Устройство для подготовки катализатора в процессах дегидрирования парафиновых углеводородов C - C Российский патент 2020 года по МПК B01J38/30 C07C11/10 C07C11/08 C07C11/06 

Описание патента на изобретение RU2719490C1

Изобретение относится к области нефтехимии, в частности к установкам дегидрирования парафиновых углеводородов С35 в соответствующие олефиновые углеводороды, используемые для получения основных мономеров для синтетического каучука, а также при производстве полипропилена, метилтретичнобутилового эфира и др.

Технологическое оформление процессов дегидрирования парафиновых углеводородов С35 в кипящем слое алюмохромовых катализаторов предусматривает последовательное проведение циклов дегидрирования, регенерации и восстановительно-десорбционной подготовки регенерированного катализатора перед подачей его в реактор путем восстановления катализатора газом-восстановителем и десорбции продуктов восстановления инертным газом, соответственно в реакторе, регенераторе и стакане-восстановителе с циркуляцией катализатора между ними (Тюряев И.Я., «Физико-химические основы получения дивинила из бутана и бутилена», М.-Л., «Химия», 1966, с. 159).

Особенностью окисных алюмохромовых катализаторов является весьма существенное влияние воды на каталитические свойства поверхности, приводящее к отравлению указанных катализаторов (Миначев Х.М. и др., журнал «Нефтехимия», 1969, т.27, №5, с. 677, Тюряев И.Я., «Теоретические основы получения бутадиена и изопрена методами дегидрирования», Киев, «Наукова думка», 1973, с. 153).

В производственных условиях вода на катализатор может попадать с сырьем и воздухом, в результате протекания реакций сгорания топливного газа и выжига кокса в регенераторе и при взаимодействии топливного газа (природного газа, абгаза) и компонентов реакционной смеси с кислородом поверхности катализатора соответственно в устройстве (аппарате) подготовки катализатора и в реакторе. Протекание реакций горения в реакторе подтверждается постоянным присутствием в контактном газе дегидрирования Н2О, СО и СО2 (суммарно до 3% масс). Больше всего воды образуется при сгорании в регенераторе топливного газа. Но так как этот процесс протекает и на поверхности катализатора, и в объеме, только определенная, но существенная часть образовавшейся при сгорании топливного газа воды адсорбируется катализатором. В остальных случаях - при сгорании углеводородов и выжиге кокса, происходящих на поверхности катализатора, образующаяся вода практически полностью адсорбирована. Вода, адсорбированная катализатором в регенераторе при сгорании топлива и кокса, удаляется в некоторой степени при продувке кислородсодержащим газом (воздухом) в нижней части регенератора, где происходит одновременно окисление катализатора. Дезактивация катализатора водой носит обратимый характер (Тюряев И.Я., «Физико-химические основы получения дивинила из бутана и бутилена», М.-Л., «Химия», 1966, с. 159).

Присутствие на поверхности катализатора окисла шестивалентного хрома (CrO3) инициирует реакции глубокого окисления с образованием воды. Стадии восстановления окислов шестивалентного хрома поверхности катализатора в окислы трехвалентного хрома (Cr2O3) протекают быстро, скорость же суммарного процесса определяется скоростью медленной десорбции воды, лимитирующей процесс (Тюряев И.Я., «Журнал прикладной химии», 1961, т.34, №3, с. 703; Стерлигов О.Д., журнал «Нефтехимия», 1969, т.15, №1, с. 35).

Цель операции окисления катализатора в регенераторе состоит в том, чтобы обеспечить нужную глубину диффузии кислорода в глубь кристаллической решетки активного компонента и тем самым восстанавливать активность катализатора от цикла к циклу в условиях его нестационарной активности. Содержание на поверхности регенерированного катализатора высших окислов хрома (CrO3) является показателем качества регенерации алюмохромовых катализаторов (Бальжинимаев Б.С.и др. в кн.: Вторая Всесоюзная конференция по кинетике каталитических реакций «Кинетика-2», том 3, Новосибирск, Институт катализа СО АН СССР, 1975, с. 85, Фридштейн И.Л. и др. в кн.: «Научные основы подбора и производства катализаторов», Новосибирск, РИО СО АН СССР, 1964, с. 267).

Решение проблемы подготовки регенерированного катализатора перед входом в реактор в промышленных условиях заключается в том, чтобы удалить адсорбированные во время регенерации воду, слабосвязанный кислород и реакционноспособный кислород в виде окислов шестивалентного хрома, наличие которого обусловливает протекание реакций глубокого окисления. С этой целью проводится предварительное восстановление катализатора углеводородами, Н2 или СО с последующей десорбцией образовавшейся воды инертным газом (восстановительно-десорбционный способ). Показано, что качество подготовки при этом улучшается с повышением ее продолжительности, молекулярной массы газа-восстановителя и его объемной скорости, температуры. Указывается, что десорбция катализатора инертным газом (азотом) улучшает процесс. Газы по убыванию их восстановительной способности можно расположить в ряд: CnH2n+2, Cn-1H2(n-1)+2, CH4, Н2+СН4. (А.С. СССР 134693, МПК С07С 11/02, опубл. 21.07.1959; Англ. патент 734089, 1958; Novak S., Viewig Н., Chem. Techn., 1970, Bd. 22, №2, c. 94; Михайлов P.К. и др., «Производство изобутилена дегидрированием изобутана», М., ЦНИИТЭНефтехим, 1968, с. 18; журнал «Промышленность синтетического каучука», 1969, №4, с. 3; 1970, №2, с. 1; журнал «Химическая промышленность», 1970, №1, с. 3).

Известен промышленный способ осуществления процессов дегидрирования н-бутана в н-бутилены и дегидрирования изопентана в изоамилены в кипящем слое алюмохромового катализатора, циркулирующего в системе реактор-регенератор-устройство для подготовки катализатора (Кирпичников И.Л. и др., «Альбом технологических схем основных производств промышленности синтетического каучука», «Химия», Ленинград, 1986, с. 8-14 и с. 56-58). В указанном способе отработанный катализатор из реактора транспортируется воздухом по транспортной линии в верхнюю часть кипящего слоя регенератора. Кипящий слой регенератора, секционированный решетками, разделен по высоте на две зоны: зону нагрева катализатора в его верхней части путем сжигания кокса на отработанном катализаторе и подаваемого топливного газа для восполнения тепла, затраченного в реакторе в ходе эндотермической реакции дегидрирования, и зону окисления катализатора и десорбции продуктов окисления, подаваемым в регенератор воздухом. Катализатор регенерируют в режиме противотока катализатора и воздуха при температуре 600-650°С и давлении 0,118 МПа. Далее регенерированный катализатор из зоны окисления подают в стакан-восстановитель, установленный в нижней части регенератора. В низ стакана-восстановителя подают метансодержащий природный газ или водородсодержащий абгаз производства для восстановления окислов шестивалентного хрома поверхности катализатора в окислы трехвалентного хрома. Газы восстановления из стакана-восстановителя поступают в низ зоны окисления катализатора, а отрегенерированный, восстановленный и подогретый катализатор из низа стакана транспортируется азотом в реактор. К основным недостаткам этого способа относится:

- низкая степень восстановления катализатора при совмещении процессов восстановления и десорбции воды продуктами восстановления в кипящем слое стакана-восстановителя;

- неэффективная десорбция воды с поверхности катализатора, поступающего из зоны окисления регенератора, продуктами восстановления, содержащими реакционную воду;

- выпуск отходящих из стакана-восстановителя газов, содержащих реакционную воду и непрореагировавшую избыточную часть газа-восстановителя, в низ зоны окисления регенератора, что существенно снижает степень окисления катализатора и десорбции воды в указанной зоне;

- низкий уровень тепло-массообмена в свободном (неорганизованном) кипящем слое стакана-восстановителя.

Известен восстановительно-десорбционный способ подготовки алюмохромового катализатора (А.С. СССР 134693, МПК С07С 11/02, опубл. 21.07.1959; WO 2017/105283, МПК B01J 38/30; С07С 11/06; С07С 11/08; С07С 11/10; С07С 5/333, опубл. 22.06.2017; патент RU 2666541, МПК С07С 5/333, С07С 11/08, С07С 11/10, B01J 21/08, B01J 23/04, B01J 23/26, B01J 35/02, B01J 37/02, опубл. 04.12.2017). В этом способе подготовку катализатора перед его поступлением в реактор осуществляют во встроенном в нижнюю часть корпуса регенератора стакане для восстановительно-десорбционной подготовки катализатора (стакане-восстановителе) с организованным секционирующими решетками кипящим слоем, имеющим в нижней части патрубок для ввода газа-восстановителя на восстановление катализатора и несколько ниже его - патрубок для ввода инертного газа на десорбцию продуктов восстановления, а также газовую трубу для отвода газов восстановления в зону сжигания кокса и топливного газа регенератора и патрубок в дне стакана для вывода подготовленного катализатора в реактор.

Наиболее близким к предлагаемому изобретению является способ получения олефиновых углеводородов С35 (патент RU 2619128, МПК С07С 5/333, С07С 11/06, С07С 11/08, С07С 11/10, B01J 38/30, опубл. 14.12.2015) путем дегидрирования соответствующих парафиновых углеводородов в кипящем слое алюмохромового катализатора, циркулирующего в системе, включающей реактор, регенератор и устройство для восстановительно-десорбционной подготовки катализатора после регенератора, осуществляемой обработкой катализатора газом-восстановителем в режиме противотока с использованием горизонтальных секционирующих решеток. Способ характеризуется тем, что сразу после регенератора обработку проводят в режиме направленной внутренней циркуляции катализатора с использованием вертикальной перегородки, разделяющей кипящий слой на подъемную и напорную секции, а затем - в режиме противотока при соотношении времен пребывания катализатора в указанных режимах, равном 0,3-3,0.

К недостаткам этого способа подготовки алюмохромовых катализаторов относится:

- высокое содержание воды на катализаторе, поступающем в узел подготовки из зоны окисления регенератора при недостаточной десорбции воды воздухом в регенераторе;

- низкая эффективность десорбции катализатора непосредственно азотом в связи с малым временем пребывания катализатора в зоне десорбции в нижней части стакана-восстановителя;

- низкая степень восстановления катализатора и неэффективность его десорбции азотом и продуктами восстановления, содержащими реакционную воду, при совмещении этих процессов в зоне восстановления;

- большая высота стакана-восстановителя при последовательном расположении по высоте стакана зон восстановления и десорбции, которая ограничивает возможности оптимальной компоновки блока дегидрирования в целом и приводит, в совокупности с трудностями выполнения требований одновременного соблюдения рекомендуемого времени пребывания катализатора в стакане и объемной скорости подачи газовых потоков в стакан, к компромиссным неэффективным решениям при проектировании. Особенно это проявляется в блоках дегидрирования с соосным расположением регенератора над реактором и стакана-восстановителя между ними, в которых компоновка блоков дегидрирования требует значительного сокращения объема стакана-восстановителя, снижения времени пребывания катализатора в стакане, совмещения операций восстановления и десорбции в одном кипящем слое и т.д. Совмещение процессов восстановления и десорбции катализатора в одном кипящем слое также ограничивает возможности регулирования этих процессов.

- использование для организации кипящего слоя катализатора и увеличения интенсивности тепло-массообмена секционирующих решеток при противоточном движении катализатора и газа в отверстиях решеток, приводящее к образованию под решетками газовых подушек, величина которых может достигать 20-30% от объема кипящего слоя, что существенно снижает количество катализатора и, соответственно, время пребывания катализатора в стакане-восстановителе, а также ограничивает возможности увеличения количества подаваемых в стакан газа-восстановителя и инертного газа, в связи с «захлебыванием» решеток при увеличении скорости газа вплоть до опорожнения стакана и прекращения циркуляции катализатора. Работа секционирующих решеток в кипящем слое катализатора при противоточном движении катализатора и газа в отверстиях решеток подробно рассмотрена в патенте RU 2625880. Увеличение свободного сечения решеток, для снижения величины газовых подушек и увеличения скорости газа, например, при использовании на некоторых блоках дегидрирования решеток с неполным перекрытием поперечного сечения стакана-восстановителя (полурешеток), приводит к сокращению интенсивности тепло-массообмена, возникновению в стакане-восстановителе застойных зон как по газу, так и по катализатору с созданием целого ряда дополнительных проблем: уменьшение рабочего объема стакана, неиспользование части загруженного катализатора, иногда образование кокса в застойных зонах, проблемы с регулированием циркуляции катализатора и стабилизацией теплового режима реактора, эрозия внутренних устройств.

Указанные недостатки снижают эффективность восстановительно-десорбционной подготовки катализаторов в известном способе, что препятствует достижению потенциально возможной активности катализаторов в процессах дегидрирования. Особенно это проявляется при переходе к использованию новых эффективных катализаторов с повышенным содержанием шестивалентного хрома в окисленном состоянии, что требует существенного увеличения количества подаваемых в устройство для подготовки катализатора газовых потоков.

Задачей настоящего изобретения является увеличение эффективности восстановительно-десорбционной подготовки алюмохромовых катализаторов с целью увеличения их активности в процессах дегидрирования парафиновых углеводородов С35 при более компактной и технологичной схеме узла подготовки.

Для решения этой задачи предлагается устройство для восстановительно-десорбционной подготовки алюмохромового катализатора циркулирующего в системе реактор-регенератор в процессах дегидрирования парафиновых углеводородов С35 с кипящим слоем, включающее цилиндрические перегородки, установленные соосно цилиндрической обечайке корпуса регенератора 1, имеющее средство 16 для подачи регенерированного катализатора, барботеры-распределители 12 для подачи газа-восстановителя, барботеры-распределители 14 для подачи инертного газа, открытое кольцеобразное пространство 9 для отвода газообразных продуктов подготовки катализатора, патрубок 17 для выпуска подготовленного катализатора в реактор, при этом устройство может быть расположено внутри регенератора и содержать прикрепленные нижним торцом к днищу 3 корпуса регенератора 1, установленные соосно цилиндрическому корпусу регенератора 1 первую перегородку 4 и внутри ее, на расстоянии - вторую перегородку 5, а также снаружи второй перегородки 5 на расстоянии третью перегородку 6, установленную соосно обечайке корпуса регенератора 1 с верхним торцом 22, расположенным в верхней части кипящего слоя регенератора в зоне 23 сжигания кокса на поступающем в эту зону из реактора отработанном катализаторе и подаваемого через горелки 24 топливного газа, имеющую прикрепленное к ее нижнему торцу кольцеобразное дно 8, окружающее поверхность второй перегородки 5 и расположенное над верхним торцом 30 первой перегородки 4, при этом верхний торец 29 второй перегородки 5 расположен на уровне или ниже верхнего торца 22 третьей перегородки 6, а в нижней части второй перегородки 5 ниже верхнего торца 30 первой перегородки 4 имеются отверстия 7 для перетока катализатора, кроме того, устройство имеет средство 16 для подачи регенерированного катализатора в виде открытого кольцевого пространства, расположенного выше или ниже распределителя 18 для подачи в регенератор кислородсодержащего газа между верхним торцом 30 первой перегородки 4 и поверхностью второй перегородки 5, и между первой перегородкой 4 и второй перегородкой 5 ниже переточного отверстия 7 установлены барботеры-распределители 10 для подачи инертного газа в секцию 11 первого кипящего слоя, а в центральной части кипящего слоя, ограниченной второй перегородкой 5 над нижним днищем 3 корпуса регенератора ниже переточного отверстия 7 установлен барботер-распределитель 12 для подачи газа-восстановителя в секцию 13 второго кипящего слоя и над дном 8 между второй и третьей перегородкой установлен барботер-распределитель 14 для подачи инертного газа в секцию 15 третьего кипящего слоя, при этом над верхним торцом 22 третьей перегородки 6 на некотором расстоянии вверх от него установлен первый диск 20 в виде конуса с вершиной, направленной вверх, с образованием между указанным торцом и первым диском открытого кольцеобразного пространства 9 для отвода газообразных продуктов подготовки из второго и третьего кипящего слоя совместно с частью восстановленного катализатора в верхнюю часть кипящего слоя регенератора в зону 23 сжигания кокса и подаваемого в горелки 24 топливного газа и в нижней части секции 15 третьего кипящего слоя установлен патрубок 17 для выпуска подготовленного катализатора в реактор, присоединенный к третьей перегородке 6 или к ее дну 8.

Верхний торец 22 третьей перегородки 6 может быть соединен со вторым диском 21, окружающим отверстие третьей перегородки 6 с образованием между первым и вторым диском открытого кольцеобразного пространства 9.

Диаметр первого диска 20 может быть больше или меньше диаметра второго диска 21, при этом диаметр дисков меньше диаметра обечайки корпуса регенератора 1.

Барботеры-распределители для подачи инертного газа и газа-восстановителя могут представлять собой распределители в виде кольцеобразных трубчатых барботеров.

В первом и/или третьем и/или втором кипящем слое может быть расположена малообъемная насадка.

По высоте первого и/или третьего и/или второго кипящего слоя могут быть расположены секционирующие решетки.

В центральной части кипящего слоя устройства соосно обечайке корпуса регенератора 1 может быть установлена транспортная труба 27 с распределителем катализатора 28 для подачи циркулирующего катализатора из реактора в верхнюю часть кипящего слоя регенератора.

Над уровнем ввода в верхнюю часть кипящего слоя регенератора продуктов подготовки катализатора и ниже уровня кипящего слоя 25 регенератора может быть установлена одна или две секционирующие решетки 26.

Вертикальные перегородки 4, 5, 6 могут иметь заданную форму.

Вертикальные перегородки 4, 5, 6 могут иметь плоскую, цилиндрическую форму.

Могут быть и другие схемы устройств для подготовки, в которых разделение кипящего слоя на секции осуществляется с помощью вертикальных перегородок, имеющих плоскую, цилиндрическую, в виде трубы или другую форму.

В качестве сырья для дегидрирования могут быть использованы парафиновые углеводороды С35, такие, например, как изобутан, н-бутан, изопентан, пропан с содержанием парафинов в сырье предпочтительно 95-99 мас. %, а также смеси указанных парафиновых углеводородов.

При осуществлении предлагаемого способа подготовки катализатора в систему реактор-регенератор может быть загружен алюмохромовый катализатор, содержащий Cr2O3 - 13,0-25,0 мас. %, K2O - 1,0-3,0 мас. %, SiO2 - 1,0-10,0 мас. %, Al2O3 - остальное, при содержании в окисленном состоянии CrO3 - 0,25-3,5 мас. %, например, промышленный катализатор типа АОК-73-24.

Под отработанным катализатором подразумевают катализатор, который использовался в реакторе дегидрирования, был десорбирован, например, с использованием азота для удаления углеводородов из катализатора, и в охлажденном при осуществлении эндотермической реакции дегидрирования, закоксованном и восстановленном виде направлен в регенератор.

В качестве газа-окислителя для подачи в регенератор может быть использован газ, содержащий окислитель, предпочтительно кислород. Предпочтительный кислородсодержащий газ может содержать воздух, воздух, обогащенный кислородом (смешением воздуха и кислорода), азот-кислородные смеси различного происхождения, получаемые, например, при получении азота высокой чистоты на установках разделения воздуха и др. Концентрация кислорода в кислородсодержащих газах, подаваемых на регенерацию катализатора, ограничивается условиями соблюдения безопасности процесса при предпочтительных пределах от 23 до 50 мас. %.

В качестве газа-восстановителя могут быть использованы природный газ, предпочтительно содержащий метан до 98 мас. %, абгаз процессов дегидрирования, содержащий до 25 мас. % водорода, парафиновые углеводороды и др.

В качестве инертного газа для десорбции катализатора предпочтительна подача азота или повторно используемых газообразных продуктов сгорания.

В качестве топливного газа для сжигания в зоне нагрева катализатора в регенераторе предпочтительно использование природного метансодержащего газа, абгазов процессов дегидрирования.

Дегидрирование может осуществляться при температуре 530-610°С и объемной скорости подачи паров сырья 120-250 час-1. Регенерация катализатора, включающая в себя выжиг кокса, нагрев катализатора и его окисление может осуществляться при температуре 630-690°С и объемной скорости подачи кислородсодержащего газа 100-500 час-1. Подготовка катализатора после его окисления в регенераторе перед подачей в реактор может осуществляться при температуре 635-700°С, при времени предварительной десорбции азотом 1-3 мин., при времени восстановления катализатора в зависимости от количества и состава газа-восстановителя 0,5-3,0 мин. и при времени заключительной десорбции азотом 1-3 мин., а также при объемной скорости подачи азота на предварительную десорбцию катализатора 40-100 час-1, газа-восстановителя на восстановление катализатора 20-150 час-1 и азота на заключительную десорбцию катализатора 40-100 час-1. Для увеличения степени восстановления катализатора предпочтительна подача газа-восстановителя с избытком по сравнению с необходимым для полного восстановления катализатора в соответствии со стехиометрией реакций восстановления. При использовании заявляемого способа подготовки катализатора подача газа-восстановителя может быть увеличена до достижения коэффициента избытка равного 1,1-2,0, что обеспечивает максимальную эффективность процесса восстановления при отводе остаточного газа-восстановителя на дожиг в зону выжига кокса в регенераторе минуя зону окисления катализатора и, соответственно, высокую активность катализатора в системе дегидрирования. (Михайлов Р.К., «Исследование и разработка аппаратурно-технологического оформления промышленных способов дегидрирования изопентана и изобутана», Диссертация, Автореферат, Ярославль, 1970, с. 10-11; патент RU 2666541, МПК С07С 5/333, С07С 11/08, С07С 11/10, B01J 23/04, B01J 23/26, B01J 35/02, B01J 37/02, опубл. 11.09.2018).

Для организации кипящего слоя в устройстве подготовки катализатора в качестве малообъемной насадки может быть использована пружинная проволочная насадка. Предпочтительный объем, занимаемый насадкой в рабочем объеме, может составлять 6-8%. Расположение насадки в слое произвольное. Секционирующие решетки для организации кипящего слоя предпочтительно использовать щелевой конструкции. Решетки могут быть изготовлены из отдельных пластин, уголков, труб и др. Операции подготовки катализатора могут выполняться и в свободном кипящем слое (без использования массообменных устройств - насадки, решеток) предпочтительно при повышенных скоростях газовых потоков и величине отношения высоты кипящего слоя к его эффективному диаметру предпочтительно в пределах от 3,0 до 9,0. Предпочтительное соотношение площади поперечного сечения секций предварительной десорбции, восстановления и заключительной десорбции может составлять соответственно (0,5-2,0):1,0:(0,5-2,0). Поверхностная скорость газа в секции восстановления обычно выше 0,5 м/с и, предпочтительно составляет 0,5-2,5 м/с. Поверхностная скорость газа в секциях десорбции составляет меньше, чем 0,5 м/с и, предпочтительно находится в диапазоне от 0,01 до 0,5 м/с. Скорость газа-восстановителя во втором кипящем слое может быть больше, чем скорость инертного газа в первом и третьем кипящем слое.

Возможности достижения заявляемых концентраций катализатора в секциях устройства для подготовки катализатора в указанных условиях и при рабочих условиях осуществления процесса (температура, давление, гидродинамические характеристики катализатора, величина загрузки катализатора в систему, размеры кипящего слоя и др.), включая также распределение концентрации катализатора по высоте кипящего слоя, проиллюстрированы в работе С.М. Комаров и др., «Модель расширения псевдоожиженного слоя», (журнал «Теоретические основы химической технологии», 1983, Том XVII, №6, с. 808-812).

Возможности организации циркуляции катализатора в системе «реактор-регенератор» через устройство для подготовки катализатора с вертикальными перегородками в кипящем слое, организации направленной внутренней рециркуляции в системе «устройство для подготовки-регенератор», обеспечения величины требуемой суммарной циркуляции катализатора через переточные отверстия в перегородках, работы секционирующих решеток и малообъемной насадки в кипящем слое при прямотоке и противотоке катализатора и газа, регулирования величины циркуляции, расчета размера переточных отверстий представлены в работе С.М. Комаров и др., «Исследование направленной циркуляции катализатора в реакторах с псевдоожиженным слоем», (журнал «Теоретические основы химической технологии», 1982, Том XVI, №5, с. 702-706). Переточные отверстия в перегородках должны быть достаточно малыми для предотвращения массового потока газа-восстановителя из секции восстановления в секцию предварительной десорбции. С другой стороны, эти отверстия должны быть достаточно большими для обеспечения свободного потока частиц катализатора из секции десорбции в секцию восстановления. Общая площадь отверстий зависит от величины требуемой циркуляции катализатора через переточные отверстия в перегородках с учетом циркуляции катализатора в системе «реактор-регенератор» и дополнительной внутренней направленной циркуляции катализатора в системе «устройство для подготовки-регенератор». Переточные отверстия предпочтительно должны быть равномерно расположены по периметру нижней части перегородки, в сечении расположенном горизонтально.

Основными отличиями заявляемого устройства по сравнению с прототипом являются.

Организация в заявляемом устройстве дополнительной операции предварительной десорбции выходящего из регенератора и поступающего на подготовку окисленного катализатора в кипящем слое, продуваемом инертным газом противоточно к нисходящему потоку циркулирующего катализатора при концентрации последнего от 600 до 1100 кг/м3.

Разделение по секциям операций восстановления и десорбции продуктов восстановления с осуществлением операции восстановления катализатора в кипящем слое, продуваемом газом-восстановителем прямоточно с восходящим потоком циркулирующего катализатора при концентрации последнего от 300 до 800 кг/м3, а операции заключительной десорбции в кипящем слое, продуваемом инертным газом противоточно к нисходящему потоку циркулирующего катализатора при концентрации последнего от 600 до 1100 кг/м3.

Использование компактной трехсекционной системы подготовки катализатора, включающей последовательное осуществление операций предварительной десорбции, восстановления и заключительной десорбции циркулирующего катализатора в трех, расположенных параллельно секциях с кипящим слоем с независимыми режимами осуществления в них операций подготовки катализатора, что позволяет снизить высоту узла (устройства) подготовки катализатора, решить вопросы оптимальной компоновки блоков дегидрирования различной конфигурации, получить более технологичную схему устройства подготовки катализатора с возможностью регулирования процесса в каждой секции путем изменения скорости газовых потоков в указанных секциях, существенно увеличить время пребывания катализатора в секциях десорбции, которая лимитирует процесс подготовки катализатора, за счет открывающейся возможности увеличения объема соответствующих секций узла подготовки.

Увеличение интенсивности тепло-массообмена и сокращение застойных зон в кипящем слое секций предлагаемого устройства подготовки за счет возможности увеличения скоростей газовых потоков и использования эффективных при этих скоростях массообменных устройств (секционирующих решеток, малообъемной насадки). Особенно это проявляется при прямоточном движении катализатора и газа в кипящем слое секции восстановления катализатора. При этом структура кипящего слоя характеризуется снижением размера пузырьков газа при прямотоке фаз, а при использовании секционирующих решеток также практически исчезают газовые подушки в подрешеточных пространствах секции восстановления.

Рециркуляция части восстановленного катализатора через регенератор и далее через кипящий слой секции предварительной десорбции катализатора предлагаемого устройства, позволяющая возвращать часть получаемого при восстановлении катализатора дополнительного тепла (адиабатический разогрев проходящего через зону восстановления катализатора достигает 5-20°С - в зависимости от содержания окисла шестивалентного хрома на используемом катализаторе) на начальные стадии регенерации катализатора, улучшая тепловой баланс регенератора, а также углубляя процессы регенерации и подготовки катализатора. При рециркуляции через регенератор требуемая температура для обеспечения достаточной степени сгорания кокса на поверхности частиц катализатора и дальнейшего нагрева катализатора в верхней части кипящего слоя регенератора достигается при смешивании отработанного и охлажденного катализатора из реактора с частью восстановленного и подогретого катализатора из секции восстановления устройства подготовки катализатора при соответствующем уменьшении количества топливного газа, подаваемого на сжигание в зону нагрева регенератора. Рециркуляция части катализатора через зону предварительной десорбции устройства для подготовки катализатора увеличивает эффективность подготовки катализатора. При рециркуляции части восстановленного катализатора через зону окисления регенератора углубляются процессы окисления катализатора, что также является предпочтительным для повышения активности катализатора от цикла к циклу в условиях его нестационарной активности.

На фиг. 1 изображена схема модернизированного регенератора 1 с расположением внутри него предлагаемого устройства для подготовки катализатора.

В соответствии с изобретением кипящий слой устройства разделен с помощью вертикально установленных цилиндрических перегородок 4, 5 и 6 на секцию 11 для предварительной десорбции выходящего из регенератора 1 окисленного катализатора, секцию 13 для восстановления катализатора и секцию 15 для заключительной десорбции циркулирующего катализатора. В нижней части перегородки 5, разделяющей секцию 11 для предварительной десорбции и секцию 13 для восстановления катализатора, имеются переточные отверстия 7. На фиг. 1 показано расположение в нижней части указанных секций кольцеобразных трубчатых барботеров-распределителей: 10 - для подачи инертного газа на предварительную десорбцию катализатора, 12 - для подачи газа-восстановителя на восстановление катализатора и 14 - для подачи инертного газа на заключительную десорбцию циркулирующего катализатора. Устройство имеет средство 16 для подачи регенерированного катализатора, патрубок 17 для выпуска подготовленного катализатора в реактор, открытое кольцеобразное пространство 9 для отвода газообразных продуктов подготовки катализатора и части восстановленного катализатора в верхнюю часть кипящего слоя регенератора в зону 23 сжигания кокса и подаваемого в горелки 24 топливного газа. Регенератор 1 имеет распределитель 18 для подачи кислородсодержащего газа на регенерацию катализатора в нижнюю часть кипящего слоя регенератора, секционирующие решетки 19 в кипящем слое регенератора, транспортную трубу 27 для подачи отработанного катализатора из реактора в регенератор с распределителем катализатора 28. Устройство, изображенное на фиг. 1, имеет в секциях десорбции и восстановления катализатора свободный, неорганизованный кипящий слой. Рассмотрение работы предлагаемого устройства для подготовки катализатора целесообразно провести совместно с работой регенератора установки дегидрирования парафиновых углеводородов С35, в который встроено указанное устройство. Отработанный катализатор из реактора в закоксованном, восстановленном и охлажденном в ходе эндотермической реакции дегидрирования виде в смеси с транспортирующим воздухом подается по транспортной трубе 27 через распределитель 28 в верхнюю часть кипящего слоя регенератора. Под кипящий слой на регенерацию катализатора через распределитель 18 подается воздух. Воздух проходит кипящий слой регенератора, секционированный горизонтальными решетками 19, противоточно к опускающемуся вниз циркулирующему катализатору. Для нагрева циркулирующего катализатора и обеспечения теплом эндотермической реакции дегидрирования в реакторе в верхнюю часть кипящего слоя регенератора через горелочное устройство 24, расположенное в зоне 23 нагрева катализатора (сжигания кокса), подают природный газ на сжигание в потоке подаваемого в регенератор воздуха при одновременном выжиге кокса на катализаторе. Катализатор последовательно проходит зоны 23 сжигания кокса и расположенную ниже зону окисления с одновременной десорбцией катализатора подаваемым воздухом и газообразными продуктами окисления. Далее окисленный катализатор, содержащий значительное количество адсорбированного кислорода, окисла шестивалентного хрома и остаточной адсорбированной воды, поступает в устройство для подготовки катализатора через средство 16 для подачи регенерированного катализатора в секцию 11 предварительной десорбции катализатора от адсорбированной воды подаваемым через трубчатый барботер-распределитель 10 азотом. Пройдя указанную секцию в режиме нисходящего противотока к подаваемому азоту, десорбированный от воды катализатор из нижней части секции через переточные отверстия 7 поступает в низ секции 13 восстановления катализатора, в которой удаляется адсорбированный кислород и восстанавливается CrO3 до Cr2O3 подаваемым через барботер-распределитель 12 природным метансодержащим газом. Секция 15 заключительной десорбции катализатора от адсорбированной в секции восстановления реакционной воды работает в режиме нисходящего противотока циркулирующего катализатора к подаваемому на десорбцию через барботер-распределитель 14 азоту. После восстановления катализатора в режиме восходящего прямотока с подаваемым природным газом часть восстановленного катализатора с верха секции восстановления выпускают через секцию заключительной десорбции 15 и патрубок 17 для выпуска подготовленного катализатора в реактор, а часть повторно возвращают в верхнюю часть кипящего слоя регенератора в зону 23 сжигания кокса и подаваемого топливного газа через открытое кольцеобразное пространство 9 совместно с отходящими газами восстановительно-десорбционной подготовки катализатора. Указанная ситуация становится возможной в связи с организацией направленной внутренней циркуляции части восстановленного катализатора в системе «секция восстановления катализатора-регенератор» путем создания в кипящем слое секции 13 восстановления линейной скорости газового потока больше, чем в кипящем слое регенератора, а также, предпочтительно, и в кипящем слое секции 15 заключительной десорбции. При этом степень расширения кипящего слоя в секции 13 восстановления становится больше, чем в регенераторе, а концентрация катализатора в ней - соответственно меньше, что создает условия для возникновения конвективной направленной внутренней циркуляции катализатора с подъемной частью контура циркуляции (кипящий слой секции восстановления, тракт выпуска циркулирующего катализатора (открытое кольцеобразное пространство) 9 и напорной частью контура (кипящий слой регенератора, секция 11 предварительной десорбции катализатора). Разность гидростатических напоров указанных частей циркуляционного контура является движущей силой направленной внутренней циркуляции катализатора.

В ходе осуществления экзотермических реакций восстановления вдоль кипящего слоя секции 13 возникает адиабатический разогрев циркулирующего катализатора с подъемом температуры катализатора к концу секции в зависимости от содержания окисла шестивалентного хрома в окисленном алюмохромовом катализаторе, например, до 20°С при содержании CrO3 1,0 мас. %). При этом часть восстановленного и подогретого катализатора повторно возвращают на теплоиспользование в регенератор, а подготовленный катализатор из нижней части секции 15 заключительной десорбции катализатора через патрубок 17 транспортируется в реактор. Полученные газы регенерации, в том числе и газы восстановительно-десорбционной подготовки катализатора после дожига горючей части в зоне 23 нагрева катализатора (сжигания подаваемого топливного газа и кокса) попадают в надслоевое пространство регенератора и после улавливания мелких фракций унесенного из кипящего слоя катализатора в циклонах (на фиг. 1 не показано) покидают регенератор через патрубок 2. Уловленные в циклонах мелкие фракции катализатора по пылеспускным стоякам возвращаются в верхнюю часть кипящего слоя регенератора, а газы регенерации поступают на охлаждение, санитарную очистку от катализаторной пыли и затем сбрасываются через дымовую трубу в атмосферу.

Таким образом, техническим результатом заявленного изобретения является увеличение эффективности восстановительно-десорбционной подготовки алюмохромовых катализаторов с увеличением их активности в процессах дегидрирования парафиновых углеводородов С35 при более компактной и технологичной схеме узла подготовки. Предлагаемое устройство может быть использовано для проектирования новых и модернизации действующих в промышленности производств.

Похожие патенты RU2719490C1

название год авторы номер документа
Устройство для подготовки катализатора в процессах дегидрирования парафиновых углеводородов С-С 2019
  • Комаров Станислав Михайлович
  • Харченко Александра Станиславовна
  • Крейкер Алексей Александрович
RU2710017C1
Способ подготовки катализатора в процессах дегидрирования парафиновых углеводородов С-С и устройство для его осуществления 2019
  • Комаров Станислав Михайлович
  • Харченко Александра Станиславовна
  • Крейкер Алексей Александрович
RU2710016C1
Способ регенерации алюмохромового катализатора и регенератор для его осуществления 2020
  • Комаров Станислав Михайлович
  • Харченко Александра Станиславовна
  • Крейкер Алексей Александрович
RU2746425C1
Регенератор системы дегидрирования парафиновых углеводородов C-C (варианты) 2021
  • Комаров Станислав Михайлович
  • Харченко Александра Станиславовна
RU2773016C1
Регенератор системы дегидрирования парафиновых углеводородов C-C с кипящим слоем катализатора 2021
  • Комаров Станислав Михайлович
  • Харченко Александра Станиславовна
RU2773127C1
Способ получения олефиновых углеводоров C-C 2015
  • Комаров Станислав Михайлович
  • Душин Александр Алексеевич
  • Крейкер Алексей Александрович
RU2619128C1
РЕАКТОР ДЛЯ ДЕГИДРИРОВАНИЯ ПАРАФИНОВЫХ УГЛЕВОДОРОДОВ C-C 2015
  • Комаров Станислав Михайлович
  • Душин Александр Алексеевич
  • Крейкер Алексей Александрович
RU2601002C1
Способ получения олефиновых углеводородов в кипящем слое пылевидного алюмохромового катализатора 2020
  • Гильмуллин Ринат Раисович
  • Хакимов Ришат Вилурович
  • Березкина Марина Васильевна
RU2759288C1
Способ получения олефиновых углеводородов 2017
  • Комаров Станислав Михайлович
  • Харченко Александра Станиславовна
  • Крейкер Алексей Александрович
RU2666541C1
Распределитель катализатора и транспортного газа для системы реактор - регенератор дегидрирования парафиновых углеводородов С-С с кипящим слоем 2017
  • Комаров Станислав Михайлович
  • Харченко Александра Станиславовна
  • Крейкер Алексей Александрович
RU2652195C1

Иллюстрации к изобретению RU 2 719 490 C1

Реферат патента 2020 года Устройство для подготовки катализатора в процессах дегидрирования парафиновых углеводородов C - C

Изобретение относится к области нефтехимии, в частности к установкам дегидрирования парафиновых углеводородов С35 в соответствующие олефиновые углеводороды, используемые для получения основных мономеров для синтетического каучука, а также при производстве полипропилена, метилтретичнобутилового эфира и др. Предлагается устройство для восстановительно-десорбционной подготовки алюмохромового катализатора, циркулирующего в системе реактор - регенератор в процессах дегидрирования парафиновых углеводородов С35 с кипящим слоем, включающее цилиндрические перегородки, установленные соосно цилиндрической обечайке корпуса регенератора 1, имеющее средство 16 для подачи регенерированного катализатора, барботеры-распределители 12 для подачи газа-восстановителя, барботеры-распределители 14 для подачи инертного газа, открытое кольцеобразное пространство 9 для отвода газообразных продуктов подготовки катализатора, патрубок 17 для выпуска подготовленного катализатора в реактор, при этом устройство может быть расположено внутри регенератора и содержать прикрепленные нижним торцом к днищу 3 корпуса регенератора 1, установленные соосно цилиндрическому корпусу регенератора 1 первую перегородку 4 и внутри нее на расстоянии вторую перегородку 5, а также снаружи второй перегородки 5 на расстоянии третью перегородку 6, установленную соосно обечайке корпуса регенератора 1 с верхним торцом 22, расположенным в верхней части кипящего слоя регенератора в зоне 23 сжигания кокса на поступающем в эту зону из реактора отработанном катализаторе и подаваемого через горелки 24 топливного газа, имеющую прикрепленное к ее нижнему торцу кольцеобразное дно 8, окружающее поверхность второй перегородки 5 и расположенное над верхним торцом 30 первой перегородки 4, при этом верхний торец 29 второй перегородки 5 расположен на уровне или ниже верхнего торца 22 третьей перегородки 6, а в нижней части второй перегородки 5 ниже верхнего торца 30 первой перегородки 4 имеются отверстия 7 для перетока катализатора, кроме того, устройство имеет средство 16 для подачи регенерированного катализатора в виде открытого кольцевого пространства, расположенного выше или ниже распределителя 18 для подачи в регенератор кислородсодержащего газа между верхним торцом 30 первой перегородки 4 и поверхностью второй перегородки 5, и между первой перегородкой 4 и второй перегородкой 5 ниже переточного отверстия 7 установлены барботеры-распределители 10 для подачи инертного газа в секцию 11 первого кипящего слоя, а в центральной части кипящего слоя, ограниченной второй перегородкой 5 над нижним днищем 3 корпуса регенератора ниже переточного отверстия 7, установлен барботер-распределитель 12 для подачи газа-восстановителя в секцию 13 второго кипящего слоя, и над дном 8 между второй и третьей перегородками установлен барботер-распределитель 14 для подачи инертного газа в секцию 15 третьего кипящего слоя, при этом над верхним торцом 22 третьей перегородки 6 на некотором расстоянии вверх от него установлен первый диск 20 в виде конуса с вершиной, направленной вверх, с образованием между указанным торцом и первым диском открытого кольцеобразного пространства 9 для отвода газообразных продуктов подготовки из второго и третьего кипящих слоев совместно с частью восстановленного катализатора в верхнюю часть кипящего слоя регенератора в зону 23 сжигания кокса и подаваемого в горелки 24 топливного газа, и в нижней части секции 15 третьего кипящего слоя установлен патрубок 17 для выпуска подготовленного катализатора в реактор, присоединенный к третьей перегородке 6 или к ее дну 8. Таким образом, технический результат заключается в увеличении эффективности восстановительно-десорбционной подготовки алюмохромовых катализаторов с увеличением их активности в процессах дегидрирования парафиновых углеводородов С35 при более компактной и технологичной схеме узла подготовки. 9 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 719 490 C1

1. Устройство для восстановительно-десорбционной подготовки алюмохромового катализатора, циркулирующего в системе реактор - регенератор в процессах дегидрирования парафиновых углеводородов С35 с кипящим слоем, включающее цилиндрические перегородки, установленные соосно цилиндрической обечайке корпуса регенератора (1), имеющее средство (16) для подачи регенерированного катализатора, барботеры-распределители (12) для подачи газа-восстановителя, барботеры-распределители (14) для подачи инертного газа, открытое кольцеобразное пространство (9) для отвода газообразных продуктов подготовки катализатора, патрубок (17) для выпуска подготовленного катализатора в реактор, отличающееся тем, что устройство расположено внутри регенератора (1) и содержит прикрепленные нижним торцом к днищу (3) корпуса регенератора (1), установленные соосно цилиндрическому корпусу регенератора (1) первую перегородку (4) и внутри нее на расстоянии вторую перегородку (5), а также снаружи второй перегородки (5) на расстоянии третью перегородку (6), установленную соосно обечайке корпуса регенератора (1) с верхним торцом (22), расположенным в верхней части кипящего слоя регенератора в зоне (23) сжигания кокса на поступающем в эту зону из реактора отработанном катализаторе и подаваемого через горелки (24) топливного газа, имеющую прикрепленное к ее нижнему торцу кольцеобразное дно (8), окружающее поверхность второй перегородки (5) и расположенное над верхним торцом (30) первой перегородки (4), при этом верхний торец (29) второй перегородки (5) расположен на уровне или ниже верхнего торца (22) третьей перегородки (6), а в нижней части второй перегородки (5) ниже верхнего торца (30) первой перегородки (4) имеются отверстия (7) для перетока катализатора, кроме того, устройство имеет средство (16) для подачи регенерированного катализатора в виде открытого кольцевого пространства, расположенного выше или ниже распределителя (18) для подачи в регенератор кислородсодержащего газа между верхним торцом (30) первой перегородки (4) и поверхностью второй перегородки (5), и между первой перегородкой (4) и второй перегородкой (5) ниже переточного отверстия (7) установлены барботеры-распределители (10) для подачи инертного газа в секцию (11) первого кипящего слоя, а в центральной части кипящего слоя, ограниченной второй перегородкой (5) над нижним днищем (3) корпуса регенератора ниже переточного отверстия (7), установлен барботер-распределитель (12) для подачи газа-восстановителя в секцию (13) второго кипящего слоя, и над дном (8) между второй и третьей перегородками установлен барботер-распределитель (14) для подачи инертного газа в секцию (15) третьего кипящего слоя, при этом над верхним торцом (22) третьей перегородки (6) на некотором расстоянии вверх от него установлен первый диск (20) в виде конуса с вершиной, направленной вверх, с образованием между указанным торцом и первым диском открытого кольцеобразного пространства (9) для отвода газообразных продуктов подготовки из второго и третьего кипящих слоев совместно с частью восстановленного катализатора в верхнюю часть кипящего слоя регенератора в зону (23) сжигания кокса и подаваемого в горелки (24) топливного газа, и в нижней части секции (15) третьего кипящего слоя установлен патрубок (17) для выпуска подготовленного катализатора в реактор, присоединенный к третьей перегородке (6) или к ее дну (8).

2. Устройство по п. 1, отличающееся тем, что верхний торец (22) третьей перегородки (6) соединен со вторым диском (21), окружающим отверстие третьей перегородки (6) с образованием между первым и вторым дисками открытого кольцеобразного пространства (9).

3. Устройство по п. 2, отличающееся тем, что диаметр первого диска (20) больше или меньше диаметра второго диска (21), при этом диаметр дисков меньше диаметра обечайки корпуса регенератора (1).

4. Устройство по п. 1, отличающееся тем, что барботеры-распределители для подачи инертного газа и газа-восстановителя представляют собой распределители в виде кольцеобразных трубчатых барботеров.

5. Устройство по п. 1, отличающееся тем, что в первом, и/или третьем, и/или втором кипящем слое расположена малообъемная насадка.

6. Устройство по п. 1, отличающееся тем, что по высоте первого, и/или третьего, и/или второго кипящего слоя расположены секционирующие решетки.

7. Устройство по п. 1, отличающееся тем, что в центральной части кипящего слоя устройства соосно обечайке корпуса регенератора (1) установлена транспортная труба (27) с распределителем катализатора (28) для подачи циркулирующего катализатора из реактора в верхнюю часть кипящего слоя регенератора.

8. Устройство по п. 1, отличающееся тем, что над уровнем ввода в верхнюю часть кипящего слоя регенератора продуктов подготовки катализатора и ниже уровня кипящего слоя (25) регенератора установлена одна или две секционирующие решетки (26).

9. Устройство по п. 1, отличающееся тем, что вертикальные перегородки (4), (5), (6) имеют заданную форму.

10. Устройство по п. 1, отличающееся тем, что вертикальные перегородки (4), (5), (6) имеют плоскую, цилиндрическую форму.

Документы, цитированные в отчете о поиске Патент 2020 года RU2719490C1

Способ получения олефиновых углеводоров C-C 2015
  • Комаров Станислав Михайлович
  • Душин Александр Алексеевич
  • Крейкер Алексей Александрович
RU2619128C1
Реактор (варианты) и способ диагностики неисправностей и оптимизации конструкции реактора дегидрирования парафиновых углеводородов С3-С5 2016
  • Комаров Станислав Михайлович
  • Душин Александр Алексеевич
  • Крейкер Алексей Александрович
  • Харченко Александра Станиславовна
RU2625880C9
Прибор для шлифования оптических линз, ограниченных поверхностями параболоидов вращения любых размеров 1923
  • Посвольский В.И.
SU664A1
WO 2019126417 A1, 27.06.2019
CN 107961745 A, 27.04.2018.

RU 2 719 490 C1

Авторы

Комаров Станислав Михайлович

Харченко Александра Станиславовна

Крейкер Алексей Александрович

Даты

2020-04-17Публикация

2019-10-28Подача