Изобретение относится к областям радиотехники и измерительной техники и может быть использовано для имитации сигналов и помех при тестировании аппаратуры радиосвязи и систем управления.
Известен цифровой генератор хаотического сигнала [1] на базе регистра сдвига и аналогового источника шума, формирующий «истинно случайный» цифровой сигнал с равновероятными отсчетами, в котором отсутствует возможность изменения статистических характеристик сигнала.
Известны цифровые генераторы [2] псевдослучайных двоичных последовательностей (например, М-последовательностей, последовательностей Гоулда, Кассами и др.), формируемых с помощью регистров сдвига с линейными или нелинейными обратными связями. Известен [3] датчик случайных чисел с равномерным распределением вероятностей, в котором используются записанные в блоке памяти случайные числа, которые «перемешиваются» с помощью двоичных счетчиков, улучшая качество совпадения формируемых чисел с теоретическим равномерным законом распределения вероятностей. Их недостатком является отсутствие возможностей формирования псевдослучайных чисел с различными законами распределения вероятностей.
Известен имитатор радиосигналов [4], содержащий генератор опорной частоты, блок памяти, устройство считывания данных, цифроаналоговый преобразователь. Устройство имитирует сигналы произвольного вида, представленные модельными файлами данных или цифровыми записями сигналов, которые предварительно записываются в блок памяти и считываются в процессе имитации. Его недостатком является ограниченность продолжительности воспроизводимой реализации, что особенно существенно при высокочастотном считывании данных.
Наиболее близким по технической сущности к предлагаемому устройству является цифровой имитатор случайных сигналов, содержащий генератор опорной частоты, блок памяти, цифроаналоговый преобразователь, генератор равновероятных псевдослучайных чисел и регистр сдвига [5]. Имитатор формирует сигнал по его односвязной марковской модели (простой цепи Маркова) [6,7], полученной на основе двумерной плотности вероятностей имитируемого случайного процесса. Его недостатком является ограниченная возможность отображения сложных вероятностных свойств имитируемых сигналов из-за невозможности использовать двухсвязную марковскую модель на основе трехмерной плотности вероятностей.
Задачей предлагаемого технического решения является обеспечение имитации случайных сигналов по их двухсвязной марковской модели на основе трехмерной плотности вероятностей.
Поставленная задача решается тем, что цифровой имитатор случайных сигналов, содержащий генератор опорной частоты, блок памяти, цифроаналоговый преобразователь, генератор равновероятных псевдослучайных чисел и первый регистр сдвига, дополнительно содержит второй регистр сдвига, информационный вход которого подключен к выходу первого регистра, выход – ко второму адресному входу блока памяти, тактовый вход – к выходу генератора опорной частоты. Тактовый вход генератора равновероятных псевдослучайных чисел соединен с выходом генератора опорной частоты, а его цифровой выход – с третьим адресным входом блока памяти, вход первого регистра соединен с выходом блока памяти, а его тактовый вход подключен к выходу генератора опорной частоты. Выход первого регистра соединен с первым адресным входом блока памяти и с входом цифроаналогового преобразователя, выход которого образует аналоговый выход имитатора, а выход первого регистра образует цифровой выход имитатора.
Предлагаемое техническое решение поясняется чертежами.
На фиг. 1 представлена структурная схема предлагаемого устройства, на фиг. 2 – графическое отображение трехмерных матриц совместных вероятностей моделируемых гауссовских случайных процессов с различными корреляционными матрицами, на фиг. 3 и фиг. 4 – их трехмерные диаграммы вероятностных характеристик двухсвязных марковских моделей, на фиг. 5 – результаты моделирования работы имитатора нормального случайного сигнала, на фиг. 6 – результаты оценки совместных вероятностей имитируемых сигналов по их реализациям.
Генератор опорной частоты (Г) 1 выдает тактовые импульсы (ТИ), по которым генератор псевдослучайных чисел (ГПСЧ) 2 формирует D-разрядные равновероятные двоичные коды
Устройство работает следующим образом.
Двухсвязная марковская модель [6, 7] имитируемого дискретного сигнала описывается трехмерной матрицей
где матрицы условных переходных вероятностей
На основе матрицы переходных вероятностей
где матрицы условных функций распределения вероятностей
Для нормального случайного процесса
где
Если выбирать шаг квантования по уровню
то совместное распределение вероятностей значений
Тогда для переходных вероятностей получим
Матрицы
Аналогичная марковская модель может быть построена по экспериментальной реализации сигнала достаточно большого объема.
Для оценки
Для устранения возможной неопределенности оценок (4) к значениям
Величины
Для каждой пары предшествующих значений i и j отсчетов сигнала для всех возможных кодов
Полученные из (5) массивы значений k для всех V записываются в блок памяти 3 в виде страниц с адресами ячеек
Коды
Первый тактовый импульс формирует первый код
Разрядность m кода отсчетов сигнала целесообразно выбирать в интервале
С целью проверки работоспособности и эффективности предложенного генератора было проведено моделирование его работы при формировании отсчетов случайного гауссовского сигнала с параметрами
На фиг. 5а и фиг. 5б приведены реализации моделируемых процессов, относящихся к моделям, представленным на фиг. 3 и фиг. 4 соответственно.
По реализациям имитируемых сигналов объемом
Переход от трехмерного распределения вероятностей (1) рассматриваемых имитируемых процессов с различными корреляционными матрицами к двумерному распределению [8-10] приводит к одинаковым простым марковским моделям, которые не могут отобразить заданные в примерах сложные корреляционные свойства. Таким образом, рассматриваемый имитатор позволяет получать последовательности псевдослучайных чисел с вероятностными свойствами, которые не может отобразить прототип [5].
Библиография
1. Семенов А.А., Усанов Д.А. Цифровой генератор хаотического сигнала // Патент № 2472286, МПК H03B 29/00 от 10.01.2013; заявка № 2011134962/08 от 19.08.2011.
2. Варакин Л.Е. Системы связи с шумоподобными сигналами. – М.: Радио и связь, 1985. – 384 с.
3. Ермаков В.Ф., Гудзовская В.А. Датчик случайных чисел с равномерным распределением // Патент № 2103725, МПК G06F 7/58 от 27.01.1998; заявка № 94042350/09 от 23.11.1994.
4. Проселков Л.С., Кравченко А.Н. Имитатор радиосигналов // Патент № 2207586, МПК G01S 7/02 от 27.06.2003; заявка № 2001102761/09 от 30.01.2001.
5. Глушков А.Н., Калинин М.Ю., Литвиненко В.П., Литвиненко Ю.В. Цифровой имитатор случайных сигналов // Патент № 2690780, МПК G06F 7/58, H03B 29/00, G01S 7/02 от 05.06.2019; заявка № 2018123052 от 25.06.2018.
6. Дынкин Е.Б. Марковские процессы. – М.: Физматлит, 1963. – 860 с.
7. Казаков В.А. Введение в теорию марковских процессов и некоторые радиотехнические задачи. – М.: Сов. Радио, 1973. – 232 с.
8. Вентцель Е.С. Теория вероятностей. – М.: Наука, 1969. – 576 с.
9. Кендалл М., Стьюарт А. Статистические выводы и связи. – М.: Наука, 1973. – 900 с.
10. Де Грот М. Оптимальные статистические решения. – М.: Мир 1974. – 492 с.
название | год | авторы | номер документа |
---|---|---|---|
Цифровой имитатор случайных сигналов | 2019 |
|
RU2722001C1 |
Цифровой имитатор случайных сигналов | 2018 |
|
RU2690780C1 |
ИМИТАТОР ДЖИТТЕРА | 2005 |
|
RU2303852C2 |
Имитатор дискретного канала связи | 1989 |
|
SU1755292A1 |
Имитатор дискретного канала связи | 1989 |
|
SU1755293A1 |
Имитатор сигналов акустической эмиссии | 1986 |
|
SU1366936A1 |
Цифровой коррелометр | 1983 |
|
SU1113806A1 |
Коррелометр | 1983 |
|
SU1091173A1 |
ЦИФРОАНАЛОГОВЫЙ ГЕНЕРАТОР ШУМА | 2014 |
|
RU2549174C1 |
ЦИФРОАНАЛОГОВЫЙ ГЕНЕРАТОР ШУМА | 2014 |
|
RU2559719C1 |
Изобретение относится к области радиотехники и измерительной техники. Технический результат заключается в обеспечении возможности получения последовательности псевдослучайных чисел с вероятностными свойствами. Технический результат достигается за счет цифрового имитатора случайных сигналов, который содержит генератор опорной частоты, блок памяти, цифроаналоговый преобразователь, генератор равновероятных псевдослучайных чисел, регистр сдвига, второй регистр сдвига, информационный вход которого подключен к выходу первого регистра, выход – ко второму адресному входу блока памяти, тактовый вход – к выходу генератора опорной частоты. 6 ил.
Цифровой имитатор случайных сигналов, содержащий генератор опорной частоты, блок памяти, цифроаналоговый преобразователь, генератор равновероятных псевдослучайных чисел и первый регистр сдвига, отличающийся тем, что он дополнительно содержит второй регистр сдвига, информационный вход которого подключен к выходу первого регистра, выход – ко второму адресному входу блока памяти, а тактовый вход – к выходу генератора опорной частоты, тактовый вход генератора равновероятных псевдослучайных чисел соединен с выходом генератора опорной частоты, а его цифровой выход – с третьим адресным входом блока памяти, вход первого регистра соединен с выходом блока памяти, а его тактовый вход подключен к выходу генератора опорной частоты, выход первого регистра соединен с первым адресным входом блока памяти и с входом цифроаналогового преобразователя, выход которого образует аналоговый выход имитатора, а выход первого регистра – цифровой выход имитатора.
Цифровой имитатор случайных сигналов | 2018 |
|
RU2690780C1 |
Установка для очистки зерна | 1947 |
|
SU75058A1 |
ИМИТАТОР РАДИОСИГНАЛОВ | 2001 |
|
RU2207586C2 |
УСТРОЙСТВО ДЛЯ ИМИТАЦИИ РАДИОЛОКАЦИОННОГО ИЗОБРАЖЕНИЯ МЕСТНОСТИ | 1988 |
|
SU1841035A1 |
Способ приготовления лака | 1924 |
|
SU2011A1 |
Авторы
Даты
2020-04-02—Публикация
2019-09-23—Подача