C2
Кристалл ультрабыстрого высоковольтного арсенид-галлиевого диода 2022
  • Войтович Виктор Евгеньевич
  • Гордеев Александр Иванович
RU2801075C1

Иллюстрации к изобретению RU 2 716 866 C1

Реферат патента 2020 года Способ роста эпитаксиальных слоев карбида кремния р-типа проводимости с малой плотностью базальных дислокаций

Изобретение относится к области полупроводниковой техники и может быть использовано при росте эпитаксиальных слоев карбида кремния (SiC) с малой плотностью базальных дислокаций. Способ заключается в том, что так же как в известном способе для роста эпитаксиальных слоев SiC используется подложка SiC, поверхность которой разориентирована относительно кристаллографической плоскости Миллера-Бравэ (1120) более чем на 0°, но не более чем на 8°. Поверхность подложки с одной стороны травится в водороде, силане или аргоне при температуре не менее 1450°С и не более 1800°С и давлении водорода не менее 30 мбар и не более 500 мбар в течение не более 90 мин, после чего на травленой поверхности подложки растится буферный слой SiC р-типа проводимости с толщиной не менее 1 мкм и не более 50 мкм, на поверхности которого растится эпитаксиальный слой SiC р-типа проводимости. Изобретение обеспечивает получение бездефектных слоев карбида кремния. 2 ил., 1 табл.

Формула изобретения RU 2 716 866 C1

Способ роста эпитаксиальных слоев карбида кремния р-типа проводимости с малой плотностью базальных дислокаций, заключающийся в том, что поверхность подложки карбида кремния 4Н-политипа, которая разориентирована относительно кристаллографической плоскости Миллера-Бравэ (1120) более чем на 0°, но не более чем на 8°, с одной стороны травится в водороде, силане или аргоне при температуре не менее 1450°С и не более 1800°С и давлении газа не менее 30 мбар и не более 500 мбар в течение не более 90 мин, после чего на травленой поверхности подложки растится буферный слой р-типа проводимости карбида кремния с толщиной не менее 1 мкм и не более 50 мкм, в процессе роста которого в ростовую ячейку подаются пары источника легирующей примеси - триметилалюминия, затем на поверхности буферного слоя р-типа проводимости растится эпитаксиальный слой карбида кремния р-типа проводимости, отличающийся тем, что в процессе роста буферного слоя р-типа проводимости величина отношений объема паров источника легирующей примеси р-типа проводимости, поступающих в ростовую ячейку (Vлег), к общему объему газов, поступающих в ростовую ячейку (Vобщ), в том числе газа-носителя, газов-источников кремния, углерода и паров легирующей примеси, должно удовлетворять соотношению

где m - величина отношения, при котором концентрация легирующей примеси в выращенном буферном слое р-типа проводимости равна 8⋅10 см-3.

Документы, цитированные в отчете о поиске Патент 2020 года RU2716866C1

Способ защиты переносных электрических установок от опасностей, связанных с заземлением одной из фаз 1924
  • Подольский Л.П.
SU2014A1
Способ защиты переносных электрических установок от опасностей, связанных с заземлением одной из фаз 1924
  • Подольский Л.П.
SU2014A1
Способ приготовления лака 1924
  • Петров Г.С.
SU2011A1
Изложница с суживающимся книзу сечением и с вертикально перемещающимся днищем 1924
  • Волынский С.В.
SU2012A1
СПОСОБ ЭПИТАКСИАЛЬНОГО ВЫРАЩИВАНИЯ КАРБИДА КРЕМНИЯ ПОЛИТИПА 4H 1980
  • Водаков Ю.А.
  • Мохов Е.Н.
SU913762A1

RU 2 716 866 C1

Авторы

Гарцев Николай Александрович

Наркаева Ирина Владимировна

Даты

2020-03-17Публикация

2019-06-06Подача