СПОСОБ НАВЕДЕНИЯ УПРАВЛЯЕМОГО БОЕПРИПАСА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ Российский патент 2020 года по МПК F41G3/00 

Описание патента на изобретение RU2722711C1

Изобретение относится к вооружению, в частности к аппаратуре для наведения управляемых боеприпасов.

Известен способ (аналог) наведения управляемого боеприпаса [см., например, Сидорин В.М., Сухарь И.М., Салахов Т.Р., Понамарев B.Г. и др. Средства и системы оптико-электронного подавления. Ч. 1. - М.: Издательство ВВИА им. проф. Н.Е. Жуковского, 2008, стр. 142-143; Антонов Д.А., Бабич P.M., Балыко Ю.П. и др. Под редакцией Федосова Е.А. Авиация ВВС России и научно-технический прогресс. Боевые комплексы и системы вчера, сегодня, завтра. - М.: Дрофа, 2005, стр. 69-70], включающий определение координат цели, подсвет лазерным излучением области подстилающей поверхности, на которой размещена цель, захват и наведение управляемого боеприпаса по отраженному лазерному излучению от области подсвета цели на подстилающей поверхности.

Известно устройство (аналог) к заявляемому решению - лазерная станция подсвета [Оружие и технологии России. Энциклопедия. XXI век. Том XI. Оптико-электронные системы и лазерная техника. - М.: Издательский дом «Оружие и технологии». 2005. С. 323]. Эта станция предназначена для лазерного подсвета целей в интересах наведения управляемых устройств и состоит из блока электроники, лазера, блока визирования и гиростабилизатора.

Недостатком способа и устройства является высокая вероятность обнаружения лазерного излучения на объекте поражения и возможность принятия мер противодействия.

Наиболее близким по технической сущности и достигаемому техническому результату является способ наведения управляемого боеприпаса (прототип) [Патент RU 2635299, МПК F41G 3/00, опубл. 09.11.2017 г.]. Способ включает: определение координат цели, подсвет лазерным излучением области подстилающей поверхности, на которой размещена цель, наведение управляемого боеприпаса по отраженному лазерному излучению от области подсвета подстилающей поверхности, перемещение области подсвета по заданной относительно координат цели траектории, исключающей подсвет лазерным излучением самой цели, определение параметров наведения управляемого боеприпаса на цель, учитывающих параметры траектории перемещения области подсвета подстилающей поверхности лазерным излучением, значения которых передают на управляемый боеприпас.

Наиболее близким устройством наведения управляемого боеприпаса является лазерный целеуказатель (прототип) [Патент RU 2523612, МПК G02B 27/20, опубл. 20.07.2014 г.], содержащий канал лазерного целеуказания, электронную аппаратуру управления и канал лазерного дальнометрирования. Каналы лазерного целеуказания и дальнометрирования конструктивно выполнены таким образом, что оси пучков лазерного излучения параллельны между собой. Выход канала лазерного дальнометрирования соединен с входом электронной аппаратуры управления. Выход электронной аппаратуры управления соединен с входом канала лазерного целеуказания. Электронная аппаратура управления при обработке сигнала, поступившего из канала лазерного дальнометрирования, обеспечивает необходимую плотность мощности лазерного излучения в зоне облучаемого объекта.

Недостатком способа и устройства является низкая вероятность поражения цели, обусловленная сложностью технической реализации и низкой помехоустойчивостью канала наведения на цель управляемого боеприпаса.

Сложность технической реализации обусловлена высокими требованиями к точности определения параметров перемещения лазерного луча по подстилающей поверхности и формированию сигналов наведения управляемого боеприпаса. Кроме того, непреднамеренные и преднамеренные радиоэлектронные помехи могут привести к потере управления боеприпасом по беспроводному каналу связи.

Техническим результатом данного изобретения является повышение вероятности поражения цели за счет того, что не требуется дополнительного управления боеприпасом в процессе наведения на цель, при этом обеспечивается исключение подсвета лазерным излучением самой цели. После пуска боеприпаса наведение на цель осуществляется только при помощи головки самонаведения, входящей в состав управляемого боеприпаса.

Технический результат достигается тем, что в известном способе, основанном на определении координат цели, подсвете лазерным излучением области подстилающей поверхности, исключающей подсвет лазерным излучением самой цели, подсвет цели осуществляют двумя лучами, которые формируют на подстилающей поверхности находящиеся в поле зрения управляемого боеприпаса две диаметрально противоположные относительно цели области подсвета, при этом направление на цель является биссектрисой угла между двумя лазерными лучами подсвета, кроме того, после пуска управляемого боеприпаса осуществляют схождение лучей подсвета к(цели с заданной угловой скоростью.

Технический результат достигается тем, что в известном устройстве, содержащем последовательно соединенные канал лазерного дальнометрирования, электронную аппаратуру управления и канал лазерного целеуказания, введены электронный ключ и блок формирования области подсвета, первый, второй и третий входы которого соединены с выходом канала лазерного целеуказания, со вторым выходом канала лазерного дальнометрирования и выходом электронного ключа соответственно, а его выход - является выходом устройства наведения управляемого боеприпаса, кроме того первый и второй входы электронного ключа соединены с первым выходом канала лазерного дальнометрирования и со средством запуска управляемого боеприпаса соответственно.

Сущность изобретения заключается в следующем. Наведение на цель управляемых боеприпасов осуществляется по отраженному лазерному излучению от области подсвета цели на подстилающей поверхности. При установке на цели датчиков, фиксирующих лазерное облучение, появляется возможность проведения мероприятий противодействия системам наведения управляемых боеприпасов. В прототипе предложено повысить вероятность поражения цели управляемым боеприпасом с лазерной системой наведения за счет перемещения области подсвета лазерным излучением по заданной траектории относительно цели, исключающей подсвет самой цели. Для реализации способа прототипа непрерывно корректируют текущие параметры наведения на цель управляемого боеприпаса с учетом параметров траектории перемещения области подсвета, при этом сигнал коррекции на управляемый боеприпас передают по беспроводному каналу связи.

Это усложняет реализацию способа и устройства из-за высоких требований к точности определения параметров перемещения лазерного луча по подстилающей поверхности, формированию сигналов наведения управляемым боеприпасом и низкой помехоустойчивости беспроводного канала связи управляемого боеприпаса с устройством наведения.

В изобретении, так же как и в прототипе исключается подсвет лазерным излучением самой цели за счет сформированных на подстилающей поверхности находящиеся в поле зрения управляемого боеприпаса двух диаметрально противоположных относительно цели областей подсвета, при этом направление на цель является биссектрисой угла между двумя лазерными лучами подсвета, кроме того, после пуска управляемого боеприпаса осуществляют схождение лучей подсвета к цели с угловой скоростью , где α - угол между двумя лазерными лучами подсвета; D - дальность до цели при пуске управляемого боеприпаса; V - средняя скорость полета управляемого боеприпаса. Наведение управляемого боеприпаса осуществляется по энергетическому центру (центру тяжести распределения плотности мощности (энергии) в соответствующем сечении лазерного излучения) [ГОСТ 26086-84. Лазеры. Методы измерения диаметра пучка и энергетической расходимости лазерного излучения. - Введ. 1985-07-01. - М.: Изд-во стандартов, 2002. С. 4] отраженного лазерного излучения от двух областей подсвета на подстилающей поверхности, которые расположены диаметрально противоположно относительно цели.

В заявленное устройство введен блок формирования области подсвета, который позволяет сформировать на подстилающей поверхности диаметрально противоположные относительно цели две области подсвета, при этом направление на цель является биссектрисой угла между двумя лазерными лучами подсвета, кроме того, после пуска управляемого боеприпаса осуществляют схождение лучей подсвета к цели с угловой скоростью ω.

Для реализации изобретения не надо определять параметры перемещения лазерного луча подсвета по подстилающей поверхности и соответственно не надо формировать и передавать по беспроводному каналу связи сигналы коррекции управляемым боеприпасом. После пуска боеприпаса наведение на цель осуществляется при помощи головки самонаведения, входящей в состав боеприпаса, по отраженному излучению от областей подсвета цели на подстилающей поверхности.

На фиг. 1 приведена схема применения управляемого боеприпаса с лазерным наведением, где обозначено: 1 - канал лазерного дальнометрирования, 2 - электронная аппаратура управления, 3 - канал лазерного целеуказания, 4 - блок формирования области подсвета, 5 - электронный ключ, 6 - средство запуска управляемого боеприпаса, 7 - носитель, 8 - управляемый боеприпас, 9 - лазерные лучи подсвета подстилающей поверхности, 10 - цель (точка наведения).

Последовательно соединены канал лазерного дальнометрирования 1, электронная аппаратура управления 2, канал лазерного целеуказания 3, блок формирования области подсвета 4. При этом второй и третий входы блока формирования области подсвета 4 соединены со вторым выходом канала лазерного дальнометрирования 1 и выходом электронного ключа 5 соответственно, а выход блока формирования области подсвета 4 - является выходом устройства наведения управляемого боеприпаса. Кроме того, первый и второй входы электронного ключа 5 соединены с первым выходом канала лазерного дальнометрирования 1 и со средством запуска управляемого боеприпаса 6 соответственно.

Назначения элементов, представленных на схеме ясны из их названия. Работа устройства, реализующего способ наведения управляемого боеприпаса, не отличается от работы устройства-прототипа за исключением того, что сигнал с выхода канала лазерного целеуказания 3 подают на первый вход блока формирования области подсвета 4, на второй вход которого подают сигнал со второго выхода канала лазерного дальнометрирования 1. Кроме того, сигнал с первого выхода канала лазерного дальнометрирования 1 подают одновременно на два устройства: на вход электронной аппаратуры управления 2 и на первый вход электронного ключа 5, который в исходном состоянии замкнут и на его выходе сигнал отсутствует. После пуска управляемого боеприпаса 8 электронный ключ 5 открывают сигналом, поступающим на его второй вход со средства запуска управляемого боеприпаса 6, находящегося на носителе 7. Сигнал через электронный ключ 5 поступает на третий вход блока формирования области подсвета 4, который осуществляет схождение лучей подсвета к цели с угловой скоростью ω.

Блок формирования области подсвета 4 предназначен для формирования на подстилающей поверхности находящихся в поле зрения управляемого боеприпаса двух диаметрально противоположных относительно цели 10 областей подсвета, а также для осуществления схождения лучей подсвета к цели с угловой скоростью после пуска управляемого боеприпаса 8. Средняя скорость полета управляемого боеприпаса V и угол между двумя лазерными лучами подсвета α введены в блок формирования области подсвета 4 заранее.

На фиг. 2 приведен вариант построения блока формирования области подсвета 4, где обозначено: 11 - устройство разделения лазерного луча, 12 - устройство управления механизмом отклонения зеркал, 13 - механизм отклонения зеркал, 14-1 и 14-2 - первое и второе зеркало соответственно.

Устройство разделения лазерного луча 11 предназначено для разделения лазерного луча на два, при этом биссектриса угла между двумя лазерными лучами является направлением на точку наведения. В качестве устройства разделения лазерного луча 11 может быть использована, например, бипризма Френеля [см., например, Алешкевич В.А. Курс общей физики. Оптика. - М.: ФИЗМАТЛИТ, 2010, стр. 100].

Устройство управления механизмом отклонения зеркал 12 предназначено для формирования сигнала управления механизмом отклонения зеркал 13 и может быть реализовано в виде счетно-решающего устройства [см., например, Устройство адаптивной оптико-электронной системы управления телескопом. - Патент RU 2224272, МПК G02B 26, опубл. 20.02.2004 г.].

Механизм отклонения зеркал 13 предназначен для отклонения зеркал 14-1, 14-2 по сигналу с устройства управления механизмом отклонения зеркал 12 и может быть реализован в виде реверсивного электродвигателя, скорость и направление вращения которого регулируется путем варьирования уровнем и полярностью сигнала с выхода устройства управления механизмом отклонения зеркал 12.

Первое 14-1 и второе 14-2 зеркала, имеющие одинаковую конструкцию, предназначены для отражения лазерного излучения с выхода устройства разделения лазерного луча 11. В качестве зеркал 14-1, 14-2 могут быть использованы, например, плоские зеркала с защитным серебряным покрытием, которые обладают отличной прочностью и высоким коэффициентом отражения в видимом и ближнем инфракрасном диапазонах длин волн [см., например, Зеркало. - Патент RU 2466949, МПК С03С 17/36, опубл. 20.11.2012 г.].

Все элементы блока формирования области подсвета 4 и электронный ключ 5 могут быть реализованы с помощью оптических и технических элементов, выпускаемых промышленностью. Так, электронный ключ 5' может быть реализован в виде полевого транзистора с изолированным затвором [см., например, Прагер И.Л. Электронные аналоговые вычислительные машины. - М.: Машиностроение, 1985, стр. 85].

Похожие патенты RU2722711C1

название год авторы номер документа
СПОСОБ НАВЕДЕНИЯ УПРАВЛЯЕМОГО БОЕПРИПАСА 2022
  • Левшин Евгений Анатольевич
  • Беляев Виктор Вячеславович
  • Козирацкий Юрий Леонтьевич
  • Утемов Сергей Владимирович
  • Миндияров Денис Ваисович
  • Марчуков Иван Анатольевич
  • Петренков Евгений Викторович
RU2801294C1
Способ наведения управляемого боеприпаса 2016
  • Козирацкий Юрий Леонтьевич
  • Кулешов Павел Евгеньевич
  • Паринов Максим Леонидович
  • Балаин Станислав Евгеньевич
  • Левшин Евгений Анатольевич
  • Донцов Александр Александрович
RU2635299C1
СПОСОБ СТРЕЛЬБЫ УПРАВЛЯЕМЫМ СНАРЯДОМ С ЛАЗЕРНОЙ ПОЛУАКТИВНОЙ ГОЛОВКОЙ САМОНАВЕДЕНИЯ И УСТРОЙСТВО, ЕГО РЕАЛИЗУЮЩЕЕ 2019
  • Умеренков Сергей Александрович
  • Шадрин Сергей Владимирович
  • Левицкий Михаил Витальевич
  • Мухаметшин Альфат Талгатович
  • Лаврентьев Александр Петрович
  • Хохлов Владимир Александрович
  • Акатьев Сергей Анатольевич
RU2737634C2
СПОСОБ ЗАЩИТЫ ОБЪЕКТА ОТ ВЫСОКОТОЧНОГО ОРУЖИЯ С ЛАЗЕРНЫМ НАВЕДЕНИЕМ 2024
  • Левшин Евгений Анатольевич
  • Беляев Виктор Вячеславович
  • Миндияров Денис Ваисович
  • Баландович Александр Александрович
  • Марчуков Иван Анатольевич
  • Хакимов Тимерхан Мусагитович
RU2822806C1
ЛАЗЕРНЫЙ ЦЕЛЕУКАЗАТЕЛЬ 2012
  • Абрамов Алексей Иванович
  • Зборовский Александр Абрамович
  • Иванов Борис Борисович
  • Чистилин Александр Юрьевич
RU2523612C1
Способ одновременного наведения управляемых ракет с лазерными полуактивными головками самонаведения и устройство для его осуществления 2017
  • Гусев Андрей Викторович
  • Образумов Владимир Иванович
  • Овсенев Сергей Сергеевич
  • Селькин Владислав Владимирович
  • Мизеров Максим Олегович
  • Семашкина Раиса Михайловна
RU2657356C1
СПОСОБ НАВЕДЕНИЯ УПРАВЛЯЕМОГО БОЕПРИПАСА 2017
  • Козирацкий Юрий Леонтьевич
  • Козирацкий Александр Юрьевич
  • Кулешов Павел Евгеньевич
  • Паринов Максим Леонидович
  • Донцов Александр Александрович
  • Балаин Станислав Евгеньевич
  • Нагалин Данила Александрович
RU2660777C1
ОПТИКО-ЛАЗЕРНАЯ СИСТЕМА ДЛЯ ПРИЦЕЛИВАНИЯ И ДАЛЬНОМЕТРИРОВАНИЯ ВОЗДУШНЫХ ЦЕЛЕЙ 1998
  • Симонов М.П.
  • Кнышев А.И.
  • Троельников Ю.В.
  • Сопин В.П.
  • Турок Р.С.
  • Трейнер И.Л.
  • Абрамов В.А.
RU2123165C1
СПОСОБ НАВЕДЕНИЯ САМОНАВОДЯЩЕГОСЯ БОЕПРИПАСА 2022
  • Кулешов Павел Евгеньевич
  • Ганин Алексей Викторович
  • Кучерявый Роман Петрович
  • Калмыков Андрей Владимирович
RU2790052C1
УСТРОЙСТВО ЛУЧЕВОГО НАВЕДЕНИЯ УПРАВЛЯЕМОГО ОБЪЕКТА 2003
  • Коршунов Александр Иванович
  • Сторощук Остап Богданович
RU2267733C2

Иллюстрации к изобретению RU 2 722 711 C1

Реферат патента 2020 года СПОСОБ НАВЕДЕНИЯ УПРАВЛЯЕМОГО БОЕПРИПАСА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Изобретение относится к вооружению, в частности к аппаратуре для наведения управляемых боеприпасов. Для наведения управляемого боеприпаса (8) определяют координаты цели (10), подсвечивают лазерным излучением области подстилающей поверхности, исключая подсвет лазерным излучением самой цели (10). При этом подсвет цели (10) осуществляют двумя лучами (9), сформированными на подстилающей поверхности в поле зрения управляемого боеприпаса (8) в диаметрально противоположных относительно цели (10) областях подсвета, при этом направление на цель (10) является биссектрисой угла между двумя лазерными лучами (9) подсвета. После пуска управляемого боеприпаса (8) осуществляют схождение лучей (9) подсвета к цели (10) с угловой скоростью , где α - угол между двумя лазерными лучами подсвета (9); D - дальность до цели (10) при пуске управляемого боеприпаса (8); V - средняя скорость полета управляемого боеприпаса (8). Также предложено устройство наведения управляемого боеприпаса, содержащее последовательно соединенные канал лазерного дальнометрирования (1), электронную аппаратуру управления (2), канал лазерного целеуказания (3), электронный ключ (5), блок формирования области подсвета (4), средство запуска управляемого боеприпаса (6). Обеспечивается повышение вероятности поражения цели за счет того, что не требуется дополнительного управления боеприпасом в процессе наведения, исключается подсвет лазерным излучением самой цели, наведение осуществляется только при помощи головки самонаведения управляемого боеприпаса. 2 н. и 1 з.п. ф-лы, 2 ил.

Формула изобретения RU 2 722 711 C1

1. Способ наведения управляемого боеприпаса, заключающийся в определении координат цели, подсвете лазерным излучением области подстилающей поверхности, исключающей подсвет лазерным излучением самой цели, отличающийся тем, что подсвет цели осуществляют двумя лучами, которые формируют на подстилающей поверхности находящиеся в поле зрения управляемого боеприпаса две диаметрально противоположные относительно цели области подсвета, при этом направление на цель является биссектрисой угла между двумя лазерными лучами подсвета, кроме того, после пуска управляемого боеприпаса осуществляют схождение лучей подсвета к цели с угловой скоростью , где α - угол между двумя лазерными лучами подсвета; D - дальность до цели при пуске управляемого боеприпаса; V - средняя скорость полета управляемого боеприпаса.

2. Устройство наведения управляемого боеприпаса, содержащее последовательно соединенные канал лазерного дальнометрирования, электронную аппаратуру управления и канал лазерного целеуказания, отличающееся тем, что введены электронный ключ и блок формирования области подсвета, первый, второй и третий входы которого соединены с выходом канала лазерного целеуказания, со вторым выходом канала лазерного дальнометрирования и выходом электронного ключа соответственно, а его выход является выходом устройства наведения управляемого боеприпаса, кроме того, первый и второй входы электронного ключа соединены с первым выходом канала лазерного дальнометрирования и со средством запуска управляемого боеприпаса соответственно.

3. Устройство по п. 2, отличающееся тем, что блок формирования области подсвета состоит из устройства разделения лазерного луча, последовательно соединенных устройства управления механизмом отклонения зеркал и механизма отклонения зеркал, а также первого и второго зеркал, при этом выход устройства разделения лазерного луча соединен одновременно со вторым и первым входом первого и второго зеркал соответственно, а механизм отклонения зеркал соединен первым и вторым выходами с первым и вторым входами первого и второго зеркал соответственно.

Документы, цитированные в отчете о поиске Патент 2020 года RU2722711C1

Способ наведения управляемого боеприпаса 2016
  • Козирацкий Юрий Леонтьевич
  • Кулешов Павел Евгеньевич
  • Паринов Максим Леонидович
  • Балаин Станислав Евгеньевич
  • Левшин Евгений Анатольевич
  • Донцов Александр Александрович
RU2635299C1
Станция орбитальная заправочная криогенная 2019
  • Денисов Владимир Дмитриевич
RU2729748C1
Способ защиты переносных электрических установок от опасностей, связанных с заземлением одной из фаз 1924
  • Подольский Л.П.
SU2014A1
KR 1020150041623 A, 16.04.2015.

RU 2 722 711 C1

Авторы

Левшин Евгений Анатольевич

Рехвиашвили Владимир Наполеонович

Беляев Виктор Вячеславович

Козирицкий Юрий Леонтьевич

Донцов Александр Александрович

Токарев Дмитрий Анатольевич

Миндияров Денис Ваисович

Даты

2020-06-03Публикация

2019-09-02Подача