Способ исследования биологических объектов на основе анализа нелинейных искажений проходящего электрического сигнала Российский патент 2020 года по МПК A61B5/00 

Описание патента на изобретение RU2718296C1

Область техники. Изобретение относится к области медицины, в частности, к определению электропроводящих свойств биологических объектов на основе анализа нелинейных искажений проходящего электрического сигнала, и предназначено для использования при диагностике нормальных свойств и патологических отклонений этих свойств при заболеваниях.

Уровень техники. Исследование электрических явлений и свойств биологических объектов занимает заметное место в арсенале диагностических методик в медицине. В основе ряда данных методик лежит изучение электрических потенциалов, формируемых биологическими объектами. К таким относятся: электроэнцефалография [Зенков Л.Р. Клиническая электроэнцефалография с элементами эпилептологии - М.: МЕДпресс-информ, 2002.], электрокардиография [Руководство по электрокардиографии / В.Н. Орлов. - 9-е изд., испр. - Москва: ООО «Медицинское информационное агентство», 2017. - 560 с., ил.], электрогастроэнтерография - метод исследования моторной деятельности желудка и кишечника [Рапопорт С.И., Ракитин Б.В. Периферическая электрогастроэнтерография / В кн.: Руководство по гастроэнтерологии / Под ред. Ф.И. Комарова, С.И. Рапопорта. - М.: МИА, 2010. С. 87-88.], электронистагмография (ЭНГ) [Применение компьютерной электронистагмографии в оценке оптокинетических нистагменных реакций С.В. Лиленко, Е.П. Маслова, Г.М. Петрова, И.Г. Самойлова / Вестник оториноларингологии, N 3-2000, стр. 13-16], электромиография (ЭМГ) [Николаев, С.Г. Электромиография: клинический практикум / С.Г. Николаев. - Иваново: ПресСто, 2013. - 393 с., Клиническая электромиография для практических неврологов. Руководство. Санадзе А.Г., Касаткина Л.Ф. М.: Геотар-Медиа. 2015. 64 с.: ил.], электронейрография (ЭНГ) [Команцев В.Н. Методические основы клинической электронейромиографии. Руководство для врачей. - СПб.: 2006. - 362 с.].

Другая часть методик основана на исследовании прохождения тока, как правило -переменного, синусоидальной формы, через биологические объекты. К таковым относятся: электрореография (ЭРГ) [Иванов Л.Б., Макаров В.А. Лекции по клинической реографии. - М.: АОЗТ "Антидор", 2000. - 320 с., Географические методы исследования сосудистой системы / Учебное пособие / Составители: Полухина Е.В., Глазун Л.О. - Хабаровск, 2006. - 97 с.], стимуляционная электронейромиография [Николаев, С.Г. Атлас по электромиографии / С.Г. Николаев. - 2-е изд., испр. и доп. - Иваново: ПресСто, 2015. - 487 с.: ил., табл.], биоимпедансометрия [Д.В. Николаев, А.В. Смирнов, И.Г. Бобринская, С.Г. Руднев. Биоимпедансный анализ состава тела человека. - Москва: Наука, 2009. - 392 с.].

Известна методика стимуляционной электронейромиография (ЭНГ) - исследование моторных ответов и величин скорости распространения возбуждения по моторным и сенсорным волокнам, поздних нейрографических ответов: F- и Н-волн, мигательного рефлекса, декремент-тест с оценкой надежности нервно-мышечной передачи [Команцев В.Н. Методические основы клинической электронейромиографии. Руководство для врачей. - СПб.: 2006. - 362 с., Николаев, С.Г. Атлас по электромиографии / С.Г. Николаев. - 2-е изд., испр. и доп. - Иваново: ПресСто, 2015. - 487 с.: ил., табл.].

Известна методика биоимпедансометрии - биоимпедансный анализ - это контактный метод измерения электрической проводимости таких биологических объектов, как ткани организма, дающий возможность оценки широкого спектра морфологических и физиологических параметров организма. В биоимпедансном анализе измеряются активное и реактивное сопротивления тела человека или его сегментов на различных частотах. Доказано наличие объективных и устойчивых закономерностей, связывающих измеренные значения импеданса с параметрами состава тела. [Д.В. Николаев, А.В. Смирнов, И.Г. Бобринская, С.Г. Руднев. Биоимпедансный анализ состава тела человека. - Москва: Наука, 2009. - 392 с.]. Через электроды тело человека включается в электрическую цепь, прикладывается переменное напряжение, формируется зондирущий ток и по его величине и фазовому сдвигу вычисляется импеданс. Импеданс обусловлен биохимическим составом как клеточной, так и неклеточной сред биологического объекта. При этом гармонические искажения, возникающие в регистрируемом сигнале, считаются помехой и их причины усматривают в дефектах электрической цепи. [Д.В. Николаев, А.В. Смирнов, И.Г. Бобринская, С.Г. Руднев. Биоимпедансный анализ состава тела человека. - Москва: Наука, 2009. - 392 с.].

Известно, что в цепях и устройствах, выполняющих обработку аналоговых сигналов, каждый нелинейный элемент обладает способностью вносить искажения в форму сигнала. Совокупность характеристик этих искажений зависит от свойств данного элемента и достаточно точно может быть предсказана, если эти свойства известны. И, напротив, на основании анализа характеристик искажений, можно сделать вывод об свойствах источника этих искажений в рамках цепи или устройства и идентифицировать его [Douglas Self / Audio Power Amplifier Design. 6th edition (2013); Focal Press; 718 р.]. Иными словами, искажения сигнала, возникающие при прохождении сигнала через биологический объект, можно использовать в целях получения информации об этом объекте.

Наиболее близкий аналог к предлагаемому способу - способ одночастотной биоимпедансометрии [Мартиросов Э.Г. Технологии и методы определения состава тела человека / Э.Г. Мартиросов, Д.В. Николаев, С.Г. Руднев. - М.: Наука, 2006. - 248 с.]. В этом случае биоимпедансные анализаторы относят к одночастотным (измерения производятся на одной частоте, как правило равной 50 кГц - в этом случае реактивная компонента импеданса тканей мышц близка к максимальной). Выпускается большое количество различной аппаратуры для биоимпедансометрии. Например - одночастотный биоимпедансный анализатор RJL-101a (RJL Systems, США). В этом случае через ткани человеческого тела по определенной траектории с помощью электродной системы пропускают электрический ток определенной частоты. Частоты выбирают в зависимости от задач, поставленных перед исследованием, в диапазоне от 1 кГц до 1,3 МГц. В случае использования характеристической частоты, соответствующей максимуму реактивного сопротивления, точность измерения может быть повышена. Измеряемой величиной является импеданс биологического объекта на избранной частоте. На основании величины импеданса и пути тока делают вывод о свойствах тканей, клеток, иных биологических объектов и сред.

Раскрытие изобретения

Сущность изобретения.

Способ исследования свойств биологических объектов на основе анализа нелинейных искажений проходящего электрического сигнала, заключающийся в пропускании через биологический объект с помощью электродной системы электрического тока определенной частоты, отличающийся определением в целях получения информации об этом объекте спектра и уровня гармонических искажений, возникающих при прохождении сигнала через биологический объект.

Это обеспечивает достижение технического результата в виде получения информации о свойствах биологического объекта, а именно - о способности вносить в исходный сигнал искажения, характеризующиеся спектром гармоник, и уровнем каждой из гармоник по отношению к опорному сигналу и к другим гармоникам. Тем самым значительно возрастает количество характеристик, доступных для инструментального измерения и являющихся признаками свойств конкретного образца биологического объекта. И эта совокупность измеряемых величин позволит объективизировать идентификацию биологического объекта, на основе свойств объекта вносить гармонические искажения в исходный сигнал.

Задача изобретения.

Задачей изобретения является создание нового способа получения информации об электрических свойствах биологических объектов, такой информации, которую иными способами получить невозможно - способа исследования биологических объектов на основе анализа нелинейных искажений проходящего электрического сигнала.

Недостатками существующих способов, в числе которых различные варианты одночастотной биоимпедансометрии, реографии, является измерение всего лишь одного параметра - импеданса. Остальные результаты, такие, как содержание воды, жира в биологическом объекте, являются расчетными. Следствием становится относительная неполнота информации о свойствах биологического объекта, которую можно получить при использовании существующих методик, по сравнению с информацией о свойствах, потенциально доступной для получения при использовании предлагаемого подхода.

Осуществление изобретения.

Для осуществления предлагаемого способа необходимо сформировать электрический сигнал, пропустить его через биологический объект, и в сигнале на выходе из объекта определить наличие гармонических искажений этого сигнала и измерить такие характеристики этих искажений, как номера составляющих искажения сигнала гармоник, уровень гармоник, соотношение уровней гармоник между собой и с исходным сигналом.

Нами использована электрическая цепь, включающая программный цифровой генератор сигнала, высококачественный цифро-аналоговый преобразователь, соответствующие проводники и электроды, высококачественный аналогово-цифровой преобразователь и программное обеспечение для цифрового анализа нелинейных искажений. Электрическая цепь при исследовании оборудуется следующим образом. Программный генератор, установленный на персональном компьютере, подает цифровой сигнал на цифро-аналоговый преобразователь. Далее сигнал от цифро-аналогового преобразователя подается через соответствующий проводник на первый из электродов, прикладывается через электрод к биологическому объекту, снимается вторым электродом, подается через проводник на вход аналогово-цифрового преобразователя, и далее в цифровой форме обрабатывается установленным на персональном компьютере программным обеспечением для анализа гармонических искажений. Результаты анализа могут быть представлены в графической форме и сохранены в виде файла. Исследования биологического объекта проводится следующим образом. Используется сигнал синусоидальной формы частотой 1 кГц. Частота сигнала, его форма и иные характеристики, определяются настройками генератора и могут быть иными. В качестве исходной точки проводится изучение гармонических составляющих самого сигнала и цепи при замкнутых накоротко первом и втором электродах. Результат анализа гармонических искажений - наличие гармоник и их соотношение между собой на этом этапе приведен на фиг. 1. Результаты записываются файл. Для исследования биологического объекта он включается в цепь между электродами. Нами использованы нативные образцы слюны. Способ опробован нами и на образце водопроводной воды. Для каждого из образцов получены спектры гармоник с соответствующими соотношениями между ними. На фиг. 2 - наличие гармоник и их уровень и соотношение между собой для водопроводной воды, на фиг. 3 - наличие гармоник и их соотношение между собой при пропускании сигнала через слюну мужчины 38 лет, на фиг. 4 - через слюну девушки 15 лет. Получена очевидная разница между спектрами каждой из сред, в том числе присутствующих гармоник и соотношений между ними и с исходным сигналом.

Похожие патенты RU2718296C1

название год авторы номер документа
Способ классификации биологических объектов на основе многомерного биоимпедансного анализа и устройство для его реализации 2020
  • Филист Сергей Алексеевич
  • Шаталова Ольга Владимировна
  • Протасова Зейнаб Усама
  • Стадниченко Никита Сергеевич
RU2752594C1
СПОСОБ РЕГИОНАЛЬНОЙ БИОИМПЕДАНСОМЕТРИИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1996
  • Николаев Д.В.
  • Туйкин С.А.
  • Балуев Э.П.
RU2094013C1
СПОСОБ ОПРЕДЕЛЕНИЯ РИСКА РАЗВИТИЯ ПРЕСАРКОПЕНИИ 2023
  • Голованова Елена Дмитриевна
  • Айрапетов Карен Викторович
  • Самулыжко Анастасия Леонидовна
RU2824090C1
СИСТЕМА КОНТРОЛЯ СОСТАВА И ОБЪЕМОВ ТЕЛА ДЛЯ ФОРМИРОВАНИЯ ОЗДОРОВИТЕЛЬНЫХ МЕРОПРИЯТИЙ И ПРОГРАММ ПИТАНИЯ 2017
  • Чичуа Давид Тариэлович
  • Баландин Михаил Юрьевич
  • Иванчик Екатерина Дмитриевна
  • Зоткин Сергей Викторович
  • Никитюк Дмитрий Борисович
  • Бурляева Екатерина Александровна
RU2669618C1
Способ оценки состояния гуморального гомеостаза у онкологических больных 2015
  • Горбушин Николай Григорьевич
  • Вапняр Владимир Вениаминович
RU2637107C2
УСТРОЙСТВО И СПОСОБ ДЛЯ ДИАГНОСТИКИ ВТОРИЧНОГО КАРИЕСА ЗУБОВ 2012
  • Юст Марцин
  • Лось Пшемыслав
  • Тыц Михал
RU2603428C2
НОСИМОЕ УСТРОЙСТВО, СПОСОБ И СИСТЕМА ДЛЯ ИЗМЕРЕНИЯ ПАРАМЕТРОВ КРОВИ 2023
  • Волкова Елена Константиновна
  • Чернаков Дмитрий Игоревич
  • Лычагов Владислав Валерьевич
  • Семенов Владимир Михайлович
  • Павлов Константин Александрович
  • Ким
  • Ан
RU2821143C1
СПОСОБ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ ГИПОТЕНЗИВНОЙ ТЕРАПИИ 2021
  • Айрапетов Карен Викторович
  • Голованова Елена Дмитриевна
RU2762909C1
СПОСОБ ДИАГНОСТИКИ СРЕЗАННЫХ ЗЕЛЁНЫХ ЧЕРЕНКОВ ДЛЯ ПРОГНОЗИРОВАНИЯ ИХ УКОРЕНЯЕМОСТИ 2015
  • Минеев Валерий Викторович
  • Алейников Александр Фёдорович
  • Золотарёв Виктор Алексеевич
  • Олег Владимирович
RU2595850C1
Способ комплексной оценки функции верхних конечностей 2019
  • Бирюкова Елена Александровна
  • Джелдубаева Эльвиза Рашидовна
  • Чуян Елена Николаевна
  • Кубряк Олег Витальевич
  • Бабанов Никита Дмитриевич
RU2725055C1

Иллюстрации к изобретению RU 2 718 296 C1

Реферат патента 2020 года Способ исследования биологических объектов на основе анализа нелинейных искажений проходящего электрического сигнала

Изобретение относится к области медицины, в частности к определению электропроводящих свойств биологических материалов на основе анализа нелинейных искажений проходящего электрического сигнала, и предназначено для использования при диагностике нормальных свойств и патологических отклонений этих свойств при заболеваниях. Предлагается способ исследования свойств биологических объектов на основе анализа нелинейных искажений проходящего электрического сигнала, заключающийся в пропускании через биологический объект с помощью электродной системы электрического тока, отличающийся определением в целях получения информации об этом объекте спектра и уровня гармонических искажений, возникающих при прохождении сигнала через биологический объект. 4 ил.

Формула изобретения RU 2 718 296 C1

Способ исследования свойств биологических объектов на основе анализа нелинейных искажений проходящего электрического сигнала, заключающийся в пропускании через биологический объект с помощью электродной системы электрического тока, отличающийся определением в целях получения информации об этом объекте спектра и уровня гармонических искажений, возникающих при прохождении сигнала через биологический объект.

Документы, цитированные в отчете о поиске Патент 2020 года RU2718296C1

Мартиросов Э.Г
и др
Технологии и методы определения состава тела человека
- М.: Наука, 2006, с
Транспортер для перевозки товарных вагонов по трамвайным путям 1919
  • Калашников Н.А.
SU102A1
АППАРАТУРА И СПОСОБ КОНТРОЛЯ ХАРАКТЕРИСТИК СЕРДЕЧНОЙ ДЕЯТЕЛЬНОСТИ 1997
  • Щукин С.И.
  • Зубенко В.Г.
  • Беляев К.Р.
  • Морозов А.А.
  • Йонг Вен Х.
RU2195168C2
УСТРОЙСТВО И СПОСОБ ДЛЯ ДИАГНОСТИКИ ВТОРИЧНОГО КАРИЕСА ЗУБОВ 2012
  • Юст Марцин
  • Лось Пшемыслав
  • Тыц Михал
RU2603428C2

RU 2 718 296 C1

Авторы

Коржук Михаил Сергеевич

Кропачев Денис Юрьевич

Гебель Елена Сергеевна

Николина Анастасия Ильинична

Рябчевский Владислав Олегович

Еселевич Роман Владимирович

Даты

2020-04-01Публикация

2019-04-15Подача