Скрепленный с корпусом канальный заряд смесевого ракетного твердого топлива Российский патент 2020 года по МПК F02K9/12 

Описание патента на изобретение RU2725118C1

Изобретение относится к ракетной технике и может быть использовано при разработке и изготовлении твердотопливных двигателей ракет тактического назначения, зенитных управляемых ракет, ракетных систем залпового огня, противотанковых управляемых ракет, неуправляемых авиационных ракет.

Из уровня техники известно техническое решение, направленное на повышение коэффициента объемного заполнения корпуса топливом за счет использования конструкций прочноскрепленных с корпусом зарядов с неизвлекаемыми формообразующими элементами (НФЭ) в виде пластин с нанесенным на них быстросгораемым материалом (патент РФ №92109 на полезную модель, опубл. 10.03.2010 г.).

Недостатками известной конструкции двигателя твердого топлива являются: непригодность для конструкций зарядов больших удлинений.

Не решен вопрос обеспечения надежности скрепления НФЭ с топливом, а при нарушении скрепления возможен нерасчетный рост поверхности горения заряда и, как следствие, непрогнозируемый рост давления в камере двигателя из-за возникновения эрозионного горения при его работе.

В качестве пластин в описании к заявляемому техническому решению приведен их исчерпывающий перечень: диски, усеченные полые конусы с прямолинейными или криволинейными образующими, параллелепипеды.

Не решен вопрос обеспечения неизменности положения и целостности НФЭ при изготовлении заряда, поэтому возможно возникновение нерасчетного эрозионного горения.

Все типы пластин имеют неразвитую поверхность относительно длины заряда (определяемую толщиной конкретной пластины), выполнены исключительно сплошными из материала с высокой температуропроводностью, много большей температуропроводности твердого топлива заряда, ориентированы перпендикулярно оси заряда, что приводит к повышенным нагрузкам на них при формовании заряда от воздействия топливной массы. Следовательно, для избежания деформаций пластин потребуется их усиление, что приведет к увеличению пассивной массы двигателя. Кроме того, такая конструкция НФЭ и такое позиционирование НФЭ в заряде способствуют увеличению поверхности горения, но не обеспечивают увеличение проходных сечений, то есть не предотвращают возникновение нерасчетного эрозионного горения.

Известен реализующий способ изготовления (патент РФ №2673917, опубл. 10.01.2018 г.) скрепленный с корпусом канальный заряд смесевого ракетного твердого топлива (принятый за прототип), содержащий неизвлекаемые формообразующие элементы в виде пластин с нанесенным на них быстросгораемым материалом, скорость горения которого выше скорости горения топлива.

Прототип содержит НФЭ (в отличие от аналога) в виде пластин, плоскость которых ориентирована вдоль заряда.

При этом к недостаткам известного заряда следует отнести ограничение по жесткостным характеристикам корпуса (непригодность для корпусов, обладающих низкой податливостью, в частности, выполненных из стали), необходимость применения барокамеры при формовании зарядов, что значительно снижает технологичность изготовления заряда, узкая направленность на конструкции зарядов больших удлинений и отсутствие вариативности материала пластин НФЭ для одного типа режима ракетного двигателя твердого топлива (РДТТ) (для двухрежимного двигателя предусматривается исключительно алюминий в качестве материала НФЭ), что снижает диапазон эксплуатационных возможностей конструкции.

Приведенные в описании прототипа примеры конкретного выполнения показывают, что для воплощения изобретения в двухрежимном РДТТ разработчики используют сочетание пластин двух типоразмеров, что снижает технологичность изготовления заряда.

В прототипе применяют только сплошные пластины для двигателей разных режимов (попытка сохранить неизменность позиционирования НФЭ при изготовлении заряда), не предусматривающие оптимизацию степени сплошности в соответствии с существующей потребностью (например, использование перфорированных или сетчатых пластин для уменьшения пассивного веса двигателя).

Используемый в качестве покрытия именно алюминиевых пластин быстросгораемый материал содержит CuO, который вступает в химическую реакцию с активным связующим топлива на его границе с НФЭ, что приводит к нарушению адгезионного соединения и, следовательно, к увеличению начальной поверхности горения и последующему нерасчетному эрозионному горению.

Кроме того, в составе покрытия присутствует бор, который вступает в химическое взаимодействие с топливом заряда, а мероприятия по препятствию диффузионных процессов на границе топливо-быстросгораемый материал покрытия пластин НФЭ в прототипе отсутствуют.

Задачей предлагаемого технического решения является создание конструкции скрепленного с корпусом канального заряда смесевого ракетного твердого топлива, унифицированного по типоразмерам используемых НФЭ (конкретный заряд - один тип НФЭ), с расширенными эксплуатационными возможностями - пригодного для воплощения с использованием корпусов из материалов различной степени податливости и зарядов различной степени удлинения, при одновременном достижении коэффициента объемного заполнения корпуса топливом, превышающим 0,92 и реализации такого порядка развития поверхности горения, при котором исключена возможность возникновения нерасчетного эрозионного горения.

Кроме того, заявляемая конструкция способствует повышению технологичности изготовления заряда за счет отсутствия необходимости использования барокамеры, унификации типоразмеров НФЭ, используемых в конкретной конструкции заряда, сохранения неизменности положения и отсутствия деформации НФЭ в процессе изготовления заряда при одновременном обеспечении возможности вариативного подхода к выбору степени сплошности НФЭ.

Поставленная задача решается заявляемым скрепленным с корпусом канальным зарядом смесевого ракетного твердого топлива, содержащим неизвлекаемые формообразующие элементы в виде пластин с нанесенным на них быстросгораемым материалом, скорость горения которого выше скорости горения топлива. Особенность заключается в том, что пластины распределены по сечению заряда на части его длины со стороны сопла, выполнены сплошными или перфорированными или сетчатыми, одного типоразмера в виде трапеций, большее основание каждой из которых обращено к каналу, а меньшее загнуто с образованием полости, в которой размещен стержень из негорючего материала, температура плавления или температура разложения которого меньше температуры горения топлива, при этом в качестве быстросгораемого материала используют состав Ti+B+Al, который наносят с обеспечением постоянства толщины во всех сечениях плоской части неизвлекаемого формообразующего элемента, а поверхность контакта быстросгораемого материала с топливом покрывают термоусадочной газонепроницаемой полимерной пленкой.

В частности, пластины выполнены из алюминия или из магния, или из полимера по 3D-технологии.

В частности, в качестве негорючего материала используют сталь или алюминий.

В частности, в качестве полимерной пленки используют поливинилхлоридную или полиуретановую пленку.

Конструкция НФЭ позволяет в зависимости от выбранного типоразмера реализовать различные режимы работы для двигателей различных удлинений.

Проведенный анализ уровня техники показывает, что заявляемый заряд отличается от прототипа возможностью варьирования материалами корпуса и НФЭ, а также степенью сплошности пластин, являющихся основой НФЭ, до 60% в соответствии с существующей потребностью; отсутствием НФЭ на части длины заряда; иной формой пластины - трапеция (в прототипе -прямоугольник); наличием загиба меньшего основания каждой пластины с образованием полости, в которой размещен стержень из негорючего материала, температура плавления или температура разложения которого меньше температуры горения топлива (стержень, позволяющий сохранять неизменность положения и отсутствие деформации НФЭ при изготовлении заряда); наличием термоусадочной газонепроницаемой полимерной пленки, покрывающей быстросгораемый материал по всей поверхности его контакта с топливом заряда, препятствующей диффузионным процессам на их границе в процессе хранения; иным составом быстросгораемого материала.

Предлагаемая совокупность отличительных от прототипа признаков с остальными существенными признаками заявляемого заряда позволяет решить поставленную задачу с получением комплекса преимуществ, который невозможно достичь известной из уровня техники конструкцией заряда.

Конструкция предлагаемого скрепленного с корпусом канального заряда смесевого ракетного твердого топлива иллюстрируется графическими изображениями.

На фиг. 1 представлен продольный разрез заряда.

На фиг. 2 сечение А-А, обозначенное на фиг. 1.

Заряд содержит корпус 1 (например, органопластиковый или выполненный из стали), смесевое твердое топливо 2, скрепленное с теплозащитным покрытием 3 корпуса 1, сквозной канал 4, НФЭ в виде трапецевидных пластин 5, материал (например, алюминий, магний, полимер, пригодный для 3D-технологии), количество, сплошность и размеры которых подбирают для конкретного РДТТ. Меньшее основание каждой пластины 5 имеет загиб 6 с образованием полости 7, в которой размещен стержень (условно не показан) из стали или алюминия. На пластины 5 нанесен быстросгораемый материал 8, поверхность контакта которого с топливом покрыта термоусадочной газонепроницаемой полимерной пленкой (в частности, поливинилхлоридной, например, по ТУ 2513-028-32478306-99, по ГОСТ 25250-88 или, в частности, полиуретановой пленкой по ГОСТ 14896-84). На пленку (условно не показана) нанесен лак на основе смеси лака полиуретанового (по ТУ 2312-009-18891264-2009, ТУ 2313-031-98310821-2010) и лака акрилового (по ГОСТ 52165-2003, ТУ 2313-057-25546303-2004). В процессе изготовления заряда всю сборку НФЭ покрывают крепящим составом, а на каналообразующий элемент наносят антиадгезионный состав. Фиксирование НФЭ в объеме корпуса 1 осуществляют путем размещения больших оснований их пластин 5 в пазах каналообразующего элемента с использованием стяжек 9.

Заявляемая конструкция работает следующим образом. После срабатывания воспламенителя (не показан) происходит возгорание топлива 2 по поверхности канала 4 и быстросгораемого материала 8 со стороны канала 4. Фронт горения материала 8 значительно опережает фронт горения топлива 2, тем самым увеличивается поверхность горения с одновременным увеличением проходных сечений. Такое сочетание исключает возникновение нерасчетного эрозионного горения.

Предлагаемое техническое решение практически реализуемо и технологически целесообразно.

Проведенные испытания макетных образцов подтвердили работоспособность предлагаемого технического решения.

Похожие патенты RU2725118C1

название год авторы номер документа
Способ изготовления скрепленного с корпусом канального заряда смесевого ракетного твердого топлива 2018
  • Анисимов Игорь Иванович
  • Литвинов Андрей Владимирович
  • Чащихин Евгений Алексеевич
  • Карманов Николай Михайлович
  • Курбатов Андрей Валерьевич
  • Кодолов Владимир Васильевич
RU2673917C1
РАКЕТНЫЙ ДВИГАТЕЛЬ НА ТВЕРДОМ ТОПЛИВЕ 2014
  • Жарков Александр Сергеевич
  • Литвинов Андрей Владимирович
  • Вагичев Сергей Николаевич
  • Кривенко Олег Алексеевич
  • Коваленко Геннадий Павлович
  • Макарова Наталья Макаровна
  • Гусев Тимофей Викторович
  • Анисимов Игорь Иванович
RU2576411C1
ЗАРЯД СМЕСЕВОГО РАКЕТНОГО ТОПЛИВА И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2008
  • Сакович Геннадий Викторович
  • Певченко Борис Васильевич
  • Нестеров Григорий Николаевич
  • Жарков Александр Сергеевич
  • Сысолятин Сергей Викторович
  • Хайновский Геннадий Константинович
RU2374480C2
РАКЕТНЫЙ ДВИГАТЕЛЬ СМЕСЕВОГО ТВЁРДОГО ТОПЛИВА 2002
  • Аликин В.Н.
  • Кузьмицкий Г.Э.
  • Федченко Н.Н.
  • Семёнов В.В.
  • Иванов В.Е.
  • Габов А.В.
RU2211351C1
РАКЕТНЫЙ ДВИГАТЕЛЬ ТВЕРДОГО ТОПЛИВА 2013
  • Жарков Александр Сергеевич
  • Дочилов Николай Егорович
  • Громов Александр Михайлович
  • Казаков Александр Алексеевич
RU2527280C1
ТВЕРДОТОПЛИВНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ 2011
  • Жарков Александр Сергеевич
  • Кривенко Олег Алексеевич
  • Коваленко Геннадий Павлович
  • Литвинов Андрей Владимирович
  • Макарова Наталья Макаровна
  • Гусев Тимофей Викторович
RU2458244C1
РАКЕТНЫЙ ДВИГАТЕЛЬ ТВЁРДОГО РАКЕТНОГО ТОПЛИВА 2003
  • Колесников В.И.
  • Амарантов Г.Н.
  • Талалаев А.П.
  • Шамраев В.Я.
  • Дмитриев А.Ф.
  • Лазебный В.Н.
  • Вронский Н.М.
  • Федченко Н.Н.
  • Гусева Г.Н.
  • Граменицкий М.Д.
  • Быцкевич В.М.
  • Чуб С.И.
  • Волков О.К.
  • Кузьмицкий Г.Э.
RU2245450C1
Способ изготовления скрепленного с корпусом заряда смесевого ракетного твердого топлива формованием свободным литьем 2016
  • Жарков Александр Сергеевич
  • Анисимов Игорь Иванович
  • Литвинов Андрей Владимирович
  • Зверева Ангелина Александровна
  • Горощенко Анатолий Ефимович
  • Новиков Сергей Анатольевич
  • Тумаков Сергей Юрьевич
  • Карманов Николай Михайлович
  • Огородников Сергей Петрович
  • Чащихин Евгений Алексеевич
  • Степанов Виктор Иванович
RU2657077C1
ЗАРЯД ТВЕРДОГО РАКЕТНОГО ТОПЛИВА 2005
  • Колесников Виталий Иванович
  • Козьяков Алексей Васильевич
  • Никитин Василий Тихонович
  • Молчанов Владимир Федорович
  • Пупин Николай Афанасьевич
  • Власов Сергей Яковлевич
  • Александров Михаил Зиновьевич
  • Красильников Федор Сергеевич
  • Летов Борис Павлович
  • Куценко Геннадий Васильевич
RU2305201C1
РАКЕТНЫЙ ДВИГАТЕЛЬ ТВЕРДОГО ТОПЛИВА 2010
  • Кислицын Алексей Анатольевич
  • Никитин Василий Тихонович
  • Молчанов Владимир Фёдорович
  • Козьяков Алексей Васильевич
  • Амарантов Георгий Николаевич
  • Нешев Сергей Сергеевич
RU2461728C2

Иллюстрации к изобретению RU 2 725 118 C1

Реферат патента 2020 года Скрепленный с корпусом канальный заряд смесевого ракетного твердого топлива

Изобретение относится к ракетной технике и может быть использовано при разработке и изготовлении твердотопливных двигателей ракет тактического назначения, зенитных управляемых ракет, ракетных систем залпового огня, противотанковых управляемых ракет. Предлагается скрепленный с корпусом канальный заряд смесевого ракетного твердого топлива. Заряд содержит неизвлекаемые формообразующие элементы (НФЭ) в виде пластин с нанесенным на них быстросгораемым материалом, скорость горения которого выше скорости горения топлива. Пластины распределены по сечению заряда на части его длины со стороны сопла, выполнены сплошными или перфорированными, или сетчатыми, одного типоразмера в виде трапеций. Большее основание каждой трапеции обращено к каналу, а меньшее загнуто с образованием полости. В полости размещен стержень из негорючего материала, температура плавления или, температура разложения которого меньше температуры горения топлива. В качестве быстросгораемого материала используют состав Ti+B+Al, который наносят с обеспечением постоянства толщины во всех сечениях плоской части НФЭ. Поверхность контакта быстросгораемого материала с топливом покрывают термоусадочной газонепроницаемой полимерной пленкой. Заряд обладает повышенной технологичностью при изготовлении, позволяет достичь коэффициент объемного заполнения корпуса топливом, превышающим 0,92, исключить возможность возникновения нерасчетного эрозионного горения. 3 з.п. ф-лы, 2 ил.

Формула изобретения RU 2 725 118 C1

1. Скрепленный с корпусом канальный заряд смесевого ракетного твердого топлива, содержащий неизвлекаемые формообразующие элементы в виде пластин с нанесенным на них быстросгораемым материалом, скорость горения которого выше скорости горения топлива, отличающийся тем, что пластины распределены по сечению заряда на части его длины со стороны сопла, выполнены сплошными или перфорированными или сетчатыми, одного типоразмера в виде трапеций, большее основание каждой из которых обращено к каналу, а меньшее загнуто с образованием полости, в которой размещен стержень из негорючего материала, температура плавления или температура разложения которого меньше температуры горения топлива, при этом в качестве быстросгораемого материала используют состав Ti+B+Al, который наносят с обеспечением постоянства толщины во всех сечениях плоской части неизвлекаемого формообразующего элемента, а поверхность контакта быстросгораемого материала с топливом покрывают термоусадочной газонепроницаемой полимерной пленкой.

2. Заряд по п. 1, отличающийся тем, что пластины выполнены из алюминия или из магния, или из полимера по 3D-технологии.

3. Заряд по п. 1, отличающийся тем, что в качестве негорючего материала используют сталь или алюминий.

4. Заряд по п. 1, отличающийся тем, что в качестве полимерной пленки используют поливинилхлоридную или полиуретановую пленку.

Документы, цитированные в отчете о поиске Патент 2020 года RU2725118C1

Способ изготовления скрепленного с корпусом канального заряда смесевого ракетного твердого топлива 2018
  • Анисимов Игорь Иванович
  • Литвинов Андрей Владимирович
  • Чащихин Евгений Алексеевич
  • Карманов Николай Михайлович
  • Курбатов Андрей Валерьевич
  • Кодолов Владимир Васильевич
RU2673917C1
Подвижный наконечник для медицинских электромагнитов 1950
  • Шоттер Л.Х.
SU92109A1
US 4223606 A1, 23.09.1980
РАКЕТНЫЙ ДВИГАТЕЛЬ ТВЕРДОГО ТОПЛИВА 2013
  • Жарков Александр Сергеевич
  • Громов Александр Михайлович
  • Пилюгин Леонид Александрович
  • Казаков Александр Алексеевич
RU2542709C1

RU 2 725 118 C1

Авторы

Курбатов Андрей Валерьевич

Кодолов Владимир Васильевич

Воробьев Артем Константинович

Черкасов Александр Владимирович

Новоселов Григорий Павлович

Половникова Надежда Викторовна

Даты

2020-06-29Публикация

2019-11-18Подача