Настоящее изобретение относится к области нефтехимии, в частности к способу получения олефиновых углеводородов, используемых в дальнейшем для получения основных мономеров СК, а также при производстве полипропилена, метилтретичнобутилового эфира и др.
Известен способ получения олефиновых углеводородов путем дегидрирования соответствующих парафиновых углеводородов в системе реактор-регенератор с движущимся крупнозернистым катализатором (Я.Я. Кирнос, О.Б. Литвин «Современные промышленные методы синтеза бутадиена». Аналитические сопоставительные обзоры ЦНИИТЭНефтехим, серия «Производство синтетических каучуков», М., 1967, с. 81).
Недостатком известного способа является сложное аппаратурное оформление реакторного узла и невозможность создания установок большой производительности в связи с трудностями организации циркуляции крупнозернистого катализатора в системе реактор-регенератор.
Известен способ для получения легких олефинов (патент RU 2125079, МПК C10G 11/18, B01J 8/18, опубл. 20.01.1999), который включает стадии подачи углеводородного исходного материала в реакционную зону, содержащую твердый катализатор, контактирование углеводородного исходного материала в реакционной зоне с катализатором, в условиях, которые благоприятствуют каталитической конверсии углеводородов в легкие олефины, отделение полученных продуктов реакции из реакционной зоны после каталитической конверсии, выделение катализатора и регенерацию дезактивированного катализатора в регенераторе. В соответствии с изобретением углеводородный исходный материал контактирует с катализатором в реакторе с циркулирующим кипящим слоем при времени пребывания в диапазоне от 0,1 до 3 с.
Предложенный способ не позволяет достигнуть промышленно значимых показателей дегидрирования парафиновых углеводородов С3-С5: производительности реактора, выходов олефинов на пропущенное и разложенное сырье.
Наиболее близким по технической сущности и достигаемому результату является способ получения олефиновых углеводородов путем дегидрирования соответствующих парафиновых углеводородов, осуществляемый в системе с кипящим слоем мелкозернистого алюмохромового катализатора, содержащей реактор, регенератор и узел восстановительно-десорбционной подготовки регенерированного катализатора с циркуляцией катализатора между ними (Р.К. Михайлов, А.Н. Бушин, И.Я. Тюряев, С.М. Хрипина «Подготовка катализатора при дегидрировании парафиновых углеводородов», Научно-технический сборник «Промышленность синтетического каучука», ЦНИИТЭ-Нефтехим, М., 1969, №4, с. 3-6).
По этому способу восстановительно-десорбционная подготовка регенерированного катализатора перед подачей его в реактор осуществляется путем обработки катализатора газом-восстановителем в режиме противотока катализатора и газа с использованием в узле подготовки горизонтальных секционирующих решеток провального типа.
Указанный способ не обеспечивает достижения достаточно глубокой степени восстановления (подготовки) катализатора в связи с низкой скоростью массообменных процессов в используемом способе контактирования катализатора и газа при малом времени контактирования, низких линейных скоростях газа в узле подготовки, ограниченных конструкцией системы дегидрирования. Все это приводит к снижению выходов целевого продукта в процессах дегидрирования.
Задачей настоящего изобретения является увеличение выходов целевого продукта в процессах дегидрирования парафиновых углеводородов в кипящем слое алюмохромовых катализаторов за счет повышения степени восстановления катализатора.
Предлагается способ получения олефиновых углеводородов С3-С5 путем дегидрирования соответствующих парафиновых углеводородов в кипящем слое алюмохромового катализатора, циркулирующего в системе, включающей реактор, регенератор 13 и узел восстановительно-десорбционной подготовки катализатора после регенератора 13.
Эта подготовка осуществляется путем обработки катализатора газом-восстановителем в режиме противотока с использованием горизонтальных секционирующих решеток 2. Причем сразу после регенератора 13 обработку проводят в режиме направленной внутренней циркуляции катализатора с использованием вертикальной перегородки 6, разделяющей кипящий слой на подъемную 14 и напорную 15 секции, а затем - в режиме противотока при соотношении времен пребывания катализатора в указанных режимах, равном 0,3-3,0.
Вертикальная перегородка 6 может быть выполнена в виде цилиндрической трубы.
Вертикальная перегородка 6 может быть установлена в верхней части стакана-восстановителя 1, встроенного в нижнюю часть регенератора 13.
Вертикальная перегородка 6 может являться продолжением верхней части стакана-восстановителя 8, входящего в нижнюю часть корпуса регенератора 13.
В вертикальной перегородке (6) отверстия (11) для перетока катализатора могут быть выполнены в виде круга.
Для создания внутренней циркуляции катализатора в секции могут подавать воздух, природный газ, азот.
Предпочтительно линейная скорость газа в подъемной секции 14 выше, чем в напорной секции 15.
Предлагается способ получения олефиновых углеводородов С3-С5 путем дегидрирования соответствующих парафиновых углеводородов в кипящем слое алюмохромового катализатора, циркулирующего в системе, включающей реактор, регенератор и узел восстановительно-десорбционной подготовки катализатора после регенератора.
Эта подготовка осуществляется путем обработки катализатора газом-восстановителем в режиме противотока с использованием горизонтальных секционирующих решеток. Причем сразу после регенератора обработку проводят в режиме направленной внутренней циркуляции катализатора с использованием вертикальной перегородки, разделяющей кипящий слой на подъемную и напорную секции, а затем - в режиме противотока.
В качестве газа-восстановителя могут использоваться водородсодержащие газы, СО, углеводороды C1-С5 и их смеси.
Для организации режимов, указанных в настоящем изобретении, могут быть использованы различные конструктивные решения.
Возможные схемы узла восстановительно-десорбционной подготовки катализатора представлены на фиг. 1 и фиг. 2. В соответствии с предлагаемой формулой изобретения могут быть и другие схемы узла. Подготовку согласно фиг. 1 осуществляют в стакане-восстановителе 1, встроенном в нижнюю часть регенератора 13. Стакан-восстановитель 1 по высоте секционирован провальными секционирующими решетками 2. В нижнюю часть стакана-восстановителя 1 через барботер 3 подают газ-восстановитель. Через барботер 4, расположенный ниже барботера 3, подают азот.
Для осуществления процесса в соответствии с изобретением под барботером 5 для подачи воздуха в регенератор 13 в верхней части стакана-восстановителя 1 устанавливают циркуляционную трубу 6, в которую подают азот для обеспечения рециркуляции катализатора в верхней части стакана-восстановителя 1. Как видно из фиг. 1, пространство между барботером 5 для подачи воздуха в регенератор и секционирующей решеткой 7, расположенной под нижним торцом циркуляционной трубы 6, представляет собой первую ступень подготовки катализатора, работающую в режиме направленной внутренней циркуляции. Пространство между секционирующей решеткой 7 и барботером для подачи азота 4 в нижней части стакана-восстановителя 1 представляет собой вторую ступень подготовки катализатора, работающую в режиме противотока катализатора и газа. Циркулирующий из регенератора 13 в реактор катализатор последовательно проходит через первую и вторую ступени контактирования с подаваемыми в стакан-восстановитель 1 газом-восстановителем и азотом, подвергаясь восстановительно-десорбционной подготовке.
Подготовку катализатора согласно фиг. 2 осуществляют в стакане-восстановителе 8, встроенном в регенератор 13 таким образом, что верхняя часть стакана-восстановителя 8 входит в нижнюю часть корпуса регенератора, при этом верхний торец 9 стакана-восстановителя 8 расположен под барботером 10 для подачи воздуха в регенератор, хотя может располагаться и над барботером 10 в зависимости от схемы реализации способа.
Для осуществления процесса в соответствии с изобретением в обечайке верхней части стакана-восстановителя, в области, располагаемой внутри корпуса регенератора, имеются отверстия 11 для перетока катализатора. В полости конического днища регенератора на уровне ниже отверстий для перетока катализатора расположен барботер 12 для подачи газа на ожижение катализатора. При этом возникает интенсивная направленная внутренняя циркуляция катализатора в зоне между отверстиями для перетока катализатора и барботером 10 подачи воздуха в регенератор. Указанная зона является первой ступенью узла подготовки катализатора, расположенной над второй ступенью подготовки в нижней части стакана-восстановителя 8.
Таким образом, для осуществления режима направленной внутренней циркуляции катализатора в кипящем слое в последнем можно расположить вертикальную перегородку, разделяющую кипящий слой на подъемную 14 и напорную секции 15. Перегородка может быть плоской, цилиндрической, в виде трубы 6 или другой формы. В своей нижней части перегородка может иметь отверстия 11 для перетока катализатора при его внутренней (в зоне расположения перегородки) циркуляции катализатора.
Для обеспечения циркуляции катализатора линейная скорость газа, подаваемого в подъемную секцию 14, должна быть выше, чем в напорной секции 15. При этом концентрация катализатора и соответственно гидростатический напор слоя катализатора в подъемной секции 14 будет меньше, чем напорной 15, что и обеспечивает интенсивную внутреннюю направленную циркуляцию катализатора, при которой катализатор поднимается в подъемной секции 14 и опускается в напорной 15.
Для осуществления режима противотока катализатора и газа-восстановителя могут быть использованы горизонтальные секционирующие решетки провального типа с живым сечением, обеспечивающим противоточное движение катализатора и газа в отверстиях решеток. Решетки могут быть, например, с отверстиями в форме щелей и изготовлены из уголков, труб, наклоненных под углом к направлению потока газа плоских пластин и т.д.
Организация на начальной стадии подготовки алюмохромового катализатора дополнительной ступени подготовки, работающей в режиме направленной внутренней циркуляции катализатора, позволяет увеличить степень восстановления (подготовки) катализатора, а также снизить расход газа-восстановителя, подаваемого на подготовку катализатора за счет:
- повышенного массообмена в объеме указанной ступени с интенсивной внутренней циркуляцией катализатора;
- многократной рециркуляции катализатора через объем указанной ступени;
- увеличения времени пребывания катализатора при увеличении концентрации последнего в объеме указанной ступени за счет интенсивной направленной циркуляции, а также в связи с возможностью увеличения объема этой ступени за счет увеличения поперечного сечения (диаметра) ступени;
- более «мягкого» ведения процесса восстановления при осуществлении двухступенчатого способа подготовки катализатора с перераспределением конверсии газа-восстановителя по ступеням.
Увеличение степени восстановления катализатора, содержащего окислы хрома переменной валентности, при подготовке регенерированного (окисленного) катализатора перед подачей его в реактор снижает количество окисла шестивалентного металла (типа CrO3), поступающего с циркулирующим катализатором в реактор. Учитывая, что окисел шестивалентного металла (CrO3) в восстановительной среде реактора переходит в окисел трехвалентного металла (типа Cr2O3) с образованием паров воды, которая является ядом для катализатора, увеличение степени восстановления катализатора в узле восстановительно-десорбционной подготовки приводит к повышению показателей дегидрирования.
При соотношении времен пребывания катализатора в ступенях узла восстановительно-десорбционной подготовки меньше величины равной 0,3, влияние дополнительной ступени с направленной внутренней циркуляцией катализатора на улучшение показателей работы узла подготовки в целом и, соответственно, на улучшение показателей дегидрирования перестает быть заметным, а при соотношении больше величины, равной 3, возникает ситуация ухудшения показателей работы узла подготовки и, соответственно, показателей дегидрирования.
Технический результат заключается в увеличении выходов целевого продукта - олефинов.
Изобретение иллюстрируется следующими примерами.
Пример 1.
Дегидрирование н-бутана в бутилены осуществляется на установке с кипящим слоем алюмохромового катализатора, содержащего Cr2O3 - 14 мас. %, K2O - 3 мас. %, SiO2 - 9 мас. % и Al2O3 - 74 мас. %. Установка состоит из реактора и регенератора с непрерывной циркуляцией катализатора. Схема узла восстановительно-десорбционной подготовки катализатора представлена на фиг. 1. В нижнюю часть стакана-восстановителя 1 через барботер 3 подают в качестве газа-восстановителя природный газ (содержание метана ~ 97 мас. %) в количестве 15 нм3/ч (что соответствует объемной скорости подачи ~ 120 час-1). Через барботер 4, расположенный ниже барботера 3, подают азот в количестве ~ 10 нм3/ч (что соответствует объемной скорости подачи ~ 70 час-1). Процесс проводят при температуре в реакторе 585°С и регенераторе 650°С. В реактор подают н-бутан в количестве 480 кг/ч. Циркуляция катализатора в системе реактор-регенератор через стакан-восстановитель 1 составляет 7,2 т/ч. Время пребывания катализатора в стакане-восстановителе 1 составляет 1,7-1,9 мин. В циркуляционную трубу 6 подают азот в количестве ~ 5 нм3/ч для рециркуляции катализатора в верхней части стакана-восстановителя 1.
Данные по другим условиям осуществления процесса и показатели дегидрирования приведены в табл. 1. Там же приведены результаты дегидрирования н-бутана в аналогичных условиях по прототипу.
Пример 2.
Дегидрирование изобутана в изобутилен осуществляют на катализаторе, содержащем Cr2O3 - 20 мас. %, K2O - 2 мас. %, SiO2 - 2 мас. % и Al2O3 - 76 мас. %, аналогично примеру 1, однако температура дегидрирования составляет 580°С, а регенерации - 650°С. Циркуляция катализатора между реактором и регенератором составляет 6,9 т/ч, подача изобутана - 450 кг/ч. Схема узла восстановительно-десорбционной подготовки регенерированного катализатора перед подачей его в реактор представлена на фиг. 2.
Для осуществления процесса в соответствии с изобретением в барботер 12 для подачи газа на ожижение катализатора. В качестве газа-восстановителя подают природный газ в количестве 5 нм3/ч.
Данные по другим условиям и показателям дегидрирования приведены в табл. 1. Там же приведены результаты дегидрирования изобутана в аналогичных условиях по прототипу.
Пример 3.
Дегидрирование пропана в пропилен осуществляют на катализаторе, аналогичном используемому в примере 2 с применением узла восстановительно-десорбционной подготовки катализатора по этому же примеру. При этом температура дегидрирования пропана составляет 590°С, температура регенерации - 650°С, циркуляция катализатора между реактором и регенератором - 5,8 т/ч, подача пропана - 400 кг/ч.
Данные по другим условиям и показателям дегидрирования приведены в табл. 1. Там же приведены результаты дегидрирования пропана в аналогичных условиях по прототипу.
Пример 4.
Дегидрирование изопентана осуществляют на катализаторе, аналогичном используемому в примере 1 с применением узла восстановительно-десорбционной подготовки катализатора по этому же примеру. При этом температура дегидрирования изопентана составляет 575°С, а температура регенерации - 650°С, циркуляция катализатора между реактором и регенератором - 7,2 т/ч, подача изопентана - 480 кг/ч.
Данные по другим условиям и показателям дегидрирования приведены в табл. 1. Там же приведены результаты дегидрирования изопентана в аналогичных условиях по прототипу.
Как видно из приведенных примеров, предложенный способ позволяет повысить выходы олефинов в процессах дегидрирования парафиновых углеводородов.
название | год | авторы | номер документа |
---|---|---|---|
Устройство для подготовки катализатора в процессах дегидрирования парафиновых углеводородов C - C | 2019 |
|
RU2719490C1 |
Способ подготовки катализатора в процессах дегидрирования парафиновых углеводородов С-С и устройство для его осуществления | 2019 |
|
RU2710016C1 |
Устройство для подготовки катализатора в процессах дегидрирования парафиновых углеводородов С-С | 2019 |
|
RU2710017C1 |
Способ регенерации алюмохромового катализатора и регенератор для его осуществления | 2020 |
|
RU2746425C1 |
Регенератор системы дегидрирования парафиновых углеводородов C-C (варианты) | 2021 |
|
RU2773016C1 |
Регенератор системы дегидрирования парафиновых углеводородов C-C с кипящим слоем катализатора | 2021 |
|
RU2773127C1 |
УСТАНОВКА ДЛЯ ДЕГИДРИРОВАНИЯ ПАРАФИНОВЫХ УГЛЕВОДОРОДОВ C-C | 1998 |
|
RU2129111C1 |
РЕАКТОР ДЛЯ ДЕГИДРИРОВАНИЯ ПАРАФИНОВЫХ УГЛЕВОДОРОДОВ C-C | 2015 |
|
RU2601002C1 |
Установка дегидрирования парафиновых углеводородов C-C | 2017 |
|
RU2638934C1 |
УСТАНОВКА ДЕГИДРИРОВАНИЯ ПАРАФИНОВ ИЛИ ИЗОПАРАФИНОВ С-С В КИПЯЩЕМ СЛОЕ АЛЮМОХРОМОВОГО КАТАЛИЗАТОРА | 2015 |
|
RU2591159C1 |
Изобретение относится к способу получения олефиновых углеводородов С3-С5 путем дегидрирования соответствующих парафиновых углеводородов в кипящем слое алюмохромового катализатора, циркулирующего в системе, включающей реактор, регенератор (13) и узел восстановительно-десорбционной подготовки катализатора после регенератора (13), осуществляемой обработкой катализатора газом-восстановителем в режиме противотока с использованием горизонтальных секционирующих решеток (2). Способ характеризуется тем, что сразу после регенератора (13) обработку проводят в режиме направленной внутренней циркуляции катализатора с использованием вертикальной перегородки (6), разделяющей кипящий слой на подъемную (14) и напорную (15) секции, а затем - в режиме противотока при соотношении времен пребывания катализатора в указанных режимах, равном 0,3-3,0. Технический результат заключается в увеличении выходов целевого продукта - олефинов. 6 з.п. ф-лы, 4 пр., 1 табл.
1. Способ получения олефиновых углеводородов С3-С5 путем дегидрирования соответствующих парафиновых углеводородов в кипящем слое алюмохромового катализатора, циркулирующего в системе, включающей реактор, регенератор (13) и узел восстановительно-десорбционной подготовки катализатора после регенератора (13), осуществляемой обработкой катализатора газом-восстановителем в режиме противотока с использованием горизонтальных секционирующих решеток (2), отличающийся тем, что сразу после регенератора (13) обработку проводят в режиме направленной внутренней циркуляции катализатора с использованием вертикальной перегородки (6), разделяющей кипящий слой на подъемную (14) и напорную (15) секции, а затем - в режиме противотока при соотношении времен пребывания катализатора в указанных режимах, равном 0,3-3,0.
2. Способ по п. 1, отличающийся тем, что вертикальную перегородку (6) выполняют в виде цилиндрической трубы.
3. Способ по п. 2, отличающийся тем, что вертикальную перегородку (6) устанавливают в верхней части стакана-восстановителя (1), встроенного в нижнюю часть регенератора (13).
4. Способ по п. 2, отличающийся тем, что вертикальная перегородка (6) является продолжением верхней части стакана-восстановителя (8), входящего в нижнюю часть корпуса регенератора (13).
5. Способ по п. 1, отличающийся тем, что в вертикальной перегородке (6) выполняют отверстия (11) для перетока катализатора в виде круга.
6. Способ по п. 1, отличающийся тем, что для создания внутренней циркуляции катализатора в секции подают воздух, природный газ, азот.
7. Способ по любому из пп. 1-6, отличающийся тем, что линейная скорость газа в подъемной секции (14) выше, чем в напорной секции (15).
СПОСОБ ПОЛУЧЕНИЯ ОЛЕФИНОВ С-С И КАТАЛИЗАТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2009 |
|
RU2402514C1 |
RU 2002128898 A, 27.04.2004 | |||
CN 103449948 A, 18.12.2013. |
Авторы
Даты
2017-05-12—Публикация
2015-12-14—Подача